
March 1994 MM5 Model Documentation 2.1

2: Memory Organization & Code Structure

Section 2

MEMORY ORGANIZATION & CODE STRUCTURE

The model is written in standard FORTRAN, but there are some Cray-specific aspects that

will be discussed in this section.

2.1 Pointers

MM5 makes use of Cray FORTRAN POINTERs to associate model variables with values

for a given nest. For instance, three-dimensional array UA, appearing in the model physics and

dynamics code, is used with a pointer to distinguish which part of the memory it is located in. It

has one location for each nest.

POINTERs are addresses to identify an array or variable name (the pointee) with a part

of the memory, e.g.,

POINTER (IAUA, UA(MIX, MJX, MKX))

at the top of a subroutine indicates that the location of 3-D array UA should be taken to start at

address IAUA in the memory. Only variables with values that change on different nests require

pointers. Physical and model constants and variables local to a subroutine do not have pointers.

Typically in the model the value of IAUA and the ~300 other pointers depends upon

which nest is being calculated in that part of the program. There would be one value of IAUA for

each nest and the array UA is dimensioned by the maximum IX and JX of any nest (MIX, MJX,

MKX).

The values of all ~300 (=NUMVAR) pointers for each domain are calculated in routine

ADDALL at the beginning of a run or restart and stored in array IAXALL (NUMVAR,

MAXNES) where MAXNES is the maximum number of nests during the simulation.

When calculations shift from one nest to another, routine ADDRX1C is called to reset the

values of IAUA etc. for the next nest, taking the values from array IAXALL.



MM5 Model Documentation  2.2 March 1994

2: Memory Organization & Code Structure

Sometimes information from two nests, a coarser and finer nest, are required

concurrently such as in initializing nests or calculating nest inputs and feedbacks. In this case

ADDRX1N is called to define the pointers for the finer mesh such as

POINTER(INAUA, UAN(MIX, MJX, MKX))

so that UA represents the coarser mesh and UAN represents the finer mesh u-component of velocity.

The pointers are divided into 16 common blocks as follows (see section 4 in document for

description of the corresponding pointees).

Three-dimensional prognostic variables

 COMMON/ADDR1/IAUA, IAUB, IAVA, IAVB, IATA, IATB, IAQVA,
1 IAQVB, IAQCA, IAQCB, IAQRA, IAQRB, IAQIA, IAQIB,
2 IAQNIA, IAQNIB

Two-dimensional model variables

 COMMON/ADDR2/IAPA, IAPB, IARC, IARN, IAF, IAMX, IAMD, IAHT,
1 IALT, IALO, IALD, IAAL, IATH, IASH, IAZN, IATM,
2 IAMA, IAEM, IAZO, IAHO, IAMO, IAPL, IARE, IAHX,
3 IAQX, IAUT, IAPR, IATGA, IATGB, IASA, IAPSI, IARP,
4 IAGS, IAGL, IACG, IASC, IAEF, IACR, IASR

Boundary variables

 COMMON/ADDR3/IAUE, IAUW, IAUET, IAUWT, IAVE, IAVW, IAVET, IAVWT,
1 IATE, IATW, IATET, IATWT, IAQE, IAQW, IAQET, IAQWT,
2 IAQCE, IAQCW, IAQCET, IAQCWT, IAQRIAQRW, IAQRET,
3 IAQRWT IAQIE, IAQIW, IAQIET, IAQIWT, IAQNIAQNIW,
4 IAQNIET,IAQNIWT,IAUN, IAUS, IAUNT, IAUST, IAVN, IAVS,
5 IAVNT, IAVST, IATN, IATS, IATNT, IATST, IAQN, IAQS,
6 IAQNT, IAQST, IAQCN, IAQCS, IAQCNT, IAQCST, IAQRN,
7 IAQRS, IAQRNT, IAQRST, IAQIN, IAQIS, IAQINT, IAQIST,
8 IAQNIN, IAQNIS, IAQNINT, IAQNIST, IAPE, IAPW, IAPET,
9 IAPWT, IAPN, IAPS, IAPNT, IAPST, IAUJ1, IAUJL, IAUJ2,
0 IAUJLX, IAVJ1, IAVJL, IAVJ2, IAVJLX, IAUI1, IAUIL,
1 IAUI2, IAUILX, IAVI1, IAVIL, IAVI2, IAVILX



March 1994 MM5 Model Documentation 2.3

2: Memory Organization & Code Structure

Other variables (scalars)

 COMMON/ADDR4/IAIL, IAJL, IAKL, IAKP1, IAKM, IAILX, IAILM,
1 IAJLX, IAJLM, IAKTU, IAKTR, IAXT, IADT, IADT2, IADTM,
2 IADX, IADX2, IADX4, IADX8, IAD16, IADXQ, IAXK, IAXKM,
3 IAC0, IAC1, IAC3, IADMI, IADMA, IAQMI, IAQMA, IAQME,
4 IAQMR, IAFNG, IAGNG

Nest scalars

 COMMON/ADDRNN/INN1, INN2, INN3, INN4, INN5, INN6, INN7, INN8,
1 INN9, INN10, INN11, INN12, INN13, INN14, INN15, INN16,
2 INN17, INN18, INN19, INN20, INN21, INN22, INN23, INN24,
3 INN25, INN26, INN27

Split explicit arrays

 COMMON/ADDRSP/ISPM, ISPDTA, ISPAM, ISPAN, ISPDS,
1 ISPHS, ISPZMX, ISPZMR, ISPBZ, ISPCZ, ISPHB

FDDA grid-nudging variables

 COMMON/ADDR5/IFUBO, IFVBO, IFUBT, IFVBT, IFTBO, IFTBT, IFQBO,
1 IFQBT, IFVOR
 COMMON/ADDR6/IFPSO, IFPST, IFPSC, IFPSD, IFPSB, IFWDT, IFWCS,
1 IFWQ, IFDMI, IFDMS, IFIPR, IFIPS, IFMPD, IFMPX
 COMMON/ADDR7/IFSFCO, IFBLWN, IFBLWT, IFBLWS, IFBLPC,
1 IFBLPD, IFWXY, IFSFT, IFTIB, IFTIE, IFNTB, IFNTE, IFIQC,
2 IFIDD, IFIDC, IFIDH

FDDA observation-nudging variables

 COMMON /ADDR8/ IFSVWT, IFVAR, IFRIO, IFRJO, IFRKO, IFTIM, IFERR

Three-dimensional nonhydrostatic arrays

 COMMON/NONHYD/INHWA, INHWB, INHWTS, INHPPA, INHPPB, INHUTS,
1 INHVTS, INHPTS

Boundary nonhydrostatic arrays

 COMMON/NONHYDB/INHWE, INHWW, INHWET, INHWWT, INHPPE, INHPPW,
1 1INHPPET, INHPPWT, INHWN, INHWS, INHWNT, INHWST,
2 INHPPN, INHPPS, INHPPST, INHPPNT



MM5 Model Documentation  2.4 March 1994

2: Memory Organization & Code Structure

Nonhydrostatic reference state arrays

 COMMON/NHCNS/INHT0, INHPS0

Navy PBL variables

 COMMON/ADDRV/IATURK, IATHSB, IATHQW, IAQWSB, IAUTV, IAVTV,
1 IATTV, IAQVTV, IAQCTV

Atmospheric radiation array

 COMMON/RADIAT/IRTT

Upper radiative boundary condition

 COMMON/UPRAD/IUPR

This is the sequence of the pointers in IAXALL and also of the pointees in the

memory where they are EQUIVALENCED to large arrays ALLARR (IRHUGE, MAXNES)

and INTALL (IIHUGE,MAXNES), where IHUGE is the sum dimension of all the pointees

on a single domain.  The arrays ALLARR and INTALL are written to the save files and read

in for restarts, but are not used directly during the calculations. They are stored in /HUGE/

while IAXALL is stored in /ADDR0/.

If a user adds variables or arrays with pointers, several changes need to be made,

(i) Add the new common blocks, or add to the existing ones.
(ii) Change NUMVAR by the number of new pointers.
(iii) Change IHUGE by the total dimension of the new variables (and IIHUGE if new

integer).
(iv) Change ADDALL to calculate the starting location of the new variables.
(v) Change ADDRX1C and ADDRX1N to equate the new pointers with the relevant part

of IAXALL.



March 1994 MM5 Model Documentation 2.5

2: Memory Organization & Code Structure

2.2 Multi-Tasking

On a multiprocessor computer such as a Cray Y-MP it is possible to perform certain tasks

in parallel on different processors and MM5 is written to take advantage of this when available.

This is done mostly for the outer J loops so that different north-south slices are done by different

processors in parallel, i.e. at the same time. This saves wall-clock time but not CPU time. In fact if

the tasks on different processors are not well-balanced it may cost more CPU time due to idle

waiting time. Much of MM5’s calculation is multi-tasked so that on average it uses about 7 of the

8 processors simultaneously.

Multi-tasking therefore differs from vectorization in that it applies to the outer loop while

vectorization applies to the inner loop. MM5 is also vectorized as far as possible.

When multi-tasking, some variables have to be declared as SHARED or PRIVATE.

SHARED means that all processors should have access to the same part of the computer

memory. If multi-tasking over a J loop, arrays that have a J in their dimension should normally

be shared. Constants that are independent of J should also be shared.

PRIVATE means that each processor should have its own private copy of an array with

its own memory location that is not available to other processors. Arrays that are dimensioned

(I, K) or (I) or (K) should be private if they are storing information relevant to only one J slice.

Arrays that store only local J slices should be private. Variables that change their values in the J

loop should generally be private. Most variables are automatically private unless declared

shared, but there are cases where private needs to be declared.

A typical multi-tasking directive in the code is as follows for K-loop 210:

CMIC$ DO ALL AUTOSCOPE NUMCHUNKS (8)
CMIC$1 PRIVATE (HELP1, HELP2, HSCR1N,HSCR2N, HELP1N, HELP2N)
CMIC$2 SHARED (ISOUTHO, JWESTO, IYY, JXX, IYYN, JXXN,
CMIC$2 ISOUTH, JWEST, IRA)

DO 210 K=1, KZZ



MM5 Model Documentation  2.6 March 1994

2: Memory Organization & Code Structure

where the ‘NUMCHUNKS(8)’ aids efficiency by assigning about 1/8 of the K indices to each

processor. This works best on a dedicated eight-processor machine such as a Y-MP and with

loops where the load is equally balanced among the K values, i.e. it is not spending significantly

different times on each value of K. Loops that are unbalanced, such as those with conditional

statements dependent on the loop index, do not use the ‘NUMCHUNKS’ directive.

In MM5, multi-tasking takes place in subroutines SOLVE1, SOLVE3 and SOUND. All of

the physics routines are called from these routines inside multi-tasked J loops, so new physics

routines developed by the user need not be multi-tasked themselves. However, care should be

taken that shared variables are not changed in the new routines.

Other multi-tasked routines are BDYUV, BDYVAL, FEEDBK, DOTS, STOTNDI,

STOTNDT, BDYOVL1, INITNEST and the split-explicit routines DIVG, SPCORT, SPCORU,

SPDIFF, SPDIVG, SPGEOP, SPGRAD, SPLITF, SPSTEP2.

On the Cray Y-MP the cf77  command should include a switch for multi-tasking to

recognize the CMIC$ directives, thus cf77 -Zu  should be used.


