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a b s t r a c t

Eddy covariance flux towers provide continuous measurements of net ecosystem carbon

exchange (NEE) for a wide range of climate and biome types. However, these measurements

only represent the carbon fluxes at the scale of the tower footprint. To quantify the net

exchange of carbon dioxide between the terrestrial biosphere and the atmosphere for

regions or continents, flux tower measurements need to be extrapolated to these large

areas. Here we used remotely sensed data from the Moderate Resolution Imaging Spectro-

meter (MODIS) instrument on board the National Aeronautics and Space Administration’s

(NASA) Terra satellite to scale up AmeriFlux NEE measurements to the continental scale. We

first combined MODIS and AmeriFlux data for representative U.S. ecosystems to develop a

predictive NEE model using a modified regression tree approach. The predictive model was

trained and validated using eddy flux NEE data over the periods 2000–2004 and 2005–2006,

respectively. We found that the model predicted NEE well (r = 0.73, p < 0.001). We then

applied the model to the continental scale and estimated NEE for each 1 km � 1 km cell

across the conterminous U.S. for each 8-day interval in 2005 using spatially explicit MODIS

data. The model generally captured the expected spatial and seasonal patterns of NEE as

determined from measurements and the literature. Our study demonstrated that our

empirical approach is effective for scaling up eddy flux NEE measurements to the con-

tinental scale and producing wall-to-wall NEE estimates across multiple biomes. Our

estimates may provide an independent dataset from simulations with biogeochemical

models and inverse modeling approaches for examining the spatiotemporal patterns of

NEE and constraining terrestrial carbon budgets over large areas.

# 2008 Elsevier B.V. All rights reserved.
1. Introduction

Net ecosystem carbon exchange (NEE), the difference

between photosynthetic uptake and release of carbon dioxide

(CO2) by respiration from autotrophs (plants) and hetero-

trophs (e.g., microbial decomposition), represents the net

exchange of CO2 between terrestrial ecosystems and the

atmosphere (Law et al., 2006). The quantification of NEE for

regions, continents, or the globe can improve our under-

standing of the feedbacks between the terrestrial biosphere

and the atmosphere in the context of global change and

facilitate climate policy-making.

To date, several techniques have been used to estimate NEE

(Baldocchi et al., 2001). Atmospheric inverse models (e.g., Tans

et al., 1990; Denning et al., 1996; Fan et al., 1998; Gurney et al.,

2002; Deng et al., 2007), biogeochemical models (e.g., Potter

et al., 1993; Running and Hunt, 1993; Field et al., 1995; Zhuang

et al., 2003), and inventory approaches (e.g., Pacala et al., 2001;

Goodale et al., 2002) have been used to infer net exchange of
CO2 and provide aggregated information on NEE over large

areas during the past two decades. The accuracy of the

estimates by atmospheric inverse models is limited by the

sparseness of the CO2 observation network and their biased

placement in the marine boundary layers (Tans et al., 1990;

Denning et al., 1996; Fan et al., 1998). Moreover, this approach

does not provide information about which ecosystems are

contributing to the sinks/sources or the processes involved

(Janssens et al., 2003). Most biogeochemical models, however,

are dependent on site level parameterizations, which may

limit the accuracy of model simulations over large areas.

Inventory approaches provide information on NEE at multi-

year to decadal timescales, and therefore do not provide

information on seasonal and interannual variability of NEE

and shorter-term physiological mechanisms (Baldocchi et al.,

2001).

At the site level, eddy covariance flux towers have been

providing continuous measurements of ecosystem level

exchanges of carbon at half-hourly or hourly time steps since
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the early 1990s (Wofsy et al., 1993; Baldocchi et al., 2001). At

present, over 400 eddy covariance flux towers are operating on

a long-term and continuous basis over the globe (FLUXNET,

2008). This global network encompasses a large range of

climate and biome types (Baldocchi et al., 2001), and provides

the longest, most extensive, and most reliable measurements

of NEE. However, these measurements only represent the

fluxes from the scale of the tower footprint (Running et al.,

1999) up to several square kilometers (Schmid, 1994; Göckede

et al., 2008). To quantify the net exchange of CO2 between the

terrestrial biosphere and the atmosphere, we need to scale

these flux tower measurements to regions, continents, or the

globe.

Satellite remote sensing is a potentially valuable tool for

scaling eddy flux NEE measurements to large areas (Running

et al., 1999). There have been several studies developing

methods for integration of flux data with remote sensing data

to quantify NEE over large areas. For example, Yamaji et al.

(2007) linked Moderate Resolution Imaging Spectroradiometer

(MODIS) data to eddy flux NEE data for regional extrapolation

to deciduous broadleaf forests over Japan. Wylie et al. (2007)

estimated NEE for grasslands in the northern Great Plains

using satellite data from the SPOT (Satellite Pour l’Observation

de la Terre) VEGETATION sensor and eddy flux NEE measure-

ments. Papale and Valentini (2003) estimated NEE for

European forests using flux tower data and satellite data

derived from the Advanced Very High Resolution Radiometer

(AVHRR). Despite these efforts, to our knowledge, no study has

scaled eddy flux NEE measurements to the continental scale

and produced spatially explicit estimates of NEE across

multiple biomes.

Here we used remotely sensed data from the National

Aeronautics and Space Administration’s (NASA) Terra

MODIS to scale eddy flux NEE measurements to the

continental scale and produce wall-to-wall NEE estimates

for the conterminous U.S. First, we developed a predictive

NEE model based on site-specific MODIS and AmeriFlux data.

Second, we validated the performance of the model with

AmeriFlux data. Third, we applied the model to estimate NEE

for each 1 km � 1 km cell across the conterminous U.S. for

each 8-day period in 2005 using wall-to-wall MODIS data.

Finally, we examined the spatiotemporal patterns of NEE

across the conterminous U.S.
2. Methods

2.1. Piecewise linear regression models

A modified regression tree approach was used to scale tower-

based NEE to the continental scale. Regression tree algorithms

produce rule-based models containing one or more rules, each

of which is a set of conditions associated with a linear

submodel. Regression tree models allow both continuous and

discrete variables as input variables, and account for a non-

linear relationship between predictive and target variables

(Yang et al., 2003). These approaches are also proving not only

more effective than simple techniques including multivariate

linear regression, but also easier to understand than neural

networks (Huang and Townshend, 2003). We used a modified
regression tree algorithm implemented in the commercial

software called Cubist. Cubist is a powerful tool for generating

rule-based predictive models. A Cubist model resembles a

piecewise linear model, except that the rules can overlap with

one another (RuleQuest, 2008). Cubist has been used to

estimate percent land cover (Huang and Townshend, 2003),

impervious area (Yang et al., 2003), forest biomass (Salajanu

and Jacobs, 2005), and ecosystem carbon fluxes (Wylie et al.,

2007). Piecewise regression models were selected as the most

appropriate approach for scaling the flux tower data to

ecoregions (Wylie et al., 2007).

We chose Cubist to construct a predictive NEE model based

on AmeriFlux NEE and satellite data. In Cubist, the predictive

accuracy of a rule-based model can be improved by combining

it with an instance-based/nearest-neighbor model that pre-

dicts the target value of a new case using the average predicted

values of the n most similar cases (RuleQuest, 2008). The use of

the composite model can improve the predictive accuracy

relative to the rule-based model alone. Cubist can also

generate committee models made up of several rule-based

models, and each member of the committee model predicts

the target value for a case (RuleQuest, 2008). The member’s

predictions are averaged to give a final prediction.

Cubist uses three statistical measures to measure the

quality of the constructed predictive model, including average

error, relative error, and Pearson product–moment correlation

coefficient. The average error (EA) is calculated as (Yang et al.,

2003):

EA ¼
1

N

XN

i¼1

jyi � ŷij (1)

where N is the number of samples used to establish the

predictive model, and yi and ŷi are the actual and predicted

values of the response variable, respectively. The relative error

(ER) is calculated as (Yang et al., 2003):

ER ¼
EA;T

EA;m
(2)

where EA,T is the average error of the constructed model, and

EE,m is the average error that would result from always pre-

dicting the mean value. The Pearson product–moment corre-

lation coefficient is a common measure of the correlation

between two variables. All the three statistical measures pro-

vided by Cubist were used to evaluate the performance of the

predictive model.

2.2. Explanatory variables

NEE is the difference between two carbon fluxes of photo-

synthesis and respiration (Law et al., 1999). It is influenced by a

variety of physical, physiological, atmospheric, hydrologic,

and edaphic variables. At the leaf level, photosynthesis or

gross primary productivity (GPP) is influenced by several

factors, including incoming solar radiation, air temperature,

vapor pressure deficit, soil moisture, and nitrogen availability

(Clark et al., 1999, 2004). At the ecosystem level, GPP is also

influenced by leaf area index (LAI) and canopy phenology.

Ecosystem respiration (Re) includes autotrophic (Ra) and

heterotrophic respiration (Rh). Soil respiration is the largest



Table 1 – Site descriptions including name, latitude, longitude, vegetation structure, years of data available, and references for each flux site in this study

Site State Latitude Longitude Vegetation structure Vegetation type Year References

Audubon Research Ranch (ARR) AZ 31.59 �110.51 Desert grasslands Grasslands 2002–2006

Santa Rita Mesquite (SRM) AZ 31.82 �110.87 Mesquite-dominated savanna Savannas 2004–2006 Watts et al. (2007)

Walnut Gulch Kendall Grasslands (WGK) AZ 31.74 �109.94 Warm season C4 grassland Grasslands 2004–2006

Sky Oaks Old Stand (SOO) CA 33.37 �116.62 Chaparral (Mediterranean-type ecosystems) Shrublands 2004–2006 Lipson et al. (2005)

Sky Oaks Young stand (SOY) CA 33.38 �116.62 Chaparral (Mediterranean-type ecosystems) Shrublands 2001–2006 Lipson et al. (2005)

Tonzi Ranch (TR) CA 38.43 �120.97 Oak savanna, grazed grassland dominated by

blue oak and grasses

Savannas 2001–2006 Ma et al. (2007)

Vaira Ranch (VR) CA 38.41 �120.95 Grazed C3 grassland opening in a region of

oak/grass savanna

Savannas 2001–2006 Xu and Baldocchi

(2004)

Niwot Ridge Forest (NRF) CO 40.03 �105.55 Subalpine coniferous forest dominated

by subalpine, Engelmann spruce, and

lodgepole pine

Evergreen forests 2000–2003 Monson et al. (2002)

Kennedy Space Center-Scrub Oak (KSC) FL 28.61 �80.67 Scrub-oak palmetto dominated by

schlerophyllous evergreen oaks and the

Saw Palmetto Serenoa repens

Shrublands 2000–2006 Dore et al. (2003)

Austin Cary-Slash Pine (AC) FL 29.74 �82.22 Naturally regenerated pine dominated by

Pinus palustris/Pinus ellottii

Evergreen forests 2001–2005 Powell et al. (2005)

Bondville (Bon) IL 40.01 �88.29 Annual rotation between corn (C4) and soybeans (C3) Croplands 2001–2006 Hollinger et al. (2005)

FNAL Agricultural site (FAg) IL 41.86 �88.22 Soybean/corn Croplands 2005–2006

FNAL Prairie site (FPr) IL 41.84 �88.24 Tall grass prairie Grasslands 2004–2006

Morgan Monroe State Forest (MMS) IN 39.32 �86.41 Mixed hardwood deciduous forest dominated

by sugar maple, tulip poplar, sassafras, white

oak, and black oak

Deciduous forests 2000–2005 Schmid et al. (2000)

Harvard Forest EMS Tower (HFE) MA 42.54 �72.17 Temperate deciduous forest dominated by red oak,

red maple, black birch, white pine,

and hemlock

Deciduous forests 2000–2004 Urbanski et al. (2007)

Harvard Forest Hemlock (HFH) MA 42.54 �72.18 Temperate coniferous forest dominated by hemlock Evergreen forests 2004

Little Prospect Hill (LPH) MA 42.54 �72.18 Temperate deciduous forest dominated by red oak,

red maple, black birch, white pine, and hemlock

Deciduous forests 2002–2005

Howland Forest (HF) ME 45.20 �68.74 Boreal—northern hardwood transitional forest

consisting of hemlock-spruce-fir, aspen-birch, and

hemlock-hardwood mixtures

Evergreen forests 2000–2004 Hollinger et al.

(1999, 2004)

Howland Forest West Tower (HFW) ME 45.21 �68.75 Deciduous needle forest, Boreal/northern hardwood

ecoton, old coniferous

Deciduous forests 2000–2004 Hollinger et al.

(1999, 2004)

Sylvania Wilderness Area (SWA) MI 46.24 �89.35 Old-growth eastern hemlock/sugar maple/

basswood/yellow birch

Mixed forests 2002–2006 Desai et al. (2005)

Univ. of Mich. Biological Station (UMB) MI 45.56 �84.71 Mid-aged conifer and deciduous, northern hardwood,

pine understory, aspen, mostly deciduous,

old-growth hemlock

Mixed forests 2000–2003 Gough et al. (2008)

Missouri Ozark (MO) MO 38.74 �92.20 Oak hickory forest Deciduous forests 2004–2006 Gu et al. (2006, 2007)

Goodwin Creek (GC) MS 34.25 �89.97 Temperate grassland Grasslands 2002–2006

Fort Peck (FPe) MT 48.31 �105.10 Grassland Grasslands 2000–2006

Duke Forest Loblolly Pine (DFP) NC 35.98 �79.09 Even-aged loblolly pine forest Evergreen forests 2001–2005 Oren et al. (1998, 2006)

Duke Forest Hardwood (DFH) NC 35.97 �79.10 An uneven-aged closed-canopy stand in an oak-

hickory type forest composed of mixed hardwood

species with pine (Pinus taeda) as a minor component

Deciduous forests 2003–2005 Pataki and Oren (2003)
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North Carolina Loblolly Pine (NCP) NC 35.80 �76.67 15-Year-old loblolly pine (Pinus taeda) plantation Evergreen forests 2005–2006 Noormets et al.

(unpublished)

Mead Irrigated Continuous (MIC) NE 41.17 �96.48 Continuous maize Croplands 2001–2005 Verma et al. (2005)

Mead Irrigated Rotation (MIR) NE 41.16 �96.47 Maize–soybean rotation Croplands 2001–2005 Verma et al. (2005)

Mead Rainfed (MR) NE 41.18 �96.44 Maize–soybean rotation Croplands 2001–2005 Verma et al. (2005)

Bartlett Experimental Forest (BEF) NH 44.06 �71.29 Temperate northern hardwood forest dominated

by American beech, red maple, paper birch,

and hemlock

Deciduous forests 2004–2005 Jenkins et al. (2007)

Toledo Oak Openings (TOP) OH 41.33 �83.51 Oak Savannah dominated by Quercus rubra,

Quercus alba, and Acer rubrum

Savannas 2004–2005 Noormets et al. (2008b)

ARM Oklahoma (ARM) OK 36.61 �97.49 Winter wheat, some pasture and summer crops Croplands 2003–2006

Metolius Intermediate (MI) OR 44.45 �121.56 Intermediate-aged temperate coniferous forest

dominated by Pinus ponderosa, Purshia tridentate,

Arctostaphylos patula

Evergreen forests 2003–2005 Law et al. (2003)

and Irvine et al. (2007)

Metolius New (MN) OR 44.32 �121.61 Young temperate coniferous forest dominated

by Pinus ponderosa and Purshia tridentata

Evergreen forests 2004–2005 Law et al. (2003)

and Irvine et al. (2007)

Brookings (Bro) SD 44.35 �96.84 Temperate grassland Grasslands 2004–2006

Freeman Ranch Mesquite Juniper (FRM) TX 29.95 �98.00 Grassland in transition to an Ashe juniper-

dominated woodland

Savannas 2004–2006

Wind River Crane Site (WRC) WA 45.82 �121.95 Temperate coniferous forest dominated by

Douglas-fir and western hemlock

Evergreen forests 2000–2004 Falk et al. (2008)

Lost Creek (LC) WI 46.08 �89.98 Alder-willow deciduous wetland Deciduous forests 2000–2005

Willow Creek (WC) WI 45.81 �90.08 Temperate/Boreal forest dominated by white ash,

sugar maple, basswood, green ask, and red oak

Deciduous forests 2000–2006 Cook et al. (2004)

Wisconsin intermediate hardwood (WIH) WI 46.73 �91.23 17-Year-old regeneration mixed northern

hardwood with bigtooth aspen (Populus

grandidentata) dominance

Deciduous forests 2003 Noormets et al. (2008a)

Mature Red Pine (MRP) WI 46.74 �91.17 65-Year-old red pine (Pinus resinosa) plantation Evergreen forests 2002–2005 Noormets et al. (2007)

The units of latitude and longitude are decimal degrees.
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component of ecosystem respiration. Because autotrophic and

heterotrophic activity belowground is controlled by rooting

systems and substrate availability, soil respiration is strongly

linked to plant metabolism, photosynthesis and litterfall

(Ryan and Law, 2005). Ra can be empirically modeled as a

function of air temperature and tissue carbon (foliage, stem,

and roots), whereas Rh is often modeled as a function of

substrate availability, soil temperature and soil moisture

(Ryan and Law, 2005). At the stand or regional level, NEE is

significantly affected by disturbances from fire and harvest

(Thornton et al., 2002; Law et al., 2004) and fractional

vegetation cover (DeFries et al., 2002).

Many of these factors influencing NEE can be assessed by

satellite remote sensing. Optical remote sensing systems

measure the surface reflectance, the fraction of solar energy

that is reflected by the Earth’s surface. For a given wavelength,

different vegetation types and/or plant species may have

different reflectance (Schmidt and Skidmore, 2003). The

reflectance of the same vegetation type also depends on

wavelength region, biophysical properties (e.g., biomass, leaf

area, and stand age), soil moisture, and sun-object-sensor

geometry (Ranson et al., 1985; Penuelas et al., 1993). Therefore,

reflectance values from multiple spectral bands can provide

useful information for estimating NEE. Moreover, surface

reflectance can be used to develop vegetation indices and

biophysical parameters that can account for factors influen-

cing NEE, such as the normalized difference vegetation index

(NDVI), the enhanced vegetation index (EVI), the land surface

temperature (LST), the normalized difference water index

(NDWI), the fraction of photosynthetically active radiation

absorbed by vegetation canopies (fPAR), and LAI.

The NDVI captures the contrast between the visible-red

and near-infrared reflectance of vegetation canopies. It is

defined as

NDVI ¼ rnir � rred

rnir þ rred
(3)

where rred and rnir are the visible-red and near-infrared

reflectance, respectively. NDVI is closely correlated to the

fraction of photosynthetically active radiation (fPAR)

absorbed by vegetation canopies (Asrar et al., 1984; Law

and Waring, 1994) and photosynthetic activity (Xiao and

Moody, 2004). NDVI is also related to vegetation biomass

(Myneni et al., 2001) and fractional vegetation cover (Xiao

and Moody, 2005). However, NDVI has several limitations,

including saturation in a multilayer closed canopy and sen-

sitivity to both atmospheric aerosols and soil background

(Huete et al., 2002; Xiao and Moody, 2005). To account for

these limitations of NDVI, Huete et al. (1997) developed the

improved vegetation index, EVI:

EVI ¼ 2:5
rnir � rred

rnir þ ð6rred � 7:5rblueÞ þ 1
(4)

where rnir, rred, and rblue are the spectral reflectance at the

near-infrared, red, and blue wavelengths, respectively. Huete

et al. (2002) has developed a global EVI product from MODIS

data for the period from 2000 to present.

The LST derived from MODIS is a measure of the soil

temperature at the surface. The MODIS LST agreed with in situ

measured LST within 1 K in the range 263–322 K (Wan et al.,
2002). LST is likely a good indicator of Re as both Ra and RH are

significantly affected by air/surface temperature. Rahman

et al. (2005) demonstrated that satellite-derived LST was

strongly correlated with Re.

As the shortwave infrared (SWIR) spectral band is sensitive

to vegetation water content and soil moisture, a combination

of NIR and SWIR bands have been used to derive water-

sensitive vegetation indices (Ceccato et al., 2002). Gao (1996)

developed the NDWI from satellite data to measure vegetation

liquid water:

NDWI ¼ rnir � rswir

rnir þ rswir
(5)

where rswir is the reflectance at the SWIR spectral band. The

NDWI was shown to be strongly correlated with leaf water

content (equivalent water thickness (EWT), g H2O m�2) (Jack-

son et al., 2004) and soil moisture (Fensholt and Sandholt,

2003) over time. It was incorporated into the vegetation photo-

synthesis model (VPM) as a water scalar for estimating GPP

(Xiao et al., 2005). Yet, there is still a question as to whether

NDWI provides useful information on canopy water stress

status that affects photosynthesis because of its sensitivity

to the relatively small changes in relative water content

observed in natural vegetation, and inability to discern

changes in canopy biomass from changes in canopy moisture

status (Hunt and Rock, 1989; Gao, 1996).

Satellite data can also provide estimates for LAI and fPAR.

These two variables characterize vegetation canopy function-

ing and energy absorption capacity (Myneni et al., 2002), and

are key parameters in most ecosystem productivity and

biogeochemical models due to their high correlation with

GPP (Sellers et al., 1997).

We therefore selected surface reflectance, EVI, LST, NDWI,

fPAR, and LAI as explanatory variables. All these variables

were derived from MODIS data, which also avoided the

complications and difficulties to merge disparate data sources.

2.3. Data

We obtained the following three types of data: NEE from eddy

covariance flux towers, explanatory variables derived from

MODIS, and a land cover map derived from MODIS.

2.3.1. AmeriFlux data
The AmeriFlux network coordinates regional analysis of

observations from eddy covariance flux towers across North

America, Central America, and South America (Law, 2006). We

obtained the Level 4 NEE product for 42 AmeriFlux sites for the

period 2000–2006 from the AmeriFlux website (http://pub-

lic.ornl.gov/ameriflux/) (Table 1). These sites are distributed

across the conterminous U.S. (Fig. 1), and cover a range of

vegetation types including forests, shrublands, savannas,

grasslands, and croplands (Table 1). Moreover, the distribution

of these sites in the mean annual climate space (Fig. 2)

indicates that they cover typical U.S. climate types. In

addition, they also include some forest sites at different times

since stand replacing disturbance, which are located in

disturbance clusters of sites. We therefore believe that these

sites are fairly representative of U.S. ecosystem and climate

types.

http://public.ornl.gov/ameriflux/
http://public.ornl.gov/ameriflux/


Fig. 1 – Location and spatial distribution of the AmeriFlux sites used in this study. The base map is the reclassified MODIS

land-cover map that was used for the continental-scale estimation of NEE. Symbols indicate the location of the AmeriFlux

sites.
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The Level 4 product consists of two types of NEE data,

including standardized (NEE_st) and original (NEE_or) NEE

(AmeriFlux, 2007). NEE_st was calculated using CO2 flux

estimated by the eddy covariance method, which includes

summation with CO2 storage in the canopy air space that was

obtained from the discrete approach (single point on the top of

the tower) for all the sites, whereas NEE_or was calculated

using the storage obtained from within canopy CO2 profile

measurements in relatively tall forest canopies or from the

discrete approach. The average data coverage during a year is

only 65% due to system failures or data rejection, and

therefore robust and consistent gap filling methods are

required to provide complete data sets (Falge et al., 2001).

Both NEE_st and NEE_or were filled using the Marginal

Distribution Sampling (MDS) method (Reichstein et al., 2005)

and the Artificial Neural Network (ANN) method (Papale and

Valentini, 2003). The ANN method was generally, if only

slightly, superior to the MDS method (Moffat et al., 2007).

Therefore, we used the gap-filled NEE data based on the ANN

method. For each site, if the percentage of the remaining

missing values for NEE_st was lower than that for NEE_or, we

selected NEE_or; otherwise, we used NEE_st. In this product,

negative sign denotes carbon uptake, and positive sign

denotes carbon release.

The Level 4 product consists of NEE data with four different

time steps, including half-hourly, daily, weekly (8-day), and
monthly. We used 8-day NEE data (gC m�2 day�1) to match the

compositing intervals of MODIS data. Moreover, the average

NEE over such a period was shown to largely eliminate

micrometeorological sampling errors, with the remaining

spatial variability representing variation in ecosystem attri-

butes (Oren et al., 2006), here accounted for by data from

MODIS.

2.3.2. MODIS data
MODIS is a key instrument on board the NASA’s Terra and

Aqua satellites. The Terra MODIS and Aqua MODIS view the

entire Earth’s surface every 1–2 days, acquiring data in 36

spectral bands and with the spatial resolution of 250 m, 500 m,

and 1 km. We used the following four MODIS data products:

surface reflectance (MOD09A1; Vermote and Vermeulen,

1999), daytime and nighttime LST (MOD11A2; Wan et al.,

2002), EVI (MOD13A1; Huete et al., 2002), and LAI/fPAR

(MOD15A2; Myneni et al., 2002). Surface reflectance data

consist of reflectance values of seven spectral bands: blue

(459–479 nm), green (545–565 nm), red (620–670 nm), near-

infrared (841–875 nm and 1230–1250 nm), and shortwave

infrared (1628–1652 nm and 2105–2155 nm). Surface reflec-

tance and EVI are at a spatial resolution of 500 m, while LAI,

fPAR, and LAI are at spatial resolution of 1 km. Surface

reflectance, fPAR, and LAI are at a temporal resolution of 8

days, while EVI is at a temporal resolution of 16 days.



Fig. 2 – Distribution of the 42 AmeriFlux sites in mean

annual climate space. Climate parameters are the mean

annual precipitation (x-axis) and mean annual

temperature (y-axis) taken over a 30-year period of record

(1971–2000) from the PRISM database (http://

www.prism.oregonstate.edu/). Gray points indicate the

climate space distribution of landmass within the

conterminous United States. The climate data have been

resampled to 12 km resolution for plotting points in this

figure. Symbols show the location of each AmeriFlux site

in the climate space. The climate data of the sites are from

the AmeriFlux website (http://public.ornl.gov/ameriflux/)

and the PRISM database.
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For each AmeriFlux site, we obtained the MODIS ASCII

(American Standard Code for Information Interchange)

subsets (Collection 4) consisting of 7 km � 7 km regions

centered on the flux tower from the Oak Ridge National

Laboratory’s Distributed Active Archive Center (ORNL DAAC,

2006). We extracted average values for the central

3 km � 3 km area within the 7 km � 7 km cutouts to better

represent the flux tower footprint (Schmid, 2002; Rahman

et al., 2005). For each variable, we determined the quality of

the value of each pixel within the area using the quality

assurance (QA) flags included in the product. At each time
Table 2 – The seven broader vegetation types used in the stud

Vegetation types UMD classes

Evergreen forests Evergreen needleleaf forests (1)

and evergreen broadleaf forests (2)

Deciduous forests Deciduous needleleaf forests (3)

and deciduous broadleaf forests (4)

Mixed forests Mixed forests (5)

Shrublands Closed shrublands (6) and open shrublands (7)

Savannas Woody savannas (8) and savannas (9)

Grasslands Grasslands (10)

Croplands Croplands (12)
step, we averaged the values of each variable using the pixels

with good quality within the area to represent the values at

the flux site. If none of the values within the 3 km � 3 km

area was of good quality, we treated the period as missing.

Each 16-day EVI value was split into two 8-day values to

correspond with the compositing interval of other MODIS

data products.

For the continental-scale estimation of NEE, we obtained

continental-scale MODIS data including surface reflectance,

daytime and nighttime LST, and EVI from the Earth Observing

System (EOS) Data Gateway (http://edcimswww.cr.usgs.gov/

pub/imswelcome/). For each variable and for each 8- or 16-day

period, a total of 22 tiles were needed to cover the

conterminous U.S., and these tiles were mosaiced to generate

a continental-scale image. For each variable, we determined

the quality of the value of each pixel using the QA flags, and

replaced the bad value using a linear interpolation approach

(Zhao et al., 2005). The NDWI was calculated from band 2

(near-infrared) and band 6 (shortwave infrared) of the surface

reflectance product according to Eq. (5).

2.3.3. Land cover
To construct the predictive NEE model, we obtained the land

cover type for each AmeriFlux site based on the site

descriptions (Table 1), and categorized each site into a class

of the University of Maryland land-cover classification system

(UMD). Although the 42 AmeriFlux sites used in this study

cover a variety of vegetation classes of this classification

system, some classes (e.g., deciduous needleleaf forests and

open shrublands) were not covered by any site. We therefore

reclassified all vegetation classes of the UMD classification

system to seven broader classes (Table 2). Specifically, ever-

green needleleaf forests and evergreen broadleaf forests were

merged to evergreen forests, deciduous needleleaf forests and

deciduous broadleaf forests to deciduous forests, closed

shrublands and open shrublands to shrublands, and woody

savannas and savannas to savannas.

To estimate NEE for each 1 km � 1 km cell at the con-

tinental scale, we obtained the land cover type for each cell

from the MODIS land cover map with the UMD classification

system (Friedl et al., 2002). Similarly, we reclassified the

vegetation types of the MODIS land cover map to the seven

broader classes (Table 2). The reclassified land-cover map is

shown in Fig. 1.
y and the corresponding UMD vegetation classes

Definition (Belward and Loveland, 1996)

Tree canopy cover >60% and tree height >2 m. Most of

the canopy remains green all year

Tree canopy cover >60% and tree height >2 m. Most of

the canopy is deciduous

Tree canopy cover >60% and tree height >2 m. Mixed

evergreen and deciduous canopy

Shrub canopy cover >10% (10–60% for open shrublands, >60%

for closed shrublands) and height <2 m

Forest canopy cover between 10–60% (30–60% for woody

savannas, 10–30% for savannas) and height >2 m

Herbaceous cover. Woody cover <10%

Temporary crops followed by harvest and a bare soil period

http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://edcimswww.cr.usgs.gov/pub/imswelcome/
http://www.prism.oregonstate.edu/
http://www.prism.oregonstate.edu/
http://public.ornl.gov/ameriflux/
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2.4. Model development

We developed a predictive NEE model using Cubist based on the

site-specific MODIS and AmeriFlux NEE data. Our explanatory

variables included surface reflectance (7 bands), daytime and

nighttime LST, EVI, fPAR, and LAI, and our target variable was

NEE. We split the site level data set of AmeriFlux and MODIS

data into a training set (2000–2004) and a test set (2005–2006). If

a site only had NEE observations for the period 2000–2004,

the site was only included in the training set; if a site only had

NEE observations for the period 2005–2006, the site was only

included in the test set; otherwise, the site was included in both

training and test sets. The training and test sets included 40 and

34 AmeriFlux sites, respectively. Each set included sites at

different stages since stand-replacing disturbances. Altogether

we had a total of 4596 and 2257 data points for the training and

test sets, respectively. We trained the model with the training

set, and tested the model with the test set. In addition to the full

model that includes all the 14 explanatory variables, we also

developed a series of models by dropping one or more variables

at a time using Cubist. To select the best model, we evaluated

the performance of each model based on the average error,

relative error, and correlation coefficient. We chose the model

with the minimal average error and relative error and

maximum correlation coefficient as the best model. We also

evaluated model performance using scatterplots of predicted

versus observed NEE and seasonal variations between the

predicted and observed NEE.

2.5. Continental-scale estimation of NEE

As mentioned earlier, the AmeriFlux sites we selected are

fairly representative of the U.S. ecosystem and climate types.

We believe that the predictive NEE model constructed from the

42 sites can be extrapolated to the conterminous U.S. Thus, we

applied the predictive NEE model to estimate NEE for each

1 km � 1 km cell across the conterminous U.S. for each 8-day

period in 2005 using wall-to-wall MODIS data. We then

examined the spatiotemporal patterns of our NEE estimates.
Fig. 3 – Scatterplot of observed 8-day NEE versus predicted

8-day NEE. The solid line is the 1:1 line.
3. Results and discussion

3.1. Model development

The best model contained the following explanatory variables:

surface reflectance bands 1–6, EVI, daytime and nighttime LST,

and NDWI (relative error = 0.64, average error = 0.986, r = 0.73).

This model achieved slightly higher performance than the full

model (relative error = 0.66, average error = 1.01, r = 0.72). The

selected model consisted of five committee models, each of

which was made of a number of rule-based submodels. For

example, the first committee model was made of 26 rule-based

submodels:

Rule 1: if land cover = croplands, daytime LST > 30.07,

EVI > 0.40, then

NEE ¼ 20:24� 430:3B3 þ 431:7B4 þ 80:8B1 � 108:7B5

� 23:4EVIþ 0:22Ld þ 11:4NDWI� 27:6B6 þ 4B2
Rule 2: if land cover in {deciduous forests, savannas},

B2 > 0.34, NDWI < = �0.36, Ld > 18.06, Ln > 11.13, then

NEE ¼ �5:94þ 47:2B4 � 35B1 � 12:7B2 � 7B3 � 3:6NDWI

þ 8:4B6 þ 4:4B5 � 0:4EVI

..

.

Rule 25: if land cover in {deciduous forests, mixed forests,

croplands}, NDWI > 0.02, Ln <= 9.68, then

NEE ¼ 0:40� 37:6B4 þ 15:1B1 þ 8:9B2 þ 0:046Ln þ 0:9B5

þ 0:4B3

Rule 26: if land cover in {deciduous forests, mixed forests,

croplands}, NDWI > 0.02, Ln > 9.68, then

NEE ¼ �2:86þ 56:5B5 � 50:5B6 þ 14:9NDWI� 2:9B1 � 0:5B4

� 0:5B2

where B1–B6 are surface reflectance bands 1–6, Ld is daytime

LST, and Ln is nighttime LST. The model estimated NEE

reasonably well (r = 0.73, p < 0.001; Fig. 3) considering that

we used multiple years of data from a number of sites

involving a variety of vegetation types across the con-

terminous U.S. The model slightly underestimated positive

NEE values, and overestimated negative NEE values, where

negative values indicate carbon uptake, and positive values

indicate carbon release. In absolute magnitude, the model

slightly underestimated both carbon release and uptake

rates, thus damping the observed amplitude.

The analysis of NEE residuals (Fig. 4) indicated that the

residuals were not randomly distributed. In absolute magni-

tude, low NEE values were generally associated with low

prediction errors, whereas high NEE values were associated

with high prediction errors. This suggests that the uncertain-

ties of carbon flux measurements are directly proportional to

the magnitude of the fluxes (Richardson et al., 2008). In



Fig. 4 – Scatterplot of predicted 8-day NEE versus residuals

(observed - predicted) over the period 2005–2006.
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addition, the explanatory variables included in the model

could not completely explain the variance of NEE. For

example, the independent variables used in the model could

not account for the sizes of soil organic carbon pools, thereby

affecting the performance of the model for estimating NEE.

We calculated the average error and relative error across all

AmeriFlux sites for each 8-day period, and then plotted these

two types of error against time (Fig. 5). The average error

showed a strong seasonality. In absolute magnitude, winter

had low average errors (�0.6 gC m�2 day�1), whereas warm

season errors often exceeded 1 gC m�2 day�1. This was not

surprising as in absolute magnitude, winter months generally

had relatively low NEE, while summer months had relatively

high NEE. Unlike the average error, the relative error did not

exhibit a strong seasonality, indicating that the model

performance did not substantially vary with season.
Fig. 5 – The average error (EA) and relative error (ER)

averaged across all AmeriFlux sites and over the period

2005–2006 for each 8-day period.
We also compared our NEE estimates with observed NEE for

each AmeriFlux site (Fig. 6). The NEE estimates captured most

features of observed NEE such as seasonality and interannual

variability over the period 2005–2006. For some sites, episodes of

under- or over-prediction occurred. The model could not

capture exceptionally high and low NEE values that represented

large carbon release and uptake rates, respectively for some

sites, such as Audubon Research Ranch (AZ), FNAL (Fermi

National Accelerator Laboratory) Agricultural site (IL), Goodwin

Creek (MS), and Fort Peck (MT). In absolute magnitude, the

model substantially underestimated those exceptional values.

For example, the model estimates were far below the observed

NEE values that were greater than 2 gC m�2 day�1 at the

Goodwin Creek site (MS), and were far greater than the observed

NEE values that were below �3 gC m�2 day�1 at the Audubon

Research Ranch site (AZ). Overall, the model performed better

for deciduous forests, savannas, grasslands and croplands than

for evergreen forests and shrublands.

The disagreement between estimated and observed NEE

values is likely due to the following reasons. First, the MODIS

and tower footprints do not always match with each other. As

mentioned earlier, for each explanatory variable derived from

MODIS data, we used the values averaged within the

3 km � 3 km area (i.e., MODIS footprint) surrounding each

flux tower to represent the values of the tower site. For most

sites, vegetation structure within the 3 km � 3 km area

surrounding the flux tower is similar to that at the tower,

and therefore the MODIS footprint may match with the tower

footprint. However, some sites are located in complex land

mosaics, and the vegetation structure at the flux tower could

be significantly different from that within the MODIS

footprint. For example, the Tonzi Ranch site (CA) is dominated

by deciduous blue oaks (Quercus douglasii), and the understory

and open grassland are dominated by cool-season C3 annual

species (Ma et al., 2007). The MODIS footprint, however,

consists of a larger fraction of grassland. The phenologies of

blue oaks and grassland are distinct from each other (Ma et al.,

2007), and therefore these two plant species had differential

contributions to the NEE integrated over the MODIS footprint.

In the spring, wet conditions along with warm temperatures

facilitated the fast growth of grass, leading to large carbon

uptake rates within the MODIS footprint. As a result, in

absolute magnitude, our NEE estimates were higher than the

observed values at the tower site. Grasses senesced by the end

of the spring as the rainy season ended (Ma et al., 2007). The

senescence of grasses led to carbon release in the summer,

and thus lowered the carbon uptake rates integrated over the

MODIS footprint. Therefore, in absolute magnitude, our NEE

values were much lower than the observed values at the tower

in the summer.

Second, some sites experienced substantial disturbances

that alter ecosystem carbon fluxes. For example, the Austin

Cary site (FL) suffered from an extreme drought over the

period 1999–2002; a prescribed burn at the site in 2003 then

removed 95% of the understory vegetation; the site was also

hit by three hurricanes in 2004. These disturbances reduced

carbon uptake rates, whereas MODIS data are less sensitive to

changes in understory vegetation in forest ecosystems,

thereby leading to substantial overestimation of carbon

uptake rates.
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Third, our model could not sufficiently account for the

factors influencing RH. As mentioned earlier, RH is influenced

by substrate availability, soil temperature, and soil moisture.

LST and NDWI can account for soil temperature and soil

moisture. However, surface reflectance can only partly

account for non-photosynthetic material (e.g., litter). Root

and associated mycorrhizal respiration produce roughly half
Fig. 6 – Observed and predicted 8-day NEE (gC mS2 dayS1) for eac

with square symbols represents the observed values, and the re

For x-axis, the starting dates (month/day) of every two 8-day int

Dashed lines were used to separate 2005 from 2006. Site abbre

Table 1. The vegetation type for each site is given in parenthes

forests (MF), shrublands (Sh), savannas (Sa), grasslands (Gr), an
of soil respiration, with much of the remainder derived from

decomposition of recently produced root and leaf litter (Ryan

and Law, 2005). Changes in the carbon stored in the soil

generally contribute little to soil respiration, but these

changes, together with shifts in plant carbon allocation,

determine ecosystem carbon storage belowground and its

exchange with the atmosphere (Ryan and Law, 2005). The
h AmeriFlux site over the period 2005–2006. The green line

d line with circle symbols represents the predicted values.

ervals were given in parentheses under interval numbers.

viations are used here, and their full names are given in

is: evergreen forests (EF), deciduous forests (DF), mixed

d croplands (Cr).
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inability of our model to account for transient carbon pools

contributed to the uncertainties in the NEE estimates

(Richardson et al., 2007).

Finally, we estimated NEE for 8-day intervals, and therefore

our estimates could not capture the variability of NEE within

the intervals. The MODIS LST and EVI products were averaged

from the corresponding daily products over a period of 8 and

16 days, respectively (Huete et al., 2002; Wan et al., 2002). For

each period, only data with good quality were retained for

compositing, and thus the number of days actually used for

compositing is often lower than the total number of days over

the period. The compositing technique for the MODIS surface
Fig. 6. (Con
reflectance product is based on the minimum-blue criterion

that selects the clearest conditions over the 8-day period

(Vermote and Vermeulen, 1999). Therefore, the 8- or 16-day

values do not always represent the average environmental

conditions and average fluxes over the 8- or 16-day period. For

example, each 16-day EVI composite was an average of daily

EVI over a period of 16 days. The number of acceptable pixels

over a 16-day compositing period is typically less than 10

(often less than 5) due to cloud contaminations and extreme

off-nadir sensor view angles (Huete et al., 2002). Sims et al.

(2005) suggested that midday GPP derived from daily satellite

snapshots of vegetation was highly correlated with 8-day
tinued)



Fig. 6. (Continued).
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mean GPP, and the inclusion of cloudy days within 8-day

intervals had less effect on GPP than expected. However,

increased diffuse radiation under cloudy conditions could

result in higher light use efficiency and higher GPP (Gu et al.,

2002). The compositing process may exclude high EVI values

that represented high fPAR, therefore leading to lower carbon

uptake estimates. On the other hand, the compositing process

may also exclude low EVI and LST values, thereby affecting

NEE estimates. Therefore, the exclusion of days with high and

low values could lead to underestimation and overestimation

of NEE values, respectively.

We averaged the estimated and observed 8-day NEE for

each AmeriFlux site and examined the relationship between

the estimated and observed mean 8-day NEE across the

sites (Fig. 7). The model estimated NEE reasonably well at

the site level (r = 0.86, p < 0.001). Overall, in absolute

magnitude, the model underestimated NEE. The perfor-

mance of the model also varied with site. On average, some
sites were carbon sources, whereas other sites were carbon

sinks. Large overestimation of carbon uptake occurred at

the Toledo Oak Openings site (OH), whereas large under-

estimation of carbon uptake occurred at Mature Red Pine

(WI), Duke Forest Loblolly Pine (NC), Duke Forest Hardwood

(NC), and North Carolina Loblolly Pine (NC). Large over-

estimation of carbon release occurred at Audubon Research

Ranch (AZ), ARM Oklahoma (OK), and Freeman Ranch

Mesquite (TX), whereas large underestimation of carbon

release occurred at Mead Irrigated (NE), Goodwin Creek (MS),

and Austin Cary (FL).

We also averaged our estimated and observed 8-day NEE

over all AmeriFlux sites for each vegetation type (i.e., biome),

and examined the relationship between estimated and

observed NEE across the vegetation types (Fig. 8). The model

predicted NEE at the biome level very well (r = 0.97, p < 0.001).

Again, in absolute magnitude, the model underestimated NEE.

The performance of the model also varied with vegetation



Fig. 7 – Scatterplot of observed mean NEE versus predicted

mean NEE across the AmeriFlux sites. Error bars are

standard errors (defined as the standard deviation divided

by the square root of the number of observations) of the

observed and predicted 8-day mean NEE. Abbreviations of

AmeriFlux sites are given in Table 1. For a given site, the

mean NEE values did not necessarily represent the fluxes

averaged over the entire 2-year period 2005–2006. The

temporal coverage of NEE data for each site is provided in

Fig. 6.

Fig. 8 – Scatterplot of observed mean NEE versus predicted

mean NEE across biomes: evergreen forests (EF),

deciduous forests (DF), mixed forests (MF), shrublands

(Sh), savannas (Sa), grasslands (Gr), and croplands (Cr).

Error bars are standard errors (defined as the standard

deviation divided by the square root of the number of

observations) of the observed and predicted 8-day mean

NEE.
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type. In absolute magnitude, large overestimation occurred for

evergreen forests and shrublands.

Our study demonstrated that MODIS data have great

potential for scaling up eddy flux NEE data to continental

scales across a variety of vegetation types. Unlike GPP

(Heinsch et al., 2006; Yang et al., 2007), NEE is much more

difficult to estimate because the transient carbon pools and

associated heterotrophic respiration are difficult to estimate

(Running et al., 2004; Mahadevan et al., 2008). The perfor-

mance of our model for estimating NEE is encouraging, given

the diversity in ecosystem types, age structures, fire and insect

disturbances, and management practices. In future research,

additional explanatory variables should be selected to better

account for live and dead vegetation carbon pools, and other

factors that influence decomposition of woody detritus and

soil respiration.

3.2. Continental-scale estimation of NEE

We estimated NEE for each 1 km � 1 km cell across the

conterminous U.S. for each 8-day interval over the period

from January 2005 to February 2006. Fig. 9 shows examples of

8-day NEE maps that we produced for the conterminous U.S.

from January through December in 2005. For each month, the

second 8-day NEE map was shown here. The predictive model

trained at the AmeriFlux sites generally captured the

expected spatiotemporal patterns of NEE. The majority of

the conterminous U.S. released carbon or were nearly carbon
neutral in winter months (December–February) because at

this time of the year the canopies of most ecosystems were

dormant; in summer months (June–August), ecosystems in

the East assimilated carbon from the atmosphere, whereas

many areas in the West released carbon, possibly due to

summer drought effects on NEE. In fall months (September–

November), ecosystems in the East assimilated less carbon

than in the summer months as vegetation began to senesce

and days became shorter. Some ecosystems, particularly

evergreen forests in the Pacific Northwest and California,

assimilated carbon from the atmosphere throughout the

year. Douglas-fir, a major species in the Pacific Northwest and

California, is known to be highly plastic and able to

photosynthesize in winter when temperatures are above

freezing.

We aggregated 8-day NEE estimates for each season in 2005

(Fig. 10). Our NEE estimates exhibited strong seasonal

fluctuations, agreeing with previous studies (e.g., Falge

et al., 2002). Our NEE estimates also varied substantially over

space. In the spring (March–May), many areas in the eastern

half of the conterminous U.S. including the Southeast and the

Gulf Coast assimilated carbon from the atmosphere. The

growing season of these ecosystems started in the mid- to

late-spring, and GPP quickly exceeded Re, leading to net carbon

uptake in the entire season. By contrast, the Upper Great Lakes

region, the northern Great Plains, and the New England region

released carbon. The Upper Great Lakes region and the

northern Great Plains are dominated by croplands with most

crops planted between April and June (corn planted between

April and mid-May; soybeans between mid-May and mid-June;

and sorghum between late May and late June; Shroyer et al.,



Fig. 9 – Examples of predicted 8-day NEE for the conterminous U.S. from January through December in 2005. For each month,

the second 8-day NEE map is shown here. The units are gC mS2 dayS1. Positive values indicate carbon release, and negative

values indicate carbon uptake.
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1996). Crops were sparse in the beginning of the growing

season and Re exceeded GPP, thereby leading to carbon

releases. The New England region and the northern portion

of the Upper Great Lakes region are dominated by temperate-

boreal transitional forests, and their relatively late greenup

due to low air temperatures led to carbon releases in the

spring. Many regions in the western half of the conterminous

U.S. also released carbon in the spring because of the sparse

vegetation and the dominance of Re over GPP. The Pacific Coast

assimilated carbon even in the spring because the dominant

evergreen forests in the region assimilated carbon due to mild

temperatures and moist conditions (Anthoni et al., 2002). The

Mediterranean regions in California also assimilated carbon in

the spring. The Mediterranean climate is characterized by

mild winter temperatures concomitant with the rainy season

as opposed to severe summer droughts and heat (Barbour and

Minnich, 2000). These ecosystems assimilated carbon because

of precipitation surplus and relatively warm temperatures in

the spring (Xu and Baldocchi, 2004; Ma et al., 2007).

In the summer months (June–August), the eastern half of

the conterminous U.S. assimilated carbon because GPP far
exceeded Re owing to favorable temperature and soil moisture

conditions. By contrast, a vast majority of the land across the

western counterpart released carbon, including the Great

Basin, the Colorado Plateau, and the western Great Plains. The

2005 summer drought affected these regions (National

Climatic Data Center, 2008) and reduced GPP, whereas the

high temperatures increased Re, leading to net carbon

releases. Some other regions in the West also assimilated

carbon, including the northern Rocky Mountains and the

Pacific Coast. Some Mediterranean ecosystems in California

also released carbon due to precipitation deficits in the

summer.

In the fall (September–November), the Southeast and the

Gulf Coast still assimilated carbon, but net carbon uptake

rates substantially decreased relative to those in the summer.

This is because vegetation began to senesce in these regions in

the fall. The Upper Great Lakes region and the Great Plains

largely released carbon due to the harvesting of crops. The

majority of the land across the West including the Great

Plains, the Great Basin, and the Colorado Plateau released

carbon. The northern Pacific Coast, however, still absorbed



Fig. 10 – Predicted NEE for each season in 2005: (a) spring (March–May); (b) summer (June–August); (c) fall (September–

November); (d) winter (December–February). The units are gC mS2 seasonS1. Positive values indicate carbon release, and

negative values indicate carbon uptake.
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carbon. The Mediterranean ecosystems in California contin-

ued releasing carbon as the dry season spanned into the fall.

In the winter (December–February), the vast majority of the

conterminous U.S. released carbon as the canopies of most

ecosystems were dormant at this season of the year. Some

regions in the Pacific Coast, however, assimilated carbon even

in the winter because of the dominance of evergreen forests

and mild temperatures in the regions (Waring and Franklin,

1979). This agreed with the finding of Anthoni et al. (2002) that

old-growth ponderosa pine in Oregon slightly assimilated

carbon in the winter season. For the Mediterranean ecosys-

tems in California, a smaller part of the region released carbon

into the atmosphere relative to the fall as the wet season

started in the winter.

The trajectory of the mean 8-day NEE ( gC m�2 day�1) for

each vegetation type over the entire conterminous U.S.

throughout 2005 (Fig. 11a) showed that deciduous forests,

croplands, savannas, and mixed forests had large intra-

annual variability in NEE, whereas evergreen forests, grass-

lands, and shrublands exhibited much less variability. The

seasonal patterns of NEE were determined by the seasonal

differences in LAI, physiological capacity, meteorological

conditions, growing season length, soil temperature, moist-

ure status, and management practices (Falge et al., 2002). In

the late fall, winter, and early spring, on average, the U.S.

terrestrial ecosystems released carbon; taken separately,

only evergreen forests and grasslands assimilated carbon

during this time. Among vegetation types exhibiting positive

NEE values, deciduous forests had the highest values,
followed by mixed forests; croplands exhibited intermediate

values; shrublands and savannas exhibited lowest values

while evergreen forests still assimilated carbon. During the

growing season, on average, the U.S. terrestrial ecosystems

strongly assimilated carbon; taken separately, only shrub-

lands released carbon because of high temperatures and low

soil moisture conditions. Among vegetation types assimilat-

ing carbon, the highest absorption rates occurred for

deciduous forests, followed by croplands, savannas, and

mixed forests; intermediate rates occurred for evergreen

forests; the lowest rates occurred for grasslands. Baldocchi

et al. (2001) showed that the net CO2 exchange of temperate

deciduous forests increases by about 5.7 gC m2 day�1 for each

additional day that the growing season, defined as the period

over which mean daily CO2 exchange is negative due to net

uptake by ecosystems, is extended. We found that on average,

the CO2 exchange of deciduous and evergreen forests across

the conterminous U.S. increased 3.6 and 1.2 gC m�2 day�1 for

each additional day that the growing season is extended,

respectively. Our continental-scale estimate for deciduous

forests was 37% lower than that estimated by Baldocchi et al.

(2001) likely because our estimate was based on all the areas

covered by deciduous forests encompassing the full range of

productivity.

The trajectory of the total 8-day NEE (TgC day�1) over the

conterminous U.S. (Fig. 11b) showed clear dependence on

vegetation type. The differences in the trajectories of total 8-

day NEE among vegetation types were different from those of

mean 8-day NEE because of the differences in the areas among



Fig. 11 – Predicted mean and total 8-day NEE for each

vegetation type in the conterminous U.S. in 2005. (a) Mean

8-day NEE (gC mS2 dayS1); (b) total 8-day NEE (TgC dayS1).

Inset in plot (b) indicates the area (106 km2) of each

vegetation type: evergreen forests (EF), deciduous forests

(DF), mixed forests (MF), shrublands (Sh), savannas (Sa),

grasslands (Gr), and croplands (Cr). For x-axis, the starting

dates (month/day) of every two 8-day intervals were given

in parentheses under interval numbers.
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vegetation types (Fig. 11b). In the late fall, winter, and early

spring, the U.S. terrestrial ecosystems released carbon (1–

2 TgC day�1). Taken separately, croplands, deciduous forests,

and mixed forests released carbon, whereas evergreen forests

assimilated carbon; shrublands, savannas, and grasslands,

however, were nearly carbon neutral. During the growing

season, the U.S. terrestrial ecosystems assimilated carbon, with

peak total NEE of �17 TgC day�1. All vegetation types except

shrublands assimilated carbon. In absolute magnitudes, the

highest total NEE (�10 TgC day�1) occurred for croplands; the

intermediate values occurred for deciduous forests, savannas,

and mixed forests; the lowest values occurred for evergreen

forests and grasslands. By contrast, shrublands released

carbon. Total 8-day NEE also showed largest intra-annual

variability for croplands, intermediate variability for deciduous
forests, savannas, and mixed forests, and lowest variability for

evergreen forests, grasslands, and shrublands.
4. Summary and conclusions

We combined MODIS and NEE data from 42 AmeriFlux sites

involving a variety of vegetation types to develop a predictive

NEE model using a modified regression tree approach. The

model was trained and validated using eddy flux NEE data over

the periods 2000–2004 and 2005–2006, respectively. The model

estimated NEE well at the site level. We then applied the model

to estimate NEE for each 1 km � 1 km cell across the

conterminous U.S. for each 8-day period in 2005. The model

generally captured the expected spatial and seasonal patterns

of NEE. Our study demonstrated that our empirical approach

along with MODIS data have great potential for scaling up

AmeriFlux NEE measurements to the continental scale. Our

approach can be applied to the entire North America, other

geographical regions including Europe, Southeast Asia, and

South America, or to the globe scale, and to produce

continuous NEE estimates over regions, continents, or the

globe. This approach can also be used to scale other fluxes

including GPP and evapotranspiration to large areas.

Our wall-to-wall NEE estimates across the conterminous

U.S. provided an independent dataset from simulations by

biogeochemical modeling and inverse modeling for examining

the spatiotemporal patterns of NEE and constraining U.S.

terrestrial carbon sinks/sources. Our estimates have advan-

tages over these model simulations by taking advantage of NEE

measurements from a number of AmeriFlux sites involving

representative U.S. ecosystems. Moreover, our scaling-up

approach implicitly considered the effects of climate variability

and extreme climate events. Although our NEE estimates could

not capture the immediate emissions of CO2 due to the burning

of biomass in wildfires, our estimates could partly account for

the carbon fluxes following the disturbances because the

MODIS data we used provide real-time observations of

ecosystems. Compared to inverse modeling techniques, our

approach provided estimates at high spatial (1 km� 1 km) and

temporal (8-day) resolutions. In addition, NEE is notoriously

difficult to quantify over large areas (Running et al., 2004), and

the accuracy of simulated NEE for regions and continents by

biogeochemical models is poorly known due to lack of spatially

explicit, independent validation data sets. Our estimates may

also provide an independent validation data set for these model

simulations. We will extend our NEE estimates to the entire

MODIS era (2000-present) for the conterminous U.S., which will

provide a valuable dataset for examining the interannual

variability of the U.S. terrestrial carbon uptake.

The AmeriFlux sites provide valuable measurements of

ecosystem carbon exchange for examining terrestrial carbon

dynamics (Law, 2006, 2007). Our study demonstrated that the

AmeriFlux measurements could be used to examine con-

tinental-scale carbon dynamics, and the continuing operation

of the AmeriFlux network will continue to improve our

understanding of the impacts of climate variability, distur-

bances, and management practices on terrestrial carbon

cycling. Our study also suggested that the current AmeriFlux

network should be augmented by establishing more sites for
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certain biomes in the UMD classification system (Table 1),

including open shrublands, savannas, grasslands, and crop-

lands. The augmentation should enable the differentiation of

open shrublands from closed shrublands, woody savannas

from savannas, and C3 from C4 plants in scaling-up studies,

thereby improving the estimation of carbon fluxes over large

areas.
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