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A B S T R A C T  ( 3 0 0  W O R D S )   

The phenology of montane conifer forests is likely to shift in response to climate change and altered seasonal 
dynamics of light, temperature, and moisture. Solar-induced fluorescence (SIF) is expected to provide substantial 
improvement for mapping temporal changes in evergreen gross primary production (GPP) over greenness-based 
remote sensing indices. The utility of SIF to monitor seasonal changes in the phenology of conifer photosynthesis 
depends on the degree to which GPP and SIF respond in synchrony to key environmental drivers. However, to 
what extent SIF and GPP become decoupled by responding differently to the combined effects of light and other 
environmental conditions remains unknown. The goal of this study was to characterize the responses of GPP and 
SIFred to a suite of environmental drivers at the half-hour time scale and determine how these relationships 
change across seasons. We analyzed one year of tower-based SIFred and eddy covariance-derived GPP data from a 
conifer forest at Niwot Ridge, Colorado. We compared the light responses of GPP and SIFred across the year, 
finding that SIFred increased in response to light earlier in the year than did GPP. The light response of GPP had a 
positive temperature dependence in spring, and this dependency reversed in summer due to increased evapo-
rative demand, while the light response of SIFred was less temperature dependent. Using artificial neural network 
ensemble analysis, we found that from spring to summer, SIFred did not exhibit a parallel response to the 
seasonally dynamic temperature and moisture controls on GPP. In summer SIFred was not correlated with canopy 
conductance, suggesting that SIF is less sensitive to stomatal control than GPP. Our results suggest that, in co-
nifers, photosystems begin to activate in spring prior to when water becomes available for photosynthesis, 
presenting a challenge for the use of SIF as a phenological indicator in conifer forests.   

Introduction 

Improving our ability to monitor how carbon (C) dynamics of the 
terrestrial biosphere interact with climate is critical for studying the 

function of ecosystems now and in the future. A complete understanding 
of the terrestrial C cycle depends on our ability to quantify seasonal 
change in photosynthetic function, and how this is correlated with 
environmental conditions across time. Although estimating the timing 
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and magnitude of terrestrial gross primary productivity (GPP) has been a 
major goal of Earth system science for decades (Beer et al., 2010; Piao 
et al., 2013; Smith et al., 2016), major uncertainties persist, and it re-
mains an ongoing challenge for ecologists to provide high-quality GPP 
estimates in uncontrolled field settings (Ryu et al., 2019). 

A traditional method of estimating GPP is the light use efficiency 
(LUE) model (Monteith, 1977, 1972), which relies on the relationship 
between absorbed light and carbon uptake. The LUE model has been the 
paradigm in remote sensing to evaluate GPP on ecosystem to global 
scales (Field et al., 1995; Hilker et al., 2008; Running et al., 2004) and 
can be expressed as: 

APAR = fAPAR ∗ PAR  

GPP = APAR ∗ LUE  

where LUE is the light use efficiency of CO2 assimilation (Gitelson & 
Gamon, 2015), and APAR is the photosynthetically active radiation 
(PAR) absorbed by green leaves: equal to the total amount of PAR times 
the fraction absorbed by the canopy (fAPAR). Typically, reflectance 
indices related to leaf chlorophyll content and canopy structure (i.e. 
canopy ‘greenness’), such as the normalized difference vegetation index 
(NDVI) or enhanced vegetation index (EVI), have been used to estimate 
changes in the fAPAR term (Goward and Huemmrich, 1992; Myneni and 
Williams, 1994; Sellers, 1985; Tucker, 1979; Viña and Gitelson, 2005), 
while adjustments for LUE are made based on its parameterized 
response to meteorological data (Running et al., 2004). However, NDVI 
and EVI do not adequately reflect temporal changes in plant function in 
evergreen systems, where photosynthetic dynamics are not controlled 
by seasonal shifts in chlorophyll content or canopy structure (Gamon 
et al., 1995; Magney et al., 2019; Smith et al., 2019; Springer et al., 
2017; Walther et al., 2016; Wong et al., 2019). Therefore, improved 
remote sensing methods that accurately monitor C fluxes in response to 
environmental variability are needed; in order to predict changes in 
conifer forests, and to enhance the accuracy of terrestrial biosphere 
models. 

Because evergreen species retain needles throughout the year, 
changes in LUE are controlled by a variety of photoprotective processes 
(Björkman and Demmig-Adams, 1995) working in coordinated response 
to seasonal shifts in the environment. Winter dormancy is typically 
characterized by downregulation of photosynthesis and upregulation of 
sustained nonphotochemical quenching (NPQ) – photoprotective ther-
mal dissipation processes that are retained overnight (Verhoeven, 
2014). Spring activation involves upregulation of photosynthesis, and a 
transition from mostly sustained to primarily reversible forms of NPQ— 
thermal dissipation involving the xanthophyll cycle that responds 
rapidly to the environment (Demmig-Adams and Adams, 2006). These 
seasonal changes in photosynthetic regulation are driven by environ-
mental controls including temperature, photoperiod, soil moisture, 
snow cover, and freeze/thaw cycles (Bauerle et al., 2012; Bowling et al., 
2018; Ensminger et al., 2008; Goulden et al., 2012; Parazoo et al., 2018; 
Polgar and Primack, 2011; Way et al., 2017). Seasonal transitions 
depend on the interactions between these environmental cues and 
physiological mechanisms that are site- and species-specific, and neither 
models nor greenness indices reliably predict photosynthetic phenology 
of coniferous evergreens (Chang et al., 2019; Frechette et al., 2015; 
Parazoo et al., 2018; Richardson et al., 2012; Turner et al., 2005). 

The subtle seasonal variation of fAPAR and persistent greenness of 
conifer forests makes it difficult to study seasonal changes in photo-
synthetic function. For this reason, the remote sensing of chlorophyll 
fluorescence, termed solar-induced fluorescence (SIF), has received 
significant attention over the last decade as an improved method of 
measuring productivity (for review see Mohammed et al., 2019). When a 
leaf absorbs light, some of the energy is used to drive the photochemical 
reactions of photosynthesis, a portion is dissipated as heat via NPQ, and 
a small fraction (< 2%) is re-emitted by chlorophyll as fluorescence 

(Maxwell and Johnson, 2000), with wavelengths from 640 nm – 850 nm. 
Because fluorescence emission is linked to the light reactions of photo-
synthesis (Gu et al., 2019), it is sensitive to both APAR and photo-
chemical efficiency. Therefore, in theory SIF is linked to the 
photosynthetic function of leaves rather than simply green pigment 
content or leaf area (Gu et al., 2019; Porcar-Castell et al., 2014; Yang 
et al., 2015), and numerous studies confirm that SIF carries novel in-
formation on the dynamics of photosynthesis compared with previous 
remote sensing indices (Frankenberg et al., 2011b; Guanter et al., 2012; 
Joiner et al., 2011; Magney et al., 2019). 

From canopy to global scales, SIF has been shown to display a linear 
association with GPP across biomes (e.g Li et al., 2018.; Sun et al., 2018, 
2017; Wood et al., 2017; Yang et al., 2015). To some degree SIF is 
related to GPP due to their shared response to APAR, as has been shown 
in crops (Dechant et al., 2020; Miao et al., 2018; Wu et al., 2020; Yang 
et al., 2018; P. Yang et al., 2020) and grasslands (Smith et al., 2018). On 
the other hand, SIF correlates to seasonal changes in photoprotective 
pigments and photochemical efficiency in evergreen systems that 
exhibit little variation in APAR (Magney et al., 2019). In contrast to the 
often-reported linear association between SIF and GPP by remote 
sensing studies, at the leaf scale there is a nonlinear relationship be-
tween fluorescence emission and C assimilation (Flexas et al., 2002; Gu 
et al., 2019; Magney et al., 2020), as net assimilation saturates under 
high light while fluorescence continues to increase. Measures of SIF from 
remote sensing platforms and GPP derived from eddy covariance (EC) 
flux measurements of net ecosystem exchange (NEE) both integrate 
across the structural and physiological variability of the individual 
leaves that compose a canopy. As spatiotemporal scales become coarser, 
this integration averages out the nonlinearities in the SIF-GPP rela-
tionship (Magney et al., 2020; Y. G. Zhang et al., 2016). The fact that SIF 
is not a perfect representation of GPP does not negate its usefulness, 
rather, we need to know under what environmental conditions is SIF a 
‘reasonable’ proxy for photosynthesis (Magney et al., 2020). 

Advancement in our understanding of SIF is expected to provide a 
significant improvement in our ability to model productivity of terres-
trial ecosystems (Frankenberg et al., 2014; Guanter et al., 2014; Parazoo 
et al., 2014; Verrelst et al., 2016), however, the use of SIF as a pheno-
logical predictor of GPP seasonality in conifer forests warrants further 
study. If we accept the premise that the link between SIF and GPP at 
increasing scales is due, in part, to their shared response to APAR (Miao 
et al., 2018; Yang et al., 2018), SIF and GPP should be nonlinearly 
related when plant physiological response to environmental conditions 
causes SIF and GPP to respond differently to light. Recently, Kim et al. 
(2021) showed that in autumn a non-linear SIF-GPP relationship was 
associated with differences between the light responses of SIF and GPP, 
and we expect this to be true across seasons. In addition, the GPP-SIF 
relationship may be modified by environmental controls (Chen et al., 
2021; Wieneke et al., 2018; Wohlfahrt et al., 2018) and vary across 
ecosystems, therefore further research is needed to investigate whether 
the impacts of complex environmental interactions on GPP are also 
captured by SIF. These issues motivated us to investigate potential dif-
ferences in the response of GPP and SIF to light and other environmental 
factors. 

We analyzed one year of continuous canopy-scale red SIF (SIF 
measured from 680 nm -686 nm wavelength, SIFred) and EC GPP data in 
a subalpine conifer forest at Niwot Ridge CO, USA. Previously, Magney 
et al. (2019) demonstrated that SIF closely followed changes in photo-
synthetic capacity from hourly to weekly time scales in this forest. We 
expand on the former study by further investigating the responses of 
half-hourly SIFred and GPP to the combined effects of light and weather, 
and how these relationships change across seasons. To do this, we first 
focus on the light responses of GPP and SIFred, then continue with an 
artificial neural network (ANN) ensemble analysis. We ask: Q1) when 
are there fundamental differences in the light responses of SIFred and 
GPP; and Q2) when and how do SIFred and GPP differ in their response to 
environmental controls? 
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Methods 

Study Site 

We analyzed data during the year 2018 from a high elevation (3050 
m) subalpine conifer forest at Niwot Ridge, Colorado, USA (an Ameri-
Flux Core Site, 40.03◦N, 105.55◦W). The site is composed of lodgepole 
pine (Pinus contorta Douglas ex Loudon), Engelmann spruce (Pinus 
engelmannii Parry ex Engelm.), and subalpine fir (Abies lasiocarpa 
(Hook.) Nutt.). The tree density near the tower is ~4000 trees ha− 1, 
canopy height is 12-13 m, and leaf area index is 3.8–4.2 m2 m− 2 (Burns 
et al., 2015). The understory is sparse, with few tree seedlings and 
patches of Vaccinium myrtillus (~25% cover, Monson et al., 2002). Mean 
annual temperature is 1.5◦C and mean annual precipitation 800 mm, 
with ~65% falling as snow and a persistent snowpack from November to 
May (Monson et al., 2005). We refer the reader to earlier publications for 
detailed site description (Bowling et al., 2018; Burns et al., 2015; 
Monson et al., 2002, 2005). Needles at this site remain green 
year-round, and previous studies have shown conclusively that there is 

little seasonal change in APAR, NDVI, or needle chlorophyll concen-
tration (Bowling et al., 2018; Magney et al., 2019). For the year 2018 of 
the present study, annual cumulative precipitation was 412 mm (~50% 
of average), and annual cumulative GPP was 678 g C m− 2, which is 88% 
of the average from 1999-2012 (767 ± 45 g C m− 2; Knowles et al., 
2015). These data indicate that the forest experienced drought during 
the study year. 

Eddy covariance and meteorological data 

We measured net ecosystem exchange of CO2 (NEE) from the flux 
tower using a sonic anemometer (CSAT3; Campbell Scientific) and 
closed-path infrared gas analyzer (model LI-6262; LI-COR Biosciences) 
at 21.5 m height. Downwelling photosynthetic photon flux density 
(PPFD, LI-COR 190-SA), net radiation (Rn, REBS Q-7.1), latent heat flux 
(LE, CSAT3), sensible heat flux (H, CSAT3), air temperature (Tair, Vai-
sala HMP-35D), wind speed (U, CSAT3), and friction velocity (u*, 
CSAT3) were measured above canopy (21.5 m). Vapor pressure satu-
ration deficit of air (VPD, Vaisala HMP-35D) was measured at 8m 

Fig. 1. Annual course of environmental variables for 2018, plotted as daytime means of a) photosynthetic photon flux density—PPFD (µmol m− 2 s− 1), b) vapor 
pressure deficit—VPD (kPa), c) air temperature—Tair (◦C), d) soil temperature—Tsoil (◦C), e) soil volumetric water content—VWC (cm3cm− 3), and f) snow water 
equivalent—SWE (cm). g) Five-day moving average of canopy conductance—gcw (mol m− 2 s− 1). h) Daily forest photosynthetic capacity—GPPsat (solid line; µmol CO2 
m− 2 s− 1), and five day moving average of GPP (dashed line; µmol CO2 m− 2 s− 1). Five-day moving average of i) SIFred (solid line; mW m− 2 nm− 2 sr− 1) and relative 
SIFred (dotted line, unitless), and j) the photochemical reflectance index—PRI (unitless) and the chlorophyll carotenoid index—CCI (dashed line; unitless). Data were 
visually divided into winter, spring, summer, and fall based on GPPsat, shown in blue, green, yellow, and orange, respectively 
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height, soil heat flux (Q, REBS HFT-1) at 0-10cm depth, and barometric 
pressure (pbar, Vaisala PTB-101B) at 12 m height. At 5 cm depth in 
mineral soil we measured soil temperature (Tsoil) using a thermistor 
probe (CS107, Campbell Scientific), and soil moisture (volumetric water 
content, VWC), which was taken as the average of twelve water content 
reflectometers (CS616 & CS615, Campbell Scientific). We used data 
from these twelve sensors at 5 cm depth to account for horizontal spatial 
heterogeneity (Fig. S1a). We note that VWC data from 5cm depth may 
not represent water available to trees at different rooting depths, how-
ever data from VWC sensors at different depths in a profile located a few 
meters from the nearest bole showed that the 5cm data were reasonably 
representative of soil moisture to a depth of 30cm at this site (Fig. S1b). 
For detailed sensor description, see Burns et al. (2015). For all flux and 
meteorological data we used daytime half-hourly averages, where day-
time was defined as PPFD > 5 µmol m− 2 s− 1. Daily snow water equiv-
alent (SWE) data were provided by the USDA/Natural Resources 
Conservation Service Snow Telemetry Network (SNOTEL) site located 
approximately 400 m from the tower. 

We partitioned GPP from NEE using both the nighttime (Reichstein 
et al., 2005) and daytime (Lasslop et al., 2010) methods using the 
REddyProc R package (Wutzler et al., 2018). The GPP data presented in 
the primary text are from the nighttime partitioning method, while 
differences due to the daytime partitioning method are discussed in the 
supplement (S5). Seasons were determined visually based on a 
time-varying index of photosynthetic capacity, which we define as the 
light saturated rate of GPP (GPPsat; Bowling et al., 2018), shown in 
Fig. 1h. GPPsat can be thought of as the ecosystem scale analog of 
leaf-level photosynthetic capacity (Amax). We determined GPPsat ac-
cording to Bowling et al. (2018) by fitting hyperbolic 
light-response-curves in a 5-day moving window to the equation GPP =
a*PPFD/(b+PPFD), and then calculating GPP at a light saturated level of 
PPFD (2000 μmol m− 2 s− 1) as GPPsat= a*2000/(b+2000). 

In order to compare the sensitivities of GPP and SIF to stomatal 
control, we calculated canopy conductance to water vapor gcw, which is 
the ecosystem scale analog of stomatal conductance, according to 
Blanken et al. (1997): 

1
gcw

=
1000cpVPDρ

γLE
− ra  

where aerodynamic resistance ra is calculated according to Verma 
(1989): 

ra =
U
u∗2 +

2.5
u∗

and cp is the specific heat of air at constant pressure, ρ is the air density 
calculated from barometric pressure (Pbar) and air temperature (Tair), 
and γ = (Pbar * cp / .622 *λ), where λ is the latent heat of vaporization of 
water calculated from Tair. 

Tower-based SIF 

SIF was measured continuously at 26-m height with a PhotoSpec 
spectrometer system (Grossmann et al., 2018) mounted at the top of the 
flux tower. SIF was retrieved using the in-filling of Fraunhofer line depth 
(Plascyk and Gabriel, 1975), using full spectral fitting techniques in 
spectral windows devoid of telluric absorption features (e.g Franken-
berg et al., 2011a.). A failure of our far-red spectrometer led to large data 
gaps in the far-red region, therefore we used SIFred (680-686 nm) only. 
The PhotoSpec consists of a 2D scanning telescope unit with a 0.7◦ field 
of view. The instrument collected data in elevation scans from nadir to 
the horizon in 0.7◦ steps at a fixed azimuth angle in the north-northeast 
direction. By taking zenith scans at a fixed azimuth angle rather than 
nadir measurements, PhotoSpec field of view captured all species in this 
ecosystem, therefore these data are a reasonable representation of the 
species present in the EC footprint. During the scanning routine, diffuser 

spectra were taken every 3 minutes. We filtered the SIFred data for when 
NDVI was > 0.6, when the solar zenith angle was < 90◦, and the viewing 
zenith angle < 30◦ to avoid retrievals coming from the soil, snow, or low 
solar/viewing zenith angles. These decisions are consistent with Mag-
ney et al. (2019), and were chosen to be as conservative as possible. In 
addition, we used Phenocam images (Richardson, 2019) to exclude 
periods with snow on the canopy. We then averaged data from all scans 
on a half-hourly basis (n>5 observations) to match the temporal reso-
lution of flux tower data. 

Radiative transfer and canopy structure are important determinants 
of variation in SIF, including at the seasonal scale (Dechant et al., 2020; 
Liu et al., 2020; Yang and van der Tol, 2018; Zeng et al., 2019), and 
continuously changing solar-view geometry imposes directional effects 
on the fluorescence signal (Biriukova et al., 2020; Zhang et al., 2018). 
Because data were taken along a fixed azimuth angle that pointed 
north-northeast, throughout the day the canopy in the scan path expe-
rienced different fractions of sun and shade. In other words, some fields 
of view might be shaded in the morning, while in the evening – at 
equivalent PAR – they might be sunlit. Canopy shading effects were 
unavoidable, and rather than excluding data by introducing a bias to-
wards sunlit conditions, we chose to maintain the full dataset in order to 
represent canopy average illumination as would be represented in the 
EC flux footprint. 

To test the effects of illumination geometry, we calculated a relative 
SIF (Fig. 1i; Magney et al., 2019; Pierrat et al., 2021) which was 
normalized by red reflected radiance from the retrieval window (680 nm 
- 686 nm): relative SIFred = SIFred/ρRed680− 686. Relative SIFred exhibited 
little variation in response to light (Fig. S2), indicating that the light 
response of SIF was not biased due to diurnal variation in illumination 
conditions. Additionally, we note that SIFred is subject to stronger 
reabsorption affects by chlorophyll than SIFfar-red, and these reabsorp-
tion effects may be exacerbated by the previously mentioned geometry 
issues and impact our measurements on the diurnal time scale. However, 
Magney et al. (2019) determined that there was no discernable differ-
ence between red and far-red SIF for tracking GPP in this dataset, and 
showed that red and far-red SIF scale linearly across the seasons in this 
ecosystem on hourly-weekly timescales. The annual time course of 
SIFred, relative SIFred are shown alongside the environmental data in 
Fig. 1. 

The photochemical reflectance index (PRI) is related to de- 
epoxidation of xanthophyll pigments (reversible NPQ) in the short 
term, which reduces reflectance at 531 nm (Gamon et al., 1992), while 
on the seasonal scale the PRI signal is dominated by changes in chlo-
rophyll:carotenoid ratios (Porcar-Castell et al., 2012; Wong et al., 2020; 
Wong and Gamon, 2015a). The chlorophyll:carotenoid index (CCI) is 
useful for studying changes in pigment ratios that occur on a seasonal 
scale (Gamon et al., 2016). We measured PRI and CCI (Fig. 1j) to give an 
indication of photoprotective pigment-related biological controls on the 
photosynthetic seasonality in our ANN analysis. The same PhotoSpec 
instrument used to calculate SIF provides moderate resolution spectral 
reflectance data (Grossman et al., 2018), which were used to calculate 
PRI and CCI as: 

PRI = (ρ569:571 − ρ520:532)/(ρ568:571 + ρ520:532)

CCI = (ρ409:415 − ρ735:745)/(ρ409:415 + ρ735:745)

where ρnm:nm is the average reflectance across the wavelength range in 
nm (Gamon et al., 1992). When aggregated to the daily scale, PRI and 
CCI exhibited a very similar annual time course (Fig. 1j) as expected. Sun 
sensor geometry effects complicate the acquisition of PRI (Hall et al., 
2008), thus a limitation of our study is that data obtained with a single 
sensor are not robust enough to thoroughly account for these illumina-
tion complexities. 

J.C. Yang et al.                                                                                                                                                                                                                                  
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Artificial Neural Networks 

Monitoring data in uncontrolled field settings does not distinguish 
the partial effects of any single environmental or climatic variable such 
as one might obtain through a controlled experiment (Kolari et al., 
2014), and even then, feedbacks between variables make full separation 
of effects difficult or impossible. As a result, model-based analyses of 
observational data commonly rely on functional relationships specified 
a priori (e.g., Lasslop et al., 2010). Instead, we used an ensemble of 
ANNs to identify the hierarchy of environmental controls of GPP and 
SIFred and derive their functional relationships directly from the obser-
vations, without making assumptions about the shape of each response 
(Albert et al., 2017; Moffat et al., 2010). ANNs are non-parametric 
empirical models that are useful for extracting nonlinear functional re-
lationships from noisy, multivariate datasets, and often outperform 
other semi-empirical or process-based models (Moffat et al., 2010; 
Abramowitz, 2005, Keenan et al., 2012). In brief, an ANN model iden-
tifies correlations between controlling input variables (drivers) and the 
responding output variable(s) at the time scale of the data during a 
model training process (Moffat et al., 2010). Previous papers describe 
ANNs and their applications in greater depth (see Albert et al., 2017; 
Bishop, 1995, Lek and Guégan, 1999; Moffat et al., 2010; Olden et al., 
2008; Papale and Valentini, 2003). 

To evaluate the responses of GPP and SIFred to variation in seasonal 
environmental conditions, we used an ensemble of feedforward ANNs 
trained by backpropagation using Matlab’s neural network toolbox 
(Beale et al., 2014; Bishop, 1995; Rojas, 1996). Each ANN model 
structure consisted of an input layer with n nodes, where n = number of 
candidate driver(s) (independent variables), which fed into a five-node 
hidden layer, whose outputs then fed into the target layer (response 
variable, GPP or SIFred). Data moved in the forward direction using a 
sigmoid activation function, with each node interconnection assigned a 
weight during training that determines the behavior of the network. 

Data were randomly divided into three subsets for training (60%), 
testing (20%), and validation (20%). Only non-gap-filled data were 
used. Prior to training, candidate drivers were scaled from [− 1, 1] to be 
within the linear range of the sigmoid function output (Beale et al., 
2014). In the ANN context, “drivers” represent independent variables, or 
the inputs of the network. Rather than the typical [0,1] scaling, the 
response (GPP or SIFred) was further limited inside the linear range and 
scaled to [.3,.7] to reduce edge effects, which can have a large impact on 
the partial derivatives (see below, Moffat, 2012). During training, the 
relationship of the response variable with each candidate driver was 
taken directly from the data and mapped into the network. We trained 
each ANN ten times using the Levenberg–Marquardt algorithm, and 
determined the performance of each using the mean-square error from 
the testing subset. For robustness, we then used the ANN with the lowest 
mean squared error for our analysis (Moffat et al., 2010). 

Using the ANN approach presented in Moffat et al. (2010) and Albert 
et al. (2017), we characterized a hierarchy of environmental controls of 
SIFred and GPP separately and for each season. First the ANN was trained 
with all candidate drivers to produce a benchmark coefficient of deter-
mination (r2) of the total explanatory capability of the data (see dashed 
line in Fig. 4). This indicates the maximum GPP or SIFred variability 
explained by the candidate drivers, and the degree to which variability 
was unaccounted for due to either measurement noise and/or missing 
drivers (Moffat et al., 2010). Initial candidate drivers included: Tair, Tsoil, 
VWC, VPD, precipitation, incoming PPFD, SWE, and PRI. The PRI was 
included as a variable under the assumption that it may be a proxy for 
xanthophyll pigment state on diurnal time scales (Gamon et al., 1992; 
Porcar-Castell et al., 2012; Zhang et al., 2016), and therefore is 
considered as a biological rather than environmental driver in this 
paper. We used PRI rather than CCI because the ANN identifies corre-
lations at the time scale of the data, in this case half-hourly, during a 
model training process, and ANNs were trained within rather than 
across individual seasons. In addition, SIFred was included as a candidate 

driver for GPP, though we stress that it is not a “driver” in the sense that 
GPP is not controlled mechanistically by SIF. We did this to assess the 
relative explanatory power of SIF compared to other environmental 
predictors. 

After determining the benchmark, we trained ANNs with each 
candidate driver individually and ranked them based on r2 (see dark 
bars in Fig. 4) to quantify their importance. After the primary (most 
important) driver was identified, ANNs were trained with the primary 
driver, plus each additional candidate driver to determine any second-
ary drivers (see light bars in Fig. 4). The degree of network performance 
improvement that resulted from the addition of the secondary driver 
indicates the amount of new information that driver contributed beyond 
the primary driver. This strategy informs instances when the response 
was dominated by a certain driver, such as light, and the ANN may not 
have been able to pick up underlying minor correlations, such as tem-
perature. Since ANNs with different single-inputs (or dual-inputs) can 
have similar performance, we tested for statistically significant differ-
ences in performance across single-driver ANNs (Fig. 4, white asterisks), 
and across dual-driver ANNs (Fig. 4, black asterisks), by comparing the 
correlation coefficients (r) after a Fisher r-to-z transformation (Fisher 
1921; Albert et al., 2017). If the z-statistics of more than three drivers 
were not statistically different from each other (p > 0.05 for t-test), then 
no driver(s) were described as significantly primary or secondary. In 
cases where more than one candidate driver was tied for primary driver, 
the driver with the numerically highest r2 was still used as the primary 
driver when determining secondary driver performance. 

While the ANN rankings map the performance of the controlling 
drivers to the response, the numerical partial derivatives (PaD) of the 
network function further characterize the functional responses of GPP to 
changes in the drivers. The PaD with respect to each driver, PaDi, rep-
resents the degree of change in GPP per measured physical unit. The 
partial derivative with respect to each input, PaDi,j (for j = 1, . . ., N 
number of observations), was calculated following to Gevrey et al. 
(2003): 

PaDj,i = Sj

∑nh

h=1
whoIhj

(
1 − Ihj

)
wih  

where Sj is the derivative of the output neuron, nh is the number of 
neurons in the hidden layer, and for each hth hidden neuron, Ihj is the 
output of the hidden neuron, who is the weight from the hidden to the 
output neuron, and wih is the weight from the input to the hidden 
neuron. To make comparisons across inputs with different units, we 
normalized the partial derivatives, nor. PaDi,j, as in Moffat et al. (2010). 
Then we took the averages of all the negative normalized PaDs, neg.PaDi, 
and all the positive normalized PaDs, pos.PaDi (Moffat et al., 2010): 

neg.PaDi =
1
N

∑

PaDi,j<0

(
nor. PaDi,j

)

pos.PaDi =
1
N

∑

PaDi,j>0

(
nor. PaDi,j

)

These positive and negative fractions of the partial derivatives were 
used to determine the sensitivity of the GPP response to changes in the 
candidate drivers and whether the effect was increasing or decreasing 
(Moffat et al., 2010). 

Results & Discussion 

Monthly light responses of SIFred and GPP 

Over recent years, many studies have demonstrated a linear rela-
tionship between SIF and GPP, derived across an entire season at large 
spatiotemporal scales (e.g Li et al., 2018.; Sun et al., 2018). If SIF 
emission is proportional to GPP, we would expect that they share a 
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similar response to variation in light. Therefore, we compared the light 
response of GPP with the light response of SIFred for each month of the 
year (Fig. 2). To avoid making assumptions about the shape of the curve, 
we fit a non-parametric generalized additive model (GAM) to each light 
response. We found that the light responses of SIFred and GPP each 
varied across months of the year, but did so in different ways. SIFred 
exhibited a response to light prior to the onset of GPP: there was a clear 
increase in SIFred with increasing light as early as February and March, 
while the first occurrences of non-zero GPP were recorded in April 
(Fig. 2). These results suggest that photosystems become activated in 
spring (increasing SIFred) ahead of when the EC method detects the onset 
of photosynthesis following winter dormancy. From May to September, 
GPP saturated under high PPFD while SIFred continued to increase, as 
expected (Gu et al., 2019; Magney et al., 2020; Fig. 2,3). Saturation of 
GPP and linearity of tower-based SIF at high light agrees with patterns in 
autumn in Korean pine (Kim et al., 2020) and in C3 crops (He et al., 
2020a). 

That the onset of SIFred occurred prior to GPP in spring is not sur-
prising given the many complex factors that govern the phenological 
shift from winter photosynthetic downregulation to spring growing 
season. Rather than being simply ‘off’ one season and ‘on’ the next, 
conifer forests experience intermittent periods of activity in response to 
periods of favorable conditions (Pierrat et al., 2021). For example, 
photosynthetic activity has been observed in coniferous trees during 
warm winter days (Ensminger et al., 2004; Knowles et al., 2020; Sevanto 

et al., 2006), but was not observed at Niwot Ridge where frozen boles 
limited water transport and precluded winter or early spring GPP despite 
favorable leaf temperature (Bowling et al., 2018). Furthermore, even 
when photosynthesis is absent indicating shutdown of the carbon re-
actions, leaf level fluorescence continues (Kolari et al., 2014; Ottander 
et al., 1995; van der Tol et al., 2014; Verhoeven, 2014), including at 
Niwot Ridge where Magney et al. (2019) reported small wintertime 
potential for electron transport from PAM fluorescence data. 

Seasonal differences in the timescales on which the light and carbon 
reactions of photosynthesis are regulated result in a decoupling of the 
SIF-GPP relationship. A multitude of signaling pathways govern the 
transition of photosynthesis between down- and upregulated states, and 
the environmental and physiological controls of these pathways remain 
an active area of research (e.g Demmig-Adams et al., 2012.; Esteban 
et al., 2015; Kolari et al., 2014; Porcar-Castell, 2011; Wong et al., 2019). 
Maintenance of some capacity of the electron transport chain is neces-
sary for NPQ processes which require a transmembrane pH gradient 
(Verhoeven, 2014), resulting in winter fluorescence emission when GPP 
is absent. In spring, SIF and GPP may be decoupled due to within-leaf 
recycling of respiratory CO2 before bole thaw and stomatal opening 
(Bowling et al., 2018). The increased role of cyclic electron transport 
around photosystem I (PSI) as a springtime energy sink (Frechette et al., 
2015) may decouple GPP from SIFfar-red, but likely does not impact SIFred 
emitted primarily from photosystem II (PSII). In addition, the spring 
increase in chlorophyll/carotenoid pigment pool ratios, which leads to 

Fig. 2. The responses of GPP and SIFred to sunlight (PPFD) for each month are shown side by side in blue and orange, respectively. Colors indicate bivariate fre-
quency distributions as an indication of data density. Plotted lines are fits from a generalized additive model for each. 
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increasing photosynthetic activity and the transition from sustained to 
reversible NPQ (Wong et al., 2020), affects both SIF and GPP, but these 
effects may be decoupled in time (Fig. 1h,i,j). Thus, there is significant 
evidence for the decoupling between the light and carbon reactions of 
photosynthesis in winter and early spring in cold-acclimated evergreens. 
We hypothesize that these mechanisms are responsible for the seasonal 
decoupling of SIFred and GPP observed in this study. 

It is well established that there are significant limitations in using 
NDVI or EVI to map the phenology of evergreen photosynthesis, and it 
has been suggested that SIF may be an advancement over these tradi-
tional reflectance-based indices (Jeong et al., 2017; Walther et al., 
2016). However, our finding that SIFred varies with light prior to the 
onset of GPP presents a challenge for the use of SIF to predict the start of 
the growing season in conifer forests. In agreement, Parazoo et al. 
(2018) found that spring onset dates estimated from satellite SIF were up 
to one month earlier than dates estimated from EC flux towers in a 
boreal forest, and that this discrepancy would result in over 20% error in 
estimates of seasonal GPP (Parazoo et al., 2018). Although they partially 
attribute this finding to GOME-2 overpass time or monthly aggregation, 
our results provide new evidence that the differing responses of SIF and 
GPP to light contribute to the discrepancy in time between spring onset 
estimates. Thus, our results provide important information that SIF may 
not be a reasonable proxy for GPP during early spring, and under 
saturating light in summer. 

Seasonal light responses of SIFred and GPP 

The annual course of GPPsat was visually examined alongside tem-
perature and moisture and used to divide the year into winter, spring, 
summer, and fall seasons (Fig. 1). Based on this GPPsat seasonal classi-
fication, spring onset began after initiation of snowmelt and initial in-
crease in soil VWC, while coinciding with the first sustained increase in 

Tair > 0◦C (Fig. 1). There was a marked increase in CCI during the spring 
onset (Fig. 1j). The end of spring was defined as the plateau in GPPsat and 
coincided with the end of snowmelt. The start of the fall season was less 
clearly defined and was marked by generally declining yet highly vari-
able GPPsat and Tsoil. Winter was defined by zero GPPsat, sustained Tair <

0◦C, and stable Tsoil (Maurer and Bowling, 2014). 
While it is well established that light is important for driving the SIF- 

GPP relationship, photosynthesis also responds strongly to temperature 
(Huxman et al., 2003; Monson et al., 2005; Sage and Kubien, 2007, 
Albert et al, 2017). Therefore, we investigated how the sensitivities of 
GPP and SIFred to light varied due to temperature across seasons (Fig. 3). 
We divided the data within each season based on the distribution of 
measured air temperature, into 3 groups of equal thirds (tertiles of Tair). 
We chose Tair because when the ANN was run with data from all seasons 
combined, Tair was the primary driver of GPP (data not shown), and Tair 
is commonly used to parameterize land surface phenology models 
(Richardson et al., 2006; Wu et al., 2012). The light response of GPP had 
a strong positive temperature dependence in spring (higher 
light-saturated GPP with higher Tair), and this pattern reversed in 
summer (lower light-saturated GPP with higher Tair, Fig. 3). Higher 
temperature in spring was associated with greater LUE (slope of the 
linear portion of the GPP curve), while in summer LUE did not vary with 
temperature (Fig. 3). In contrast, the light response of SIFred was less 
temperature dependent in spring and did not exhibit the reversal in 
summer. 

The reversal in temperature dependency of GPP from spring to 
summer suggests 1) there was a shift from temperature limitation to 
moisture limitation of photosynthesis, as higher temperature led to 
increased evaporative demand (higher VPD) and stomatal closure; and/ 
or 2) summer Tair (9.4 – 16.4◦C) exceeded the photosynthetic temper-
ature optima in these species (~10◦C, Huxman et al., 2003). In support 
of the former, we found that VPD strongly influenced the light response 

Fig. 3. Plotted lines are generalized additive model (GAM) fits with 95% confidence intervals. Each seasons’ data is plotted in three temperature categories after 
splitting the range of temperature for that season into equal-sample-size thirds, with the coldest shown in green, mid-range in red, and warmest in blue. For the 
lowest temperature group in fall for SIFred, insufficient data were available to produce a GAM fit, so the data are shown directly. 
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of GPP in summer, with lower light-saturated GPP under increased 
evaporative demand (Fig. S3), and this corresponded with a VPD 
dependence on the light response of canopy conductance (Fig S4). This 
provides evidence that SIF may be less sensitive to temperature, 

evaporative demand and associated stomatal closure than GPP. In 
contrast with our results, Kim et al. (2020) found that the slope of the 
SIF-APAR relationship increased gradually with air temperature, while 
the slope of the GPP-APAR relationship did not change. The discrepancy 

Fig. 4. Results from artificial neural network (ANN) analysis of potential environmental drivers of GPP and SIFred. Dark bars represent the ANN performance run 
with each variable as a single input to the ANN. Light bars represent the ANN performance run with the top performing variable (PPFD in all cases except winter and 
fall GPP) plus one additional input variable. White and black asterisks represent the top performing primary and secondary input(s), respectively, after a Fisher r-to-z 
transformation. Solid black horizontal line indicates performance with the best primary driver, and light bars extension beyond this indicates improvement to the 
model upon addition of secondary input. Dashed horizontal line indicates benchmark performance of the model. 
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between these two studies is likely a result of their focus on autumn only, 
compared with our four-season analysis, or may be due to differences in 
leaf-temperature photosynthetic optima between sites. In agreement 
with our findings, Kolari et al. (2014) showed that the light reactions of 
photosynthesis (related to both SIF and GPP) were more sensitive to 
light but insensitive to air temperature compared to the enzymatic 
carbon reactions (related to GPP only). 

Environmental controls on GPP and SIFred 

It is well established that light is a dominant control of both SIF and 
GPP, and we have shown that there are fundamental differences in the 
light responses of SIFred and GPP throughout the year (Fig. 2). However, 
biological processes respond to the complex interactions between 
environmental controls (Reich et al., 2018; Wang et al., 2014). There-
fore, we also asked when and how SIFred and GPP differ in their sensi-
tivity to other important environmental factors. By constructing ANNs 
with half-hourly data for each seasonal period, we investigated how 
their sub-daily responses to a suite of environmental drivers changed 
seasonally. Our results show the conditions under which we may not 
expect a uniform response of SIF and GPP. 

The variability of GPP and SIFred that is attributable to environ-
mental drivers is shown in Fig. 4. There were notable differences in the 
responses of GPP and SIFred to these drivers, and the patterns were 
different in each season. While PPFD was an important driver in spring, 
summer, and fall as expected, the amount of variability explained by 
PPFD alone changed in relation to the other drivers differently across 
seasons. The benchmark r2 values (from an ANN with all drivers) 
showed that the combined candidate drivers explained 75%, 77%, 84% 
of the total variance in GPP in fall, summer, spring, respectively and 
81%, 74%, 60% for those seasons in SIFred (dashed lines in Fig. 4). The 
total explainable variability was highest for GPP but markedly lower for 
SIFred in spring. 

In the spring, no driver was considered as primary for GPP (PPFD, 
VWC, SWE, and SIFred were tied after a Fisher r-z transformation), while 
there was a strong secondary influence of VWC and SWE when PPFD was 
used as the primary driver (Fig. 4). On the other hand, PPFD, Tair, and 
VPD tied for primary driver of SIFred in spring, while there was no sta-
tistically best secondary driver. Therefore, water availability (VWC, 
SWE) in spring was an important secondary influence on GPP that was 
absent for SIFred. This is in agreement with previous work at Niwot Ridge 
that has identified the timing of spring snowmelt as a primary control on 
early season GPP (Hu et al., 2010; Huxman et al., 2003; Monson et al., 
2005, 2002; Albert et al., 2017). Additionally, the stronger role of Tsoil 
over Tair was apparent for GPP but not SIFred, suggesting SIF may not 
capture photosynthetic limitation by cold soils in spring (Ensminger 
et al., 2008). 

As the forest emerged from snowmelt in summer, there was a tran-
sition in secondary control of GPP from soil moisture (spring) to Tair and 
VPD (summer). The important secondary role of VPD alongside Tair 
suggests that the light response of GPP was mediated by stomatal 
response to increased evaporative demand associated with high tem-
perature, rather than photosynthetic temperature optima alone. These 
patterns were not evident in the SIFred observations. Summer SIFred was 
also controlled primarily by PPFD, with PRI appearing as a candidate for 
primary driver. During fall, PPFD and Tsoil were important drivers of 
GPP, while fall SIFred was controlled similarly as in summer: by PPFD, 
PRI, and temperature. Since PRI was as important a driver of SIFred in 
summer and fall as PPFD, this suggests that 1) SIFred may have been 
responding to changes in xanthophyll pigments, 2) the instrument 
footprints of SIFred and PRI were better matched than the other drivers, 
or 3) both SIFred and PRI are subject to the same illumination geometry 
effects. PPFD remained an important explanatory variable of SIFred in 
winter, while there was no GPP in winter. Slight differences in the results 
of the ANN when GPP was partitioned using the daytime method (Las-
slop et al., 2010) are discussed in the supplement (Fig. S5). 

We also found that the addition of SIFred as a secondary input to GPP 
alongside light did not provide notable model improvement, implying 
that SIFred did not contribute much additional information beyond light 
by itself with respect to explaining GPP variation. On the other hand, the 
addition of PRI as a secondary input to PPFD resulted in a large per-
formance improvement for predicting GPP in spring, performing even 
better than temperature. This difference in secondary driver importance 
between SIFred and PRI was, however, limited to the spring season, 
perhaps because SIFred and PRI co-varied to a greater degree in fall. This 
suggests that while SIFred does not provide much additional information 
that is not already contained in light, PRI as a representation of the 
xanthophyll cycle or seasonal pigment pool shifts may provide impor-
tant information regarding spring upregulation of photosynthesis 
(Wong et al., 2019; Wong and Gamon, 2015b). 

Lastly, we found that precipitation had little to no importance for 
either GPP or SIFred in any season, and therefore is not shown in Fig. 4 or 
6. This was likely due to the decoupled timing of precipitation (mainly 
winter) and GPP (mainly summer)—reflected in the dominance of VWC 
and SWE during spring. It has been demonstrated that snowmelt is an 
important source of water throughout the growing season and buffers 
the forest from moisture variation during summer (Hu et al., 2010). It 
also is possible that response to warm-season precipitation lags after the 
rain event by more than twelve hours, in which case our ANN analysis 
would not detect the effects because it focused on simultaneous half 
hour time steps of climate variables, SIFred, and GPP. Indeed, it has been 
shown that PRI exhibited a 2-3 day lag response to transpiration 
following monsoon precipitation pulse events in a montane conifer 
forest (J.C. Yang et al., 2020). This is not to say that precipitation is not 
an important environmental control (i.e. interannually), rather, the lack 
of importance likely reflects the temporal resolution (half-hourly) and 
duration (annual) of this study. 

Because temperature affects not only enzyme kinetics, but also the 
physical phase of water, temperature and moisture effects appear 
intertwined in their seasonal influences on productivity, revealed both 
by our results as well as a previous ANN analysis performed at this site 
with daytime and nighttime daily averaged net ecosystem productivity 
(NEP) (Albert et al., 2017). To further assess the degree to which SIFred 
responded to these ecohydrological controls on productivity, we 
compared the sensitivities of SIFred and GPP to canopy conductance to 
water vapor (Fig. 5). Because snow sublimation represents significant 
flux of water vapor in this forest (Molotch et al., 2007) it can strongly 
impact canopy conductance calculations, so we limit our discussion of 
canopy conductance to the summer (snow-free) season only. We found 
that SIFred was unrelated to canopy conductance (R2 = .04), whereas 
GPP had a nonlinear relationship (R2 = .44). In contrast with these re-
sults, Shan et al. (2019) found significant correlation between canopy 
conductance and SIF across time scales in a deciduous forest, cropland, 
and savanna. These differences demonstrate the importance of consid-
ering contrasting environmental conditions and plant functional types. 
Notable differences include that 1) seasonal changes in canopy 
conductance are controlled by variation in stomatal opening in ever-
green forests, but not leaf area (as in deciduous forests), and that 2) our 
study forest was under water deficit in the year 2018 and therefore 
stomatal closure may have significantly altered the SIF-conductance 
relationship. These results combined with the findings from the ANN 
analysis strongly suggest that SIF is less sensitive to stomatal control 
than is GPP, in agreement with a new body of work (Cochavi et al., 2021; 
He et al., 2020b; Helm et al., 2020; Marrs et al., 2020). On a global scale 
Chen et al. (2021) found that the SIF-GPP relationship varied along a 
latitudinal gradient of moisture availability, further highlighting the 
need to understand how the SIF-GPP relationship is mediated by sto-
matal control. 

Partial derivative sensitivities 

We examined the normalized partial derivative (PaD) sensitivities of 
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GPP to environmental conditions as well as to SIFred and PRI (Fig. 6). 
Rather than ranking correlation coefficients as above, the PaD charac-
terizes the change in the GPP functional response (magnitude and di-
rection) with respect to changes in each input driver (Moffat et al., 
2010). A large PaD sensitivity results from a large GPP response to a unit 
change in that driver, while the sign indicates if the response was 
increasing or decreasing. GPP had a strong sensitivity to VWC and SWE 
in spring. Compared to the positive Tair sensitivity in spring, in summer 
there was a negative sensitivity to VPD and partially negative sensitivity 
to Tair. These results reflect the spring to summer temperature pattern 
reversal in Fig. 3. In fall, GPP was highly responsive to warm, wet 
conditions. We found that the sensitivity of GPP to SIFred was much 
weaker than to light, and was strongest in summer. These patterns 
suggest that SIFred may be a sensitivity proxy for GPP in summer, but less 
so in spring or fall when GPP response to environmental conditions is 
highly dynamic and less sensitive to PPFD alone. Interestingly, while 
GPP sensitivity to SIFred was quite weak in fall, GPP sensitivity to PRI 
was increased. This suggests that in fall GPP responds strongly to the 
combined effects of changes in the xanthophyll cycle and weather, and 
pigment-based indices such as PRI and CCI may be important for char-
acterization of the fall transition period, in agreement with Kim et al. 
(2021). Further, a recent study at this site determined that the 530 nm 
spectral feature corresponding to changes in carotenoid content was 
important for tracking seasonality of LUE, and that SIF did not perform 
better than hyperspectral reflectance at tracking GPP phenology (Cheng 
et al., 2020). 

Implications for the relationship between SIF and GPP 

Our results show 1) there was in increase in SIFred prior to the onset 
of spring GPP due to differences in their light responses, and that 2) 
SIFred was less sensitive than GPP to seasonally dynamic temperature 
and soil and atmospheric moisture constraints. These results have 
important implications for the application of SIF in phenological studies. 
Monson et al. (2005) suggested that the winter to spring transition in 
this forest progresses from 1) PSII recovery initiated by warm Tair, 2) 
hydraulic system recovery, and 3) carbon reaction recovery. Under such 
a scenario, we would indeed expect to see an increase in SIF coincident 
with recovery of PSII prior to onset of GPP. Bowling et al. (2018) found 
that hydraulic system recovery was an important control for GPP re-
covery at Niwot Ridge, in agreement with the results of our ANN. In the 
present study SIFred was mainly controlled by light and was less sensitive 
to temperature and moisture constraints in spring. These results suggest 
that SIF dynamics may be decoupled from hydraulic recovery, and 
support the idea that recovery of PSII occurs prior to both hydraulic and 
carbon reaction recovery. This contrasts with results from a boreal forest 
which found that increases in spring relative SIFred corresponded with 
the timing of stem rehydration (Pierrat et al., 2021), which may reflect 
differences between mid and high latitude ecohydrology. 

We highlight a couple of uncertainties that are important to consider 
when interpreting these results. First, the emission of fluorescence from 
PSII is a physiological process, however its measurement is affected by 
radiative transfer within the vegetation canopy. Because the wavelength 
region of SIFred emission overlaps with the chlorophyll absorption 
spectrum, SIFred is more sensitive to radiative transfer processes than is 
SIFfar-red (Porcar-Castell et al., 2014), and variation in the SIFred/SIF-
far-red ratio is caused by changes in chlorophyll content (Gitelson et al., 
1998). However, Magney et al. (2019) used pigment data to show that 
chlorophyll concentration did not change across seasons at this site, so 
there was no discernable difference between SIFred and SIFfar-red for 
tracking GPP. They showed that SIFred and SIFfar-red scale linearly across 
the seasons on hourly-weekly timescales, and that SIFfar-red is closely 
related to leaf level physiology at this forest (Magney et al., 2019). A 
complete understanding of how SIFred measurements reflect physiolog-
ical processes requires leaf-level observations, and future studies should 
examine the impact of reabsorption within the vegetation canopy 
carefully (Liu et al., 2020). A second source of uncertainty results from 
the unavoidable footprint mismatch between EC flux measurements and 
tower-based proximal remote sensing (Gamon, 2015). The difference in 
light response between GPP and SIFred during the spring onset could 
reflect individual or species level variation in physiology, which may be 
exacerbated by the smaller radiometric footprint. 

Global terrestrial biosphere models commonly predict spring onset of 
GPP in evergreen ecosystems as too early (Richardson et al., 2012; Anav 
et al., 2015; Parazoo et al., 2018), and this may be due to model over-
sensitivity to Tair. We found that that Tair influenced GPP primarily after 
the snowmelt period, supporting this idea. This oversensitivity may be 
exacerbated rather than ameliorated by the use of SIF to estimate GPP. 
Recent studies have pointed to the importance of accounting for soil 
moisture limitation in GPP products (Stocker et al., 2018) and high-
lighted the role of soil moisture in driving the interannual variability of 
global GPP (Li and Xiao, 2020). Thus, the elevated importance of spring 
soil moisture compared to temperature, and the discrepancy in the 
sensitivity of SIFred to soil moisture, represent an important challenge 
for the use of SIF to predict spring onset of photosynthesis and 
moisture-related GPP constraints. Based on the results of our ANN 
ensemble analysis, we hypothesize that only after full hydraulic recov-
ery and release from stomatal limitation in spring does APAR take on a 
dominant role in driving a linear (moderate light) or nonlinear (high 
light) SIF-GPP relationship. 

Fig. 5. The relationship between canopy conductance and a) SIFred, and b) GPP 
in summer. Colored points represent data from the same VPD bins shown in 
Fig. S3, which divide the range of VPD for that season into equal thirds, with 
the lowest evaporative demand shown in green, mid-range in red, and highest 
in blue. Fit lines are 2nd order polynomials. 
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Conclusion 

In this study we used one year of continuous tower-based SIFred and 
eddy covariance-derived GPP to examine when and how SIFred and GPP 
differ in their responses to light. First, we asked when are there funda-
mental differences in the light responses of SIFred and GPP? We found 
that SIFred responded to light earlier in the year than the onset of GPP 
following winter dormancy. Second, we asked when and how do SIFred 
and GPP differ in their response to environmental controls? An ANN 
ensemble analyses showed that the relative importance of environ-
mental drivers for determining GPP and SIFred changed seasonally, and 
GPP sensitivity to environmental constraints was more dynamic 
throughout the year than was the SIFred sensitivity. Notably, we found 
that the variability in GPP explained by light changed in relation to 
temperature and moisture from spring to summer, while SIFred was less 
affected by secondary drivers, particularly in spring. In agreement, we 
also found that SIFred was not correlated with canopy conductance in 
summer. These results provide evidence that SIF emission is less sensi-
tive to stomatal control of carbon and water fluxes than is GPP, and 
photosystems begin to activate in preparation for the growing season 
prior to when water becomes available for photosynthesis. These find-
ings represent a challenge for the use of SIF to predict the start of the 
photosynthetic season in conifer forests. 

Data Availability 

Data from the PhotoSpec instrument are available from the data 
repository hosted at the California Institute of Technology: https://data. 
caltech.edu/records/1231 (Magney et al., Canopy and needle scale 
fluorescence data from Niwot Ridge, Colorado 2017-2018 (Version 1.0). 
CaltechDATA. https://doi.org/10.22002/d1.1231). Eddy covariance 

data from US-NR1 is available from Ameriflux at: https://ameriflux.lbl. 
gov/. 

Supplement 

Daytime Partitioned GPP: There were differences in the results of the 
ANNs based on the choice of NEE partitioning method. An equivalent 
version of Fig. 4 but with GPP determined from the daytime partitioning 
method (Lasslop et al., 2010) is shown in Fig. S5. The daytime parti-
tioning method results in a modeling artifact at this site in which there 
are non-zero values of GPP during wintertime. This artifact had a large 
effect on the wintertime ANN results (Fig. S5), that should not be treated 
as ecologically meaningful. In agreement with ANNs trained on night-
time partitioned GPP, a combination of PPFD and SWE had the best 
explanatory power in spring, and PPFD was still the dominant driver in 
summer. In fall however, the daytime partitioning method data indi-
cated a combination of PPFD with VWC to be more important than with 
Tsoil. The benchmark explanatory power of the network was markedly 
higher when trained on daytime partitioned GPP (>95% in spring and 
fall). Though both the nighttime and daytime partitioning methods 
produce a modeled GPP product, the daytime method uses light 
response curves to model GPP directly, potentially inflating its correla-
tion to light. Therefore we emphasize that care should be taken to 
consider how GPP values are derived when performing any analysis, but 
in particular when training ANN with GPP. 
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Gamon, J.A., Peñuelas, J., Field, C.B., 1992. A narrow-waveband spectral index that 
tracks diurnal changes in photosynthetic efficiency. Remote Sensing of Environment 
41, 35–44. https://doi.org/10.1016/0034-4257(92)90059-S. 

Gamon John, A., Field Christopher, B., Goulden Michael, L., Griffin Kevin, L., Hartley 
Anne, E., Geeske, Joel, Josep, Penuelas, Riccardo, Valentini, 1995. Relationships 
Between NDVI, Canopy Structure, and Photosynthesis in Three Californian 
Vegetation Types. Ecological Applications 5, 28–41. https://doi.org/10.2307/ 
1942049. 

Gevrey, M., Dimopoulos, I., Lek, S., 2003. Review and comparison of methods to study 
the contribution of variables in artificial neural network models. Ecological 
Modelling, Modelling the structure of acquatic communities: concepts, methods and 
problems 160, 249–264. https://doi.org/10.1016/S0304-3800(02)00257-0. 

J.C. Yang et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/j.agrformet.2022.108904
https://doi.org/10.1029/2005GL024419
https://doi.org/10.1007/s00442-017-3853-0
https://doi.org/10.1007/s00442-017-3853-0
https://doi.org/10.1002/2015RG000483
https://doi.org/10.1002/2015RG000483
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0004
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0005
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0005
https://doi.org/10.1126/science.1184984
https://doi.org/10.1016/j.jag.2020.102069
https://doi.org/10.1016/j.jag.2020.102069
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0008
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0008
https://doi.org/10.1007/978-3-642-79354-7_2
https://doi.org/10.1007/978-3-642-79354-7_2
https://doi.org/10.1029/97JD00193
https://doi.org/10.1029/97JD00193
https://doi.org/10.1016/j.agrformet.2018.01.025
https://doi.org/10.5194/bg-12-7349-2015
https://doi.org/10.5194/bg-12-7349-2015
https://doi.org/10.1016/j.agrformet.2019.06.002
https://doi.org/10.1111/gcb.15373
https://doi.org/10.5194/bg-17-4523-2020
https://doi.org/10.5194/bg-17-4523-2020
https://doi.org/10.1111/nph.17247
https://doi.org/10.1016/j.rse.2020.111733
https://doi.org/10.1016/j.rse.2020.111733
https://doi.org/10.1111/j.1469-8137.2006.01835.x
https://doi.org/10.1007/s11120-012-9761-6
https://doi.org/10.1111/j.1469-8137.2007.02273.x
https://doi.org/10.1111/j.1469-8137.2007.02273.x
https://doi.org/10.1111/j.1365-2486.2004.00781.x
https://doi.org/10.1111/nph.13186
https://doi.org/10.1016/0034-4257(94)00066-V
https://doi.org/10.1016/0034-4257(94)00066-V
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0025
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0025
https://doi.org/10.1034/j.1399-3054.2002.1140209.x
https://doi.org/10.1034/j.1399-3054.2002.1140209.x
https://doi.org/10.1029/2010GL045896
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1029/2011GL048738
https://doi.org/10.1016/j.rse.2014.02.007
https://doi.org/10.1016/j.rse.2014.02.007
https://doi.org/10.1093/jxb/erv427
https://doi.org/10.5194/bg-12-4509-2015
https://doi.org/10.1073/pnas.1606162113
https://doi.org/10.1073/pnas.1606162113
https://doi.org/10.1016/0034-4257(92)90059-S
https://doi.org/10.2307/1942049
https://doi.org/10.2307/1942049
https://doi.org/10.1016/S0304-3800(02)00257-0


Agricultural and Forest Meteorology 317 (2022) 108904

13

Gitelson, A.A., Buschmann, C., Lichtenthaler, H.K., 1998. Leaf chlorophyll fluorescence 
corrected for re-absorption by means of absorption and reflectance measurements. 
Journal of plant physiology 152 (2-3), 283–296. https://doi.org/10.1016/S0176- 
1617(98)80143-0. 

Gitelson, A.A., Gamon, J.A., 2015. The need for a common basis for defining light-use 
efficiency: Implications for productivity estimation. Remote Sens. Environ. 156, 
196–201. https://doi.org/10.1016/j.rse.2014.09.017. 

Goulden, M.L., Anderson, R.G., Bales, R.C., Kelly, A.E., Meadows, M., Winston, G.C., 
2012. Evapotranspiration along an elevation gradient in California’s Sierra Nevada. 
Journal of Geophysical Research G: Biogeosciences 117. 

Goward, S.N., Huemmrich, K.F., 1992. VEGETATION CANOPY PAR ABSORPTANCE 
AND THE NORMALIZED DIFFERENCE VEGETATION INDEX - AN ASSESSMENT 
USING THE SAIL MODEL. Remote Sens. Environ. 39, 119–140. https://doi.org/ 
10.1016/0034-4257(92)90131-3. 

Grossmann, K., Frankenberg, C., Magney, T.S., Hurlock, S.C., Seibt, U., Stutz, J., 2018. 
PhotoSpec: A new instrument to measure spatially distributed red and far-red Solar- 
Induced Chlorophyll Fluorescence. Remote Sensing of Environment 216, 311–327. 
https://doi.org/10.1016/j.rse.2018.07.002. 

Gu, L., Han, J., Wood, J.D., Chang, C.Y.-Y., Sun, Y., 2019. Sun-induced Chl fluorescence 
and its importance for biophysical modeling of photosynthesis based on light 
reactions. New Phytologist 223, 1179–1191. https://doi.org/10.1111/nph.15796. 

Guanter, L., Frankenberg, C., Dudhia, A., Lewis, P.E., Gómez-Dans, J., Kuze, A., Suto, H., 
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Ottander, C., Campbell, D., Öquist, G., 1995. Seasonal changes in photosystem II 
organisation and pigment composition in Pinus sylvestris. Planta 197, 176–183. 
https://doi.org/10.1007/BF00239954. 

Papale, D., Valentini, R., 2003. A new assessment of European forests carbon exchanges 
by eddy fluxes and artificial neural network spatialization. Global Change Biology 9, 
525–535. 

J.C. Yang et al.                                                                                                                                                                                                                                  

https://doi.org/10.1016/S0176-1617(98)80143-0
https://doi.org/10.1016/S0176-1617(98)80143-0
https://doi.org/10.1016/j.rse.2014.09.017
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0039
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0039
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0039
https://doi.org/10.1016/0034-4257(92)90131-3
https://doi.org/10.1016/0034-4257(92)90131-3
https://doi.org/10.1016/j.rse.2018.07.002
https://doi.org/10.1111/nph.15796
https://doi.org/10.1016/j.rse.2012.02.006
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1073/pnas.1320008111
https://doi.org/10.1029/2020GL087474
https://doi.org/10.1029/2020GL087474
https://doi.org/10.1029/2018JG005002
https://doi.org/10.1002/eap.2101
https://doi.org/10.1016/j.rse.2008.03.015
https://doi.org/10.1016/j.rse.2008.03.015
https://doi.org/10.1016/j.scitotenv.2007.11.007
https://doi.org/10.1016/j.scitotenv.2007.11.007
https://doi.org/10.1111/j.1365-2486.2009.01967.x
https://doi.org/10.1007/s00442-002-1131-1
https://doi.org/10.1016/j.rse.2016.11.021
https://doi.org/10.5194/bg-8-637-2011
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0055
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0055
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0055
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0055
https://doi.org/10.1016/j.rse.2021.112362
https://doi.org/10.1080/17550874.2014.904950
https://doi.org/10.1080/17550874.2014.904950
https://doi.org/10.1111/gcb.15335
https://doi.org/10.1111/gcb.15335
https://doi.org/10.3389/fpls.2014.00717
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0060
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0060
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0060
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0060
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0061
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0061
https://doi.org/10.1016/j.agrformet.2020.108018
https://doi.org/10.1111/gcb.14297
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0064
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0064
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0064
https://doi.org/10.1029/2020GL091098
https://doi.org/10.1073/pnas.1900278116
https://doi.org/10.1029/2020GL087956
https://doi.org/10.1029/2020GL087956
https://doi.org/10.1002/2013WR014452
https://doi.org/10.1002/2013WR014452
https://doi.org/10.1093/jexbot/51.345.659
https://doi.org/10.1002/2017JG004180
https://doi.org/10.1111/j.1365-2486.2010.02171.x
https://doi.org/10.1111/j.1365-2486.2010.02171.x
https://doi.org/10.1016/j.rse.2019.04.030
https://doi.org/10.1016/j.rse.2019.04.030
https://doi.org/10.1002/hyp.6719
https://doi.org/10.1002/hyp.6719
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0075
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0075
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0075
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0075
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0075
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0076
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0076
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0076
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0077
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0077
https://doi.org/10.2307/2401901
https://doi.org/10.1016/0034-4257(94)90016-7
https://doi.org/10.1016/0034-4257(94)90016-7
https://doi.org/10.1086/587826
https://doi.org/10.1086/587826
https://doi.org/10.1007/BF00239954
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0083
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0083
http://refhub.elsevier.com/S0168-1923(22)00097-1/sbref0083


Agricultural and Forest Meteorology 317 (2022) 108904

14

Parazoo, N.C., Arneth, A., Pugh, T.A.M., Smith, B., Steiner, N., Luus, K., Commane, R., 
Benmergui, J., Stofferahn, E., Liu, J., Rödenbeck, C., Kawa, R., Euskirchen, E., 
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2018. Quantifying soil moisture impacts on light use efficiency across biomes. New 
Phytologist 218, 1430–1449. https://doi.org/10.1111/nph.15123. 

Sun, Y., Frankenberg, C., Jung, M., Joiner, J., Guanter, L., Köhler, P., Magney, T., 2018. 
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