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A B S T R A C T   

Seasonal snow cover is important in shaping ecosystem carbon uptake across many regions of the world, however 
forest responses to projected declines in snowpack remain uncertain. We studied the response of forest gross 
primary productivity (GPP) during the photosynthetically active season to interannual and spatial variability in 
snow water equivalent (SWE), timing of snowmelt, and length of the active season. We combined carbon flux and 
weather data from 14 temperate deciduous and evergreen forests in the US and southeast Canada with SWE and 
precipitation from the Snow Data Assimilation System to test these hypotheses: 1) earlier snowmelt leads to a 
longer active season; 2) a longer active season is associated with higher total GPP, and 3) GPP during the active 
season is dependent on peak SWE and timing of snowmelt the previous winter. 

Regression and correlation analyses did not reveal meaningful environmental predictors of interannual vari-
ability in GPP, so linear mixed effects models were used to analyze broader scale spatiotemporal patterns. We 
found that active season length was negatively correlated with total active season GPP in forests with drier 
summers on average (based on mean annual summer climatic water deficit), but positively correlated in areas 
with typically wetter summers. The magnitude of these effects decreased at forests with a higher percentage of 
annual precipitation falling as snow. Our results showed that the capacity for plants to gain more carbon during a 
longer active season appears to be dependent on soil water status determined by long-term climate, rather than 
interannual fluctuations in weather. We found no evidence that the magnitude of total snowfall or peak SWE had 
a legacy effect on subsequent active season GPP. Finally, we highlight that there was large interannual variability 
both within and between sites that was not well explained by seasonal climate or phenology.   
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Abbreviations and definitions  

AIC Akaike information criterion 
C carbon 
CWD climatic water deficit (mm) 
DBF deciduous broadleaf forest 
DoY day of year (1–366) 
ENF evergreen needleleaf forest 
GPP gross primary productivity (μmol m− 2 s− 1) 
GPP1800 whole-forest photosynthetic capacity (GPP at high light) based 

on light response of NEE (μmol m− 2 s− 1) 
MAT mean annual temperature (◦C) 
MAP mean annual precipitation (mm) 
NEE net ecosystem exchange of CO2 (μmol m− 2 s− 1) 
PAR photosynthetically active radiation (μmol m− 2 s− 1) 
R2 coefficient of determination 
RMSE root mean square error (units vary) 
SWE snow water equivalent (mm) 
Tair air temperature (◦C) 
VWC volumetric water content (m3 m− 3)    

seasonal metrics and time periods: 
SOS start of GPP season, the DoY in spring when GPP1800 first reaches 

10% of summer capacity (DoY) 
EOS end of GPP season, the DoY in autumn when GPP1800 last reaches 

10% of summer capacity (DoY) 
AS active season for GPP, the period between SOS and EOS, inclusive 
AS length length of active season for GPP - the number of days between SOS 

and EOS, inclusive 
spring ramp the period between SOS and 90% date in spring (the DoY when 

GPP1800 first reaches 90% of summer capacity) 
autumn ramp the period between the 90% date in autumn (the DoY when 

GPP1800 first reaches 90% of summer capacity) and EOS 
summer the period between 90% dates in spring and autumn, when forest 

is at peak photosynthetic capacity    

cumulative GPP during each season: 
ΣGPPAS sum of GPP during active season (g C m− 2) 
ΣGPPspring sum of GPP during spring ramp (g C m− 2) 
ΣGPPsummer sum of GPP during summer (g C m− 2) 
ΣGPPautumn sum of GPP during autumn ramp (g C m− 2)    

SNODAS data products: 
SNODAS U.S. National Weather Service Snow Data Assimilation Program 
SAG the DoY when snow has fully disappeared (Snow All Gone, DoY) 
peak SWE annual maximum SWE (mm) 
day of peak SWE timing of annual maximum SWE (DoY) 
length of 

snowmelt 
difference between DoY of annual maximum SWE and SAG 
(number of days) 

PRLQ amount of liquid precipitation (rain, mm) 
PRSL amount of solid precipitation (snow, mm) 
solid fraction fraction of total annual precipitation falling as snow (%)  

1. Introduction 

A complete understanding of how the terrestrial carbon (C) cycle 
responds to variability in environmental conditions is necessary for 
making accurate projections of the global C budget under future climate 
scenarios (Friedlingstein et al., 2022). Forecasting long-term C exchange 
of terrestrial ecosystems depends on understanding the environmental, 
biological, and biophysical controls of gross primary productivity (GPP), 
ecosystem respiration, and their balance (net ecosystem exchange of 
CO2, NEE) across seasonal and interannual timescales. This is a serious 
challenge, as the environmental controls of these fluxes are complex, 
and vary on a region-by-region or even case-by-case basis more often 
than universal relationships are found across ecological space (Baldoc-
chi et al., 2018). In this study our focus is on GPP. 

Across boreal and temperate evergreen and deciduous forests, con-
trols of seasonal and interannual C exchange include phenological 
variability associated with the start of photosynthesis in spring 
(Richardson et al., 2009), fall senescence (Jeong et al., 2011; C. Wu 
et al., 2012a), or both (Desai et al., 2022; Goulden et al., 1996; Keenan 
and Richardson, 2015), environmental variability including seasonal 

temperature (Arain et al., 2022, 2002; Suni et al., 2003; Tanja et al., 
2003), moisture (Goldstein et al., 2000; Thomas et al., 2009), light 
(Froelich et al., 2015), and disturbance (Aubinet et al., 2018; Finzi et al., 
2020). In general, while carbon fluxes respond in sync with the envi-
ronment on hourly to monthly time scales, the sensitivity of carbon 
fluxes to variation in weather progressively declines or becomes more 
difficult to detect seasonally and interannually (Richardson et al., 2007; 
Stoy et al., 2009; J. Wu et al., 2012), except in the case of extreme 
weather events (Zscheischler et al., 2014). It has been shown that less 
than half of interannual variability in NEE can be attributed to climatic 
factors, while the majority is due to variation in biological processes 
(Richardson et al., 2007; Shao et al., 2015). These considerations, 
combined with the effort and expense required to obtain multidecadal 
records, make understanding climatic influence on interannual C ex-
change challenging. 

An important feature of ongoing climate change is reduced snow 
accumulation and related effects on water availability for plants. In 
western North America, snowpack reduction and earlier snowmelt are 
well documented (Hale et al., 2023; Mote et al., 2018; Siirila-Woodburn 
et al., 2021), and their decline is projected to continue (Barnett et al., 
2005; Dierauer et al., 2019). Further, the amount of snow that melts 
intermittently during winter is increasing (Musselman et al., 2021). 
Continued reductions in snow may lead to longer seasons for photo-
synthesis. Here we refer to the photosynthetic period as the “active 
season” (defined formally in Section 2.3) and avoid the term “growing 
season”, which is vague at best when considering the complexities of 
plant C allocation (Körner et al., 2023). Reduction in snow may also lead 
to drier soils and increased fire risk (Westerling, 2016). A recent study 
predicted that the number of snow-free days will increase from ~175 to 
~250 by the end of the century in the central and northern Rocky 
Mountain region (Wieder et al., 2022), and warming and earlier spring 
snowmelt may extend the length of the active season. In many regions, 
snowmelt is a first order determinant of water availability (Barnett et al., 
2005), and is particularly important for soil water infiltration and 
recharge of deep soil and groundwater (Jasechko et al., 2014). The 
timing of snowmelt tends to match the timing of peak soil water avail-
ability (Harpold and Molotch, 2015), which is important for transpira-
tion (Cooper et al., 2020). Water from the winter snowpack may be used 
by plants well into the active season (Bailey et al., 2023; Goldsmith 
et al., 2022; Hu et al., 2010). Thus, the coupling of snowmelt and soil 
moisture is potentially important for interannual variability in C uptake 
and ecohydrological response to climate change. 

Two alternate and competing ecological impacts of reduced snow 
amount and earlier melt have been proposed: the growth period effect and 
the moisture effect (Wang et al., 2018). A number of studies have 
investigated the implications of the growth period effect, which is defined 
as increased active season length due to earlier melt, and hence a longer 
period for growth. Some have reported increased C uptake with longer 
active seasons in temperate deciduous broadleaf forests (DBF, Goulden 
et al., 1996; Keenan et al., 2014; Richardson et al., 2009), as well as 
boreal DBF and evergreen needleleaf forests (ENF, Barr et al., 2002; 
Chen et al., 1999; Churkina et al., 2005). In DBF the potential for C 
uptake is constrained by new leaf emergence, therefore earlier start of 
the active season can increase the time the forest can function at 
maximum leaf-area. If soils are cold in the period after snowmelt, de-
ciduous leaf emergence can be delayed (Desai et al., 2022), but warm 
soils during this period can offset potential C uptake benefits (Sander-
s-DeMott et al., 2020). In ENF, there is minimal seasonal change in leaf 
area, and instead photosynthetic function is subject to various envi-
ronmental and biochemical constraints such as temperature and mois-
ture availability, photoprotection, and photosynthetic downregulation, 
particularly in winter (Bowling et al., 2018; Chang et al., 2021; Monson 
et al., 2005; Verhoeven, 2014; Wolf et al., 2016). Therefore, in ENF, the 
ability to capitalize on earlier spring onset depends on whether addi-
tional constraints to photosynthesis are relieved. 

While a longer active season can enhance GPP, increased spring or 
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summer water stress due to reduced snow accumulation and/or earlier 
melt (the moisture effect) can outweigh the potential gains in GPP. A case 
study at a high-elevation subalpine forest near Niwot Ridge, Colorado 
(US-NR1) showed that earlier snowmelt leads to longer active seasons, 
but those years had decreased GPP due to late season soil moisture 
limitation (Hu et al., 2010). A more recent study at Niwot Ridge and 
other sites indicated that, in contrast to Hu et al. (2010), the interannual 
variability in net carbon exchange was not strongly related to active 
season length (Barnard et al., 2018). Stable isotope analyses have shown 
that in some regions, the water used by trees even late into the growing 
season originates primarily from soil moisture derived from snow melt 
(Allen et al., 2019; Berkelhammer et al., 2020; Hu et al., 2010; Martin 
et al., 2018; Phillips and Ehleringer, 1995). There is a growing consensus 
that increases in temperature and decreases in moisture associated with 
longer active seasons (the moisture effect) may decrease forest carbon 
sequestration (Knowles et al., 2018; Trujillo et al., 2012; Winchell et al., 
2016). 

While the moisture effect (also referred to as the seasonal compensation 
effect, Buermann et al., 2018) appears important in water-limited, 
snow-dominated ecosystems, such as the Rocky Mountains, water lim-
itation is becoming increasingly characteristic of historically 
energy-limited temperate and boreal forests (Buermann et al., 2014; 
Butterfield et al., 2020; Denissen et al., 2022; Girardin et al., 2016; Peng 
et al., 2011). Terrestrial carbon cycle models overpredict the beneficial 
growth period effect and underpredict the adverse moisture effect that 
follows warmer springs (Buermann et al., 2018). Over the Northern 
Hemisphere, the strength and direction of the relationship between 
remotely-sensed snow and vegetation greenness is highly variable, and 
dependent on the relative dominance of the moisture and growth period 
effects (Wang et al., 2018). Additional remote sensing studies similarly 
show that the response of vegetation to changing snowpack is variable in 
magnitude and direction, and also spatially (Buermann et al., 2018; 
Xiong et al., 2019). Which of these controls dominates at any given site 
may be a function of ecosystem type, average moisture conditions, the 
legacy effect of snowmelt on summer soil moisture, seasonality of pre-
cipitation, and/or the degree of water limitation of vegetation. 

Investigations of the impact of changes in snowpack on interannual 
carbon dynamics are unfortunately hampered by a lack of observations 
of snowpack characteristics at most flux towers. The water contained in 
the snowpack, referred to as snow water equivalent (SWE), is ecologi-
cally quite important. Combinations of ground-based observations that 
include SWE with remote sensing have led to progress in understanding 
interannual variation of forest greening (Knowles et al., 2017; Trujillo 
et al., 2012), but long-term SWE records co-located at eddy covariance 
flux tower sites are rare. Passive microwave remote sensing is quite 
helpful for estimating SWE (Kelly et al., 2003; Pulliainen et al., 2017), 
but at present has coarse spatial resolution, and accuracy is limited in 
the presence of forest canopies, deep snow, and mountainous terrain 
(Dozier et al., 2016; Mortimer et al., 2020; Vander Jagt et al., 2013). 

As an alternative and/or addition to remote sensing, gridded climate 
reanalysis approaches can include assimilation of observational snow 
data and combine them with physical models to provide high-quality 
SWE estimates (Cho et al., 2020; Girotto et al., 2020; Zeng et al., 
2018). This includes the Snow Data Assimilation System (SNODAS), 
developed by the US National Operational Hydrologic Remote Sensing 
Center (NOHRSC) and archived at the National Snow and Ice Data 
Center (NSIDC). SNODAS provides a 1 km2 daily gridded estimate of 
SWE and related snow metrics over the contiguous US (since 2003) and 
southeast Canada (since 2010). SNODAS works by first ingesting data 
from the Rapid Update Cycle numerical weather prediction model, 
which are then downscaled and used to drive a physically based 
energy-balance and mass-balance snow accumulation and ablation 
model. The modeled output is then adjusted by data assimilation of all 
available ground, airborne, and satellite observations to produce a 
gridded estimate of daily SWE (Rutter et al., 2008). SNODAS generally 
works well to estimate SWE in forested areas (Artan et al., 2013; Clow 

et al., 2012), but has been primarily used for hydrologic applications. Its 
usefulness for ecological applications remains unexplored despite its 
relatively high spatiotemporal resolution. 

In this study, we synthesized flux-tower observations of carbon 
fluxes and weather data from fourteen forest sites in the US and south-
east Canada with gridded SWE and precipitation estimates from SNO-
DAS. We used these data to study the potential legacy effects of 
snowpack dynamics on subsequent active season GPP, and which 
environmental controls might determine the relative dominance of the 
growth period vs. moisture effects of earlier snowmelt. We tested three 
hypotheses: H1) Earlier snowmelt leads to a longer active season for 
GPP, H2) Active season GPP is higher in years with longer active season, 
and H3) Active season GPP is dependent on peak SWE and timing of 
snowmelt (a winter to summer moisture legacy from the snowpack). 
These hypotheses provided a coherent framework to examine complex 
biophysical processes related to forest-atmosphere carbon exchange 
statistically, using linear regression and correlation analyses, and mixed 
effects models. 

2. Material and methods 

2.1. Site selection 

Very few flux towers include instruments to measure SWE or other 
snowpack parameters, so our analysis was limited to the region of 
SNODAS data availability (forests within the contiguous US and south-
east Canada). Site selection criteria included seasonal snow cover, 
distinct periods of photosynthetic activity and dormancy, no recent 
disturbance, and 4 or more years overlap with SNODAS. Fourteen flux 
towers with 145 site-years of data met these criteria (Table 1). The 
forests are primarily in the Köppen-Geiger climate classification of Dfb 
(warm summer continental), with one exception classified as Dfc (US- 
NR1, subarctic/boreal, Peel et al., 2007). Mean annual air temperature 
ranged from 1.5 to 8 ◦C, mean annual precipitation 800–1250 mm, with 
mean annual maximum SWE (from SNODAS, Section 2.4) varying from 
50 to 400 mm. The percentage of annual precipitation falling as snow 
(solid fraction, SNODAS) varied across sites 11–51% (Table B1), and the 
climatic water deficit (from TerraClimate, Section 2.5) during the active 
season ranged from below 10 to above 50 mm (Fig. 1). The forests are 
evergreen needleleaf (ENF, 7 forests), deciduous broadleaf (DBF, 6), and 
mixed (1) which we analyzed with the DBF group. Most sites are natural 
vegetation except CA-TP3 and CA-TP4 which were originally planted as 
monocultures (in 1974 and 1939, respectively, Arain et al., 2022). 

2.2. Eddy covariance data processing 

Flux tower data were primarily obtained from the AmeriFlux data-
base (https://ameriflux.lbl.gov/). The R package REddyProc (version 
1.3.2) was used to remove periods of low turbulence using a site-specific 
friction velocity threshold, to gap-fill NEE and weather data (Wutzler 
et al., 2018), and to partition NEE (REddyProc variable NEE_U50_f) into 
GPP (GPP_U50_f) and ecosystem respiration using the nighttime method 
(Reichstein et al., 2005). We avoided the daytime method of Lasslop 
et al. (2010) due to erroneous GPP in winter (Bowling et al., 2024), 
which would lead to inaccurate determination of the timing of seasonal 
transitions. Failure of the algorithms to identify suitable friction velocity 
thresholds occurred in a few cases, leading to entire site-years failing the 
REddyProc gap-filling process. Switching to the FLUXNET2015 database 
(https://fluxnet.org/data/fluxnet2015-dataset/) for US-UMB and the 
AmeriFlux FLUXNET product (https://ameriflux.lbl.gov/data/flux-data 
-products/oneflux-processing/) for CA-Cbo and CA-TP3 alleviated this 
site-dependent problem and enabled the use of longer records at these 
sites. 

Half-hourly GPP was summed to calculate total GPP during partic-
ular seasons (Section 2.3). Because cumulative GPP is sensitive to data 
gaps, years with unfilled gaps during the active season were not 
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included, and data from all REddyProc quality flag categories were used. 
Years with high cumulative GPP quality flag sums (>1000) indicating 
poor data quality were removed. In addition, we found no association 
between the quality flag sum and outliers of cumulative GPP during the 

active season (see list of Abbreviations). Processed 30-min flux data 
were de-spiked by binning half hourly data into 13-day windows and 
identifying data above or below the median ± 4x the median absolute 
deviation, separately for day and night (Papale et al., 2006). These 

Table 1 
Characteristics of forest flux tower sites used in this study. Sites are ordered by mean annual air temperature for each forest type: ENF=evergreen needleleaf forest, 
DBF=deciduous broadleaf forest. Additional site details can be found in Table B1.  

Site Biome Lat. 
(◦N) 

Long. 
(◦W) 

Elev. 
(m) 

Mean 
Annual 
Tair 

( ◦C) 

Mean 
Annual 
Precip. 
(mm) 

Dominant Tree 
Species 

Citation Data DOI 

US-Syv DBF 46.2 89.3 540 3.8 826 Tsuga canadensis, Acer saccharum Desai et al. (2005) https://doi.org/10.17190/ 
AMF/1,246,106 

US-WCr  45.8 90.1 520 4.0 787 Tilia americana, Acer saccharaum, 
Fraxinus pennsylvanica 

Cook et al. (2004) https://doi.org/10.17190/ 
AMF/1,246,111 

US-Bar  44.1 71.3 272 5.6 1245 Fagus grandifolia, Acer saccharaum, A. 
rubrum 

Ouimette et al. (2018) https://doi.org/10.17190/ 
AMF/1,246,030 

US-UMB  45.6 84.7 234 5.8 803 Populus grandidentata, P. tremuloides, 
others 

Gough et al. (2008) https://doi.org/10.18140/ 
FLX/1,440,093 

US-Ha1  42.5 72.2 340 6.6 1071 Quercus rubra, Acer rubrum Finzi et al. (2020) https://doi.org/10.17190/ 
AMF/1,871,137 

CA-Cbo  44.3 79.9 120 6.7 876 Populus grandidentata, Acer rubrum Lee et al. (1999) https://doi.org/10.17190/ 
AMF/1,854,365 

CA-TPD  42.6 80.6 260 8.0 1036 Quercus alba, others Arain et al. (2022) https://doi.org/10.17190/ 
AMF/1,246,152 

US-NR1 ENF 40.0 105.5 3050 1.5 800 Pinus contorta, P. engelmannii, Abies 
lasiocarpa 

Burns et al. (2015) https://doi.org/10.17190/ 
AMF/1,246,088 

US-Ho2  45.2 68.7 91 5.1 1064 Picea rubens, Tsuga canadensis Hollinger et al. (2021) https://doi.org/10.17190/ 
AMF/1,246,062 

US-Ho1  45.2 68.7 60 5.3 1070 Picea rubens, Tsuga canadensis Hollinger et al. (2021) https://doi.org/10.17190/ 
AMF/1,246,061 

US-Vcm  35.9 106.5 3030 6.4 646 Picea engelmannii, Picea pungens, Abies 
lasiocarpa 

Anderson-Teixeira et al. 
(2010) 

https://doi.org/10.17190/ 
AMF/1,246,121 

US-Ha2  42.5 72.2 360 6.6 1071 Tsuga canadensis, Pinus strobus Finzi et al. (2020) https://doi.org/10.17190/ 
AMF/1,246,059 

CA-TP3  42.7 80.3 184 8.0 184 Pinus strobus Arain et al. (2022) https://doi.org/10.17190/ 
AMF/1,881,566 

CA-TP4  46.2 80.4 184 8.0 184 Pinus strobus Arain et al. (2022) https://doi.org/10.17190/ 
AMF/1,246,152  

Fig. 1. Distribution of study forests in climate space, including mean annual temperature (MAT), mean annual precipitation (MAP), mean annual solid precipitation 
fraction (percent, see Section 2.4), and multi-year mean of climatic water deficit (CWD, Section 2.5) during the photosynthetically active season (color axis). De-
ciduous broadleaf forests (DBF, circles) and evergreen needleleaf forests (ENF, triangles) are shown separately. See Table 1 and Appendix B for more site details. 
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spikes were replaced by the average GPP of that day before calculating 
seasonal sums. 

2.3. Determination of phenological transition dates 

The method of Bowling et al. (2024) was used to determine the timing 
of seasonal transitions for photosynthesis. Full details and code to 
calculate transitions may be found in that paper. Briefly, the method 
evaluates the response of NEE to photosynthetically active radiation 
(PAR) in 5-day moving windows to calculate the seasonal pattern of 
whole-forest photosynthetic capacity at high light, which we refer to as 
GPP1800. This quantity is the value of a fitted curve (not shown) between 
NEE and PAR during each 5-d window at a PAR level of 1800 µmol m− 2 

s− 1, after adjusting for respiration. The annual pattern of GPP1800 is 
shown in Fig. 2a for one site (US-Ha1). The annual GPP1800 time series 
were fitted with 2 logistic equations (not shown), and the 10 and 90% 
thresholds between baseline and summer maximum of the logistic fits 
were used to define dates of transition between seasons (SOS and EOS at 
10% threshold, and transitions with the active season at 90%, Fig. 2a). 
We define the active season (AS) for GPP as the time period between SOS 
and EOS (this is the main period of carbon uptake), and further divide 
this into three periods (spring ramp, summer, and autumn ramp) based on 
the 90% threshold crossings. 

To test hypotheses, we calculated cumulative GPP (g C m− 2) in each 
portion of the active season (full active season, spring ramp, summer, 
autumn ramp). Years with missing seasonal transition dates (SOS, EOS, 
etc.) due to missing data or poor-quality logistic fits prevented seasonal 
identification and were excluded from the analysis. The active season 
length was defined as the number of days between the SOS and EOS, 
inclusive. Cumulative GPP in each season is referred to as ΣGPP with a 
subscript indicating season (ΣGPPAS, ΣGPPspring ramp, etc.). 

2.4. Snow data assimilation system 

The Snow Data Assimilation System (SNODAS) is a data-constrained 
reanalysis product that combines satellite, airborne, and ground data 
with models of weather prediction and snow energy and mass balance 
(Barrett, 2003). Daily, 1km2 gridded SNODAS data were obtained 
(accession date June 15, 2022) from the National Snow and Ice Data 
Center (National Operational Hydrologic Remote Sensing Center, 2004). 
For sites in the contiguous US, SNODAS data were available from 2004- 
present; for sites in southeast Canada, data were available from 2010- 
present. To reduce the impact of random uncertainty associated by 
using a single pixel for each flux tower, we averaged SNODAS precipi-
tation (solid and liquid) and SWE variables for all pixels contained or 
partially-contained within a 2 km radius of the flux tower with similar 

Fig. 2. Overview of our phenological framework and associated seasonal definitions, using data for the 2013 active season and prior dormant season from Harvard 
Forest (US-Ha1). a) Time series of the light response of photosynthesis, evaluated at high light (GPP1800), were analyzed, using the method of Bowling et al. (2024), 
defining start of season (SOS, pink circle), start and end of summer (yellow circles, binding the yellow box highlighting "summer"), and end of season (EOS, pink 
circle). The period between SOS and the start of summer defines the "spring ramp" (green box). The "autumn ramp" (gold box) is the period between the end of 
summer (yellow circle) and EOS (pink circle). The "active season" for photosynthesis is the combination of spring ramp, summer, and autumn ramp periods (top olive 
box). The "dormant season" is the cold-season period between EOS in autumn and SOS in the subsequent spring (blue box). b) Time series of snow water equivalent 
(SWE), directly observed at US-Ha1 (gray) and from the SNODAS SWE model product (blue). The DoY and magnitude of peak SWE and the date when snow has fully 
disappeared (snow all gone, SAG) were obtained from the SNODAS data (arrows). 
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vegetation cover class, based on MODIS IGBP land cover. We overlaid 
these pixels with a digital elevation model (Amante and Eakins, 2009) 
before taking the average weighted by similarity in elevation to the flux 
tower, where each pixel’s weight = 1/ absolute value of (elevation of 
pixel – elevation of tower). Alternate buffer sizes and weighting 
schemes, as well as filtering for outliers based on slope, aspect and leaf 
area index were also considered. We selected the final processing 
method after comparing how these variations influenced comparison 
with in-situ SWE data at three sites where snowpack data were available: 
US-Ha1, US-NR1, and US-GLE (see Appendix A). The latter site was used 
for SNODAS evaluation but not included in GPP analyses due to major 
insect disturbance (Frank et al., 2014). 

The SNODAS data were used to calculate metrics of the magnitude 
and timing of snowmelt for each flux tower. Date of snow disappearance, 
or snow all gone (SAG), was defined as the first day after which no new 
SWE was present (see Fig. 2b for a comparison of SNODAS and in-situ 
SWE hydrographs). Comparison of SAG determined from SNODAS 
versus in-situ data show a slight overestimation of SNODAS SAG at US- 
NR1 and US-GLE, and at US-Ha1 a few years exhibited discrepancy 
between SNODAS and in-situ SAG (Fig. A2a-c). This discrepancy was 
caused by years where snowpack disappearance was followed by a few 
small, isolated snowfall events not present in the SNODAS product 
(Fig. A2d), however the SNODAS product appears to give a good indi-
cation of when the primary snowpack has disappeared. Total snowfall 
(mm) was calculated as the sum of the SNODAS variable solid precipi-
tation (PRSL). Total rain (mm) was calculated for each season as the sum 
of liquid precipitation (PRLQ). Peak SWE (mm) was determined as the 
annual maximum SWE from SNODAS (SWEM variable), and the timing of 
peak SWE as the day of year (DoY) on which it occurred. The length of the 
melt period was defined as the number of days between peak SWE and 
SAG, inclusive. Solid fraction (percentage of annual precipitation falling 
as snow) was calculated as 100xPRSL/(PRSL+PRLQ). 

2.5. Soil moisture and climatic water deficit 

Soil moisture data were used to examine water availability for plants. 
All available soil volumetric water content (VWC) data for each forest 
were accessed from AmeriFlux, or obtained directly from site scientists. 
For sites that included observations across a soil depth profile, we 
assessed whether the use of profile-integrated VWC significantly 
affected our results compared to the use of single depth measurements. 
We found that there was no improvement with integrated profile mea-
surements, and therefore in favor of consistency across sites, we used 
VWC data from a depth of 15 cm which were available at all but 1 site. 
VWC data were not available for all years at all sites, and were not 
available for US-Vcm. 

The climatic water deficit (CWD) was used to examine the combined 
effects of water availability and vapor pressure saturation deficit of air 
on moisture limitation for plants, obtained from TerraClimate (Abat-
zoglou et al., 2018) at 4 km resolution. The CWD is calculated as the 
difference (mm) between reference evapotranspiration and actual 
evapotranspiration. Reference evapotranspiration is calculated by Ter-
raClimate assuming standard parameters for a grass surface (e.g., Allen 
et al., 1998), which can be problematic applied to forests and is likely 
overestimated (Sun et al., 2016). Actual evapotranspiration is calculated 
by TerraClimate using a Thornthwaite-Mather water balance model 
(Dobrowski et al., 2013), with additional uncertainty. However, the 
CWD is biologically meaningful (Stephenson, 1998) and has been shown 
to be a robust metric of plant water relations in studies of productivity 
and forest mortality (e.g., Anderegg et al., 2015; Hoylman et al., 2019). 
The CWD data were available monthly, so to match the timing of sea-
sonal transitions, we calculated the average CWD of all months con-
tained within a season (active season, spring ramp, etc.), weighting each 
month by its proportion contained in the season (e.g. if SOS occurred on 
April 25, then April CWD was weighted to be 5/30ths of the overall 
mean spring ramp CWD). 

2.6. Statistical analysis 

Linear regression, correlation analysis, and mixed effects models 
were used to test hypotheses. To test H1, we examined simple linear 
regressions between active season length and SOS, SAG, and EOS. To test 
H2, we regressed ΣGPPAS versus active season length and SAG. Corre-
lation analysis was used to quantify bivariate relations between cumu-
lative GPP (ΣGPPAS) and active season length, active season CWD, mean 
Tair during active season, length of snowmelt, peak SWE, SAG, total 
snowfall, spring rain, and summer rain (to test H2). We also examined 
correlations between cumulative GPP during the spring and autumn 
ramp and summer seasons with cumulative rainfall in each season 
(providing moisture-based alternatives that might help explain H2). 

2.6.1. Mixed effects models 
Mixed effects models were further used to test hypotheses, con-

structed using a top-down model selection process (Zuur et al., 2009), 
which uses iterative backwards selection to find those models that 
explain the most variation with the minimum necessary parameters. The 
ENF and DBF forest types were analyzed separately. Separate models 
were built with ΣGPPAS and active season length as response variables, 
and applied separately for each hypothesis. 

To test H1, we built linear mixed effect models separately for ENF 
and DBF with active season length as the response variable. First, we fit a 
saturated fixed-effects-only model with all possible terms that represent 
biologically real hypotheses, and their interactions. For H1, starting 
variables included: mean Tair, PAR, and VPD for each season (spring 
ramp, summer, autumn ramp), total rainfall in each of these and active 
season, timing of SAG, amount of peak SWE, timing of peak SWE, total 
snowfall, mean VWC for each season, timing of spring maximum 
(VWCmax), summer VWCmin, and mean active season CWD. We used the 
dredge function in the MuMIn package in R (Bartoń, 2023) to determine 
the relative importance of each candidate fixed effect variable based on 
the ranked Akaike information criteria (AIC). This estimate of variable 
importance is made by summing the AIC weights across all candidate 
models which contain that variable (Burnham and Anderson, 2004). 
Fixed effects variables with high importance (> 0.8) were then used to 
construct a less saturated model with both ‘site’ and ‘year’ considered as 
possible random effects. Next, we used the step function in the lmerTest 
package in R (Kuznetsova et al., 2017) to perform backward elimination 
of random-effect terms followed by backward elimination of fixed-effect 
terms to find the most parsimonious model, as follows. First, random 
effects (site and/or year) were eliminated based on the likelihood ratio 
test. In all cases, the best random effect structure was a random intercept 
model with ‘site’ as a random effect. Random slopes led to overfitting in 
all cases and were therefore not included. Then, fixed effects were 
eliminated based on ANOVA with p-values calculated using Sat-
terthwaite’s method (Kuznetsova et al., 2017). In some cases, the 
selected model resulted in singular gradient errors or convergence fail-
ures indicating overfitting; for these cases, fixed effect variables were 
dropped one at a time using likelihood ratio tests of nested models to 
determine the final model. All final models were tested for collinearity 
among independent variables, such that the variance inflation factor 
was < 2 for all retained variables. All model comparisons were made 
using maximum likelihood (ML) fitting, then final models were pre-
sented using restricted maximum likelihood (REML) estimation, with 
marginal and conditional R2 calculated using Nakagawa and Schiel-
zeth’s (2013) method for mixed models. 

To test H2, we followed the model selection method above to 
determine the most important explanatory variables for ΣGPPAS and 
build parsimonious models for ENF and DBF. For H2, starting candidate 
variables included: the timing and magnitude of peak SWE, total 
snowfall, SAG, total rainfall in each season, mean Tair, PAR, and VPD in 
each season, length of spring ramp, SOS, active season CWD, active 
season length, mean active season VWC, and the days of year of spring 
VWCmax and summer VWCmin. 
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In addition, we tested H2 and H3 spatially using mean annual con-
ditions for each site rather than values subject to interannual variability. 
All data from both ENF and DBF were combined to construct the model 
(including biome as a fixed effect did not provide any significant 
improvement based on likelihood ratio testing of AIC). We tested H2 
using a mixed effects model with ΣGPPAS as the response, and the three- 
way interaction between active season length, mean annual summer 
CWD, and mean annual solid fraction. Other interannually-averaged 
candidate variables that were considered but did not show improve-
ment (based on likelihood ratio testing of AIC) were MAT, MAP, mean 
active season precipitation, mean annual peak SWE, and mean active 
season CWD. We then used the same approach for H3, where SAG was 
used in place of active season length—with total ΣGPPAS the response, 
and SAG, mean annual summer CWD, and mean annual solid fraction as 
fixed effects. 

3. Results 

3.1. Active season length 

Interannual variation in active season length was significantly 
correlated with SOS (the date when GPP first reached 10% of maximum 
photosynthetic capacity) at most of our study forests (Fig. 3a, Table 2). 
This is not surprising as SOS and EOS define the active season length. 
This pattern was also present when all sites were analyzed together (a 
single regression combining all sites in Fig. 3a was highly significant 
with R2 of 0.87). However, the active season length was not significantly 
correlated with EOS at any individual sites, though they were correlated 
with sites combined (Table 2). These results indicate that the initiation 
of photosynthesis in spring was the primary determinant of variability in 
active season length. This is a necessary requirement supporting H1 
(variation in active season length is related to variation in SOS), but full 
support for H1 requires linkage between active season length and date of 
full snow disappearance (SAG). Regressions of active season length with 
SAG from SNODAS generally had negative slope (Fig. 3b, testing H1), 
but the correlations were weak and slopes were not significantly 

different from zero (Table 2, CA-TPD was an exception). Regressions of 
SOS with SAG were also weak and mostly non-significant (Table 2), 
except when all sites within a forest type were analyzed together. These 
results do not support H1. 

3.2. Environmental drivers of interannual cumulative GPP 

3.2.1. Correlation analysis 
Bivariate correlation analysis was used to examine how active season 

length and environmental variables influenced interannual cumulative 
GPP at each site (Fig. 4). Many significant correlations were present, 
both positive and negative, and were highly site-specific. In general, 
rainfall in each season was correlated with the GPP for that season, but 
clear patterns were not present at all sites. There were significant 
negative correlations between timing of snowmelt (SAG) and ΣGPPAS at 
2 sites (US-Ha1, US-Ha2), indicating earlier melt led to higher produc-
tivity (some support for H3). In other sites, that relationship was not 
significant (not supporting H3). The ΣGPPAS was significantly correlated 
with active season length at 3–4 sites (US-Ha1, US-Ho2, and US-Vcm at p 
< 0.05, US-Ho1 at p < 0.1) but not others (mixed support for H2). Peak 
SWE positively influenced ΣGPPAS at US-Wcr only, correlations for other 
sites were not significant (general lack of support for H3). There did not 
appear to be uniform consistency in the direction or strength of re-
lationships due to biome or site average active season CWD. There was 
strong correlation between ΣGPPautumn and autumn rain (Fig. 4), 
perhaps due to warmer autumns being wetter (anomalies of Tair and GPP 
were both positively and significantly correlated with autumn rain, data 
not shown). 

3.2.2. Linear mixed effects model selection 
Overall, the data in Fig. 4 indicate that the environmental drivers of 

active season cumulative GPP differed by site, and GPP was in general 
not well characterized by interannual variation in weather. Therefore, 
we performed cross-site analyses to test the hypotheses, and present 
them separately here. We employed a model selection approach using 
linear mixed effects models. The inclusion of site as a random effect 

Fig. 3. Active season length (AS length) compared to the timing (day of year, DoY) of initiation of photosynthesis (SOS) and full disappearance of snow (SAG). Data 
are shown for each site, with DBF (circles) and ENF (triangles) shown separately. Statistically significant regressions (p < 0.05) are shown with solid lines, regression 
details can be found in Table 2. 
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accounted for the large degree of inter-site variation that was not well 
characterized by phenological or climatic drivers, such as species 
composition, forest age, soil type, nutrient limitations, etc. 

H1) Earlier snowmelt leads to a longer active season for GPP 

To assess the importance of snowmelt and other climatic drivers on 
active season length, linear mixed effect models were built separately for 
ENF and DBF with active season length as the response variable. Starting 
candidates included: mean Tair, PAR, and VPD for each season (spring, 
summer, fall), total precipitation in each season and the entire active 
season, timing of SAG, amount of peak SWE, timing of peak SWE, total 
snowfall, mean VWC for each season, timing of spring maximum 
(VWCmax), summer VWCmin, and mean active season CWD. 

Final models selected with standardized coefficients are shown in 
Table 3, and their graphical representation is shown as marginal effects 
plots in Fig. 5. Marginal effects plots show the partial residuals for each 
fixed effect term after holding all the other terms constant at their me-
dian. One can consider the X and Y axes of a marginal effects plot as ‘X 
and Y after all other predictors from the model have been accounted for,’ 
and the slope of each line in Fig. 5. represents the partial regression 
coefficients (see Table 3). In addition, in Table 3 it is useful to compare 
the variance explained by fixed effects (marginal R2) with the variance 
explained by both fixed and random effects (conditional R2). 

For the ENF biome, variables with high importance (> 0.8) were the 
date of peak SWE, SAG, mean spring Tair, mean autumn PAR, total 
autumn rain, and AS CWD. (See Appendix B for information about the 

interannual variability of parameters important in the mixed model 
results.) The selected model included (in order of standardized effect 
size) mean autumn PAR, total autumn rain, the timing of SAG, and the 
timing of peak SWE (Table 3, marginal R2=0.75, conditional R2=0.85). 
That AS length declined with timing of SAG and timing of peak SWE 
provides some support for H1 for ENF. It appears that, in addition to the 
timing of snowmelt, autumn conditions have a degree of control over AS 
length after partial pooling of sites, though this was not true at indi-
vidual sites (see Fig. 4 and AS length vs EOS in Table 2). 

For the DBF biome, variables with high importance were mean 
spring and autumn Tair, total spring and autumn rain, mean VWCautumn, 
and timing of spring VWCmax. The final model was built, in order of 
effect size, using mean spring Tair, total autumn rain, and timing of 
spring VWCmax (Fig. 5, Tables 3, B1). Longer active seasons had cooler 
springs on average (Fig. 5a). Similar to ENF, longer active seasons were 
associated with more autumn rain (Fig. 5c,e). The marginal explanatory 
power was low and the conditional power was high (R2= 0.32 and R2=

0.85, respectively), indicating that the random effect due to site 
accounted for more variance than the fixed effects. Thus, the length of 
the active season in DBF was poorly constrained by these environmental 
predictors, despite being the most parsimonious model found. This does 
not support H1 for DBF. That warmer springs were associated with 
shorter active seasons does not necessarily say that warming shortened 
the active season, but simply reflects that later SOS results in warmer 
spring temperature. Rather, it would be expected that warmer air will 
increase the length of the active season in DBF (Baldocchi et al., 2018). 
As a caveat, note that the length of seasons varies between years and 

Table 2 
Results of linear regressions for data in Fig. 3. Statistically significant regressions (p < 0.05) are bolded.    

active season length vs. SOS active season length vs. SAG active season length vs. EOS 

Biome Site Slope 
(d d− 1) 

Intercept 
(d) 

p-value R2 Slope 
(d d− 1) 

Intercept 
(d) 

p-value R2 Slope 
(d d− 1) 

Intercept 
(d) 

p-value R2 

DBF CA-Cbo ¡2.20 450 0.02 0.67 − 0.77 270 0.17 0.34 30 +0.52 0.74 0.02  
CA-TPD − 0.45 250 0.16 0.43 ¡0.60 250 0.02 0.80 390 − 0.64 0.08 0.57  
US-Bar ¡0.92 290 <0.01 0.66 − 0.52 240 0.15 0.19 300 − 0.38 0.49 0.05  
US-Ha1 ¡0.80 290 0.01 0.40 − 0.39 240 0.07 0.23 140 +0.20 0.35 0.07  
US-Syv ¡0.79 270 0.02 0.60 +0.28 140 0.5 0.07 17 +0.52 0.11 0.37  
US-UMB ¡0.83 280 <0.01 0.76 − 0.10 190 0.65 0.02 290 − 0.39 0.50 0.05  
US-Wcr ¡1.20 310 0.04 0.42 − 0.26 180 0.24 0.17 230 − 0.30 0.49 0.06               

ENF Ca-TP3 390 ¡1.50 0.01 0.74 − 0.21 290 0.88 0.00 270 − 0.01 0.99 0.00  
CA-TP4 400 ¡1.60 0.02 0.71 +0.09 260 0.90 0.00 240 +0.07 0.92 0.00  
US-Ha2 340 ¡0.91 0.02 0.38 − 0.39 310 0.17 0.14 480 − 0.60 0.09 0.21  
US-Ho1 310 − 0.65 0.09 0.20 − 0.37 290 0.18 0.14 320 − 0.18 0.59 0.02  
US-Ho2 340 ¡0.97 0.03 0.37 − 0.61 330 0.08 0.25 450 − 0.52 0.24 0.12  
US-NR1 290 ¡0.78 <0.01 0.48 − 0.62 310 0.12 0.16 390 − 0.58 0.17 0.13  
US-Vcm 340 − 1.10 0.14 0.74 − 0.68 340 0.36 0.42 450 − 0.62 0.61 0.15               

overall NA 410 ¡1.9 <0.01 0.87 280 ¡0.53 <0.01 0.093 ¡260 þ1.5 <0.01 0.66                 

SOS vs. SAG         
Biome Site Slope 

(d d¡1) 
Intercept 
(d) 

p-value R2         

DBF CA-Cbo 0.38 73.7 0.03 0.63          
CA-TPD 0.69 53.1 0.12 0.50          
US-Bar 0.26 86.0 0.43 0.06          
US-Ha1 0.21 87.4 0.23 0.11          
US-Syv − 0.17 144.8 0.68 0.03          
US-UMB 0.22 101.5 0.34 0.10          
US-Wcr 0.08 125.0 0.51 0.06                       

ENF Ca-TP3 0.18 65.5 0.81 0.01          
CA-TP4 0.01 83.5 0.99 0.00          
US-Ha2 0.27 49.2 0.16 0.14          
US-Ho1 0.37 48.1 0.04 0.28          
US-Ho2 0.33 44.5 0.14 0.19          
US-NR1 0.30 57.6 0.41 0.05          
US-Vcm 0.17 57.6 0.79 0.05                       

overall NA 0.25 ¡6.77 <0.01 0.10          
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sites, and thus variables that are summed (such as autumn rain here) are 
somewhat problematic to interpret as a result. 

H2) Active season GPP is higher in years with longer active season 

We followed the above approach for H2 to determine the most 
important explanatory variables for ΣGPPAS (as response variable), 

separately for ENF and DBF. Starting candidate variables included: 
active season length, the timing and magnitude of peak SWE, total 
snowfall, SAG, total rainfall in each season, mean Tair in each season, 
length of spring ramp, SOS, active season CWD, mean active season 
VWC, DoY of spring VWCmax, and summer VWCmin. For the ENF biome, 
variables with high importance included active season length, SAG, 
mean active season Tair, and active season CWD. The final model was 
built using active season length and active season CWD (Fig. 6b,c, Ta-
bles 4, B1). For the DBF biome, variables with high importance were 
active season length, the timing of peak SWE, mean active season VWC, 
mean active season Tair, and the length of spring ramp, however the final 
model included only the effect of active season length (Fig. 6a, Tables 4, 
B1). 

For both ENF and DBF, active season productivity increased with the 
length of the active season (Fig. 6a,b), providing support for H2 for both 
forest types. The effect of active season length was larger in DBF 
compared to ENF (3.9 ± 1.8 gC m− 2 d− 1 versus 2.0 +− 0.8 gC m− 2 d− 1, 
respectively), and in ENF ΣGPPAS also declined with increasing active 
season CWD (Fig. 6c, Table 4). For comparison, Launiainen et al. (2022) 
found increasing trends in GPP with lengthening active season over 
many years (~ 8 g C m− 2 year− 1), and Baldocchi et al. (2001) reported a 
general interannual pattern of higher GPP with longer active season of 
5.7 g C m− 2 d− 1 across temperate DBF sites, which were not constrained 
to seasonally-snow covered sites. For both ENF and DBF models, how-
ever, the explanatory power of these fixed effects was very low (mar-
ginal R2=0.11 and R2=0.06, respectively), while site as a random effect 
explained most of the variance (conditional R2= 0.90 and R2=0.72, 
respectively; Table 4). 

Fig. 4. Pearson correlation coefficients (r) of the cumulative GPP during each season (ΣGPPAS, ΣGPPspring, ΣGPPsummer, ΣGPPautumn) and environmental and 
phenological variables. The color axis indicates magnitude and direction of the correlation, and significant correlations are shown with asterisks (p < 0.05). Sites are 
ranked based on mean climatic water deficit (CWD) in summer, and forest type (ENF, green, DBF yellow) distinguished with colored site codes. 

Table 3 
Mixed effects model predictor coefficients for the response variable active sea-
son length (days) in both ENF and DBF (see Fig. 5). The coefficients are stan-
dardized to compare the magnitude of fixed effects within the model. Values in 
parentheses are standard errors. τ00 is the random effects variance, and σ2 is the 
model residual variance. Marginal R2 is the variance explained by fixed effects, 
while conditional R2 is the variance explained by both fixed and random effects. 
p-values * (p < 0.05), ** (p < 0.01), *** (p < 0.001).   

ENF DBF 

mean PAR autumn − 0.132*** (0.033)  
total autumn rain 0.066*** (0.016) 0.049*** (0.014) 
DoY SAG − 0.293** (0.104)  
DoY peak SWE − 0.153** (0.052)  
mean spring Tair  − 4.438*** (0.675) 
DoY spring VWCmax  − 0.246** (0.083) 
Groups: Site 7 7 
τ00 103.8 214.48 
σ2 152.4 63.24 
marginal R2 0.75 0.32 
conditional R2 0.85 0.85 
Observations 77 66 
Akaike Information Criterion 642.626 496.864  
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Fig. 5. Marginal effects plots for paired relationships within the final mixed effects model testing H1 (see also Table 3) with active season (AS) length as the response 
variable and fixed effects in DBF: (a) Mean spring Tair, (b) Timing of spring VWCmax, and (c) total autumn rain. Fixed effects in ENF: d) mean autumn PAR, e) total 
autumn rain, f) DoY snow all gone (SAG), and g) DoY peak SWE. The slope represents the unstandardized partial regression coefficients, while the points are partial 
residuals after holding all other terms constant at their median. Shading indicates the 95% confidence interval for the slope. 

Fig. 6. Marginal effects plots for the mixed effects model testing H2 (see also Table 4). Marginal effects plots are shown for the final model with ΣGPPAS as the 
response variable, for DBF (a) and ENF (b,c). The slope represents the unstandardized partial regression coefficients, while the points are partial residuals after 
holding all other terms constant at their median. Shading indicates the 95% confidence interval for the slope. 

J.C. Yang et al.                                                                                                                                                                                                                                  



Agricultural and Forest Meteorology 353 (2024) 110054

11

3.3. Effect of mean annual site conditions on interannual cumulative GPP 

Next, we evaluated whether variation in seasonal precipitation 
influenced the linkage between active season length and ΣGPPAS. 
Through the above correlation analysis between active season length 
and GPP within individual sites (Fig. 4), as well as model selection 
within biomes with partial pooling across sites, we were unable to find 
consistent patterns that supported or refuted H2, due to the large 
amount of unexplained interannual variability within and across sites 
(Figs. 5,6). Therefore, we tested H2 spatially, using mean annual con-
ditions for each site rather than including interannual variation. 

Shown in Fig. 7 (and Table 5) are linear regressions of ΣGPPAS with 
active season length and SAG, as a function of mean summer CWD 
averaged across all years for each site (color axis). Sites that had a higher 
mean annual summer CWD tended to have a less positive, or even 
negative, GPP response to active season length (Fig. 7a) and a less 
negative, or positive, response to SAG (Fig. 7b). These results indicate 

that summer moisture deficit potentially explains some of the variation 
in the linkage between ΣGPPAS and active season length (caveats to 
allow support for H2). Since water from the winter snowpack might 
influence summer soil moisture availability for plants (via the moisture 
effect), and thus influence summer CWD, we built a mixed effects model 
with ΣGPPAS as the response variable, and the three-way interaction 
between active season length, mean annual summer CWD, and mean 
annual solid fraction. Other interannually-averaged candidate variables 
that were considered but did not show improvement were MAT, MAP, 
mean annual active season rainfall, mean annual peak SWE, and mean 
annual active season CWD. Data from both ENF and DBF biomes were 
combined to construct the model, and including biome as a fixed effect 
did not provide any significant improvement based on likelihood ratio 
testing of AIC. Partial effects of the three-way interaction are shown in 
Fig. 8. All terms and interactions in the model were statistically signif-
icant (p < 0.05) and it was the most parsimonious combination variables 
(lowest AIC) based on nested likelihood ratio tests. 

The model (Fig. 8) significantly improved the prediction of ΣGPPAS 
(marginal R2= 0.50, conditional R2=0.88) compared to the previous 
models (Fig. 5, Table 3) that did not account for site average climate 
conditions. For sites with higher mean annual CWD (those with drier 
summers on average), GPP decreased with longer active seasons (red 
lines in Fig. 3.8). For sites with wetter summers on average, GPP 
increased with longer active seasons (blue lines in Fig. 3.8). The 
magnitude of these effects decreased as solid fraction increased, and 
ΣGPPAS became less dependent (shallow slopes) on the active season 
length. These results provide mixed support for H2, based on CWD. 

H3) Active season GPP is dependent on peak SWE and timing of snowmelt 

To test H3, we used a similar approach as for H2, with SAG used in 
place of active season length. We used ΣGPPAS as the response variable, 
and SAG, mean annual summer CWD, and mean annual solid fraction as 
candidate fixed effects. Rather than a three-way interaction, however, 
only the interaction between SAG and summer CWD was significant (p <

Table 4 
Mixed effects model predictor coefficients for the response variable ΣGPPAS (g C 
m − 2) in both ENF and DBF (see Fig. 6). Coefficients are unstandardized to 
facilitate comparison of the fixed effect size of active season length between the 
two models. Values in parentheses are standard errors. τ00 is the random effects 
variance, and σ2 is the model residual variance. Marginal R2 is the variance 
explained by fixed effects, while conditional R2 is the variance explained by both 
fixed and random effects. p-values * (p < 0.05), ** (p < 0.01), *** (p < 0.001).   

ENF DBF 

active season length 2.027** (0.751) 3.921* (1.808) 
active season CWD − 3.214** (1.245)  
Groups: Site 7 7 
τ00 86,887 74,666 
σ2 10,518 31,838 
marginal R2 0.11 0.06 
conditional R2 0.90 0.72 
Observations 77 69 
Akaike Information Criterion 954.750 925.053  

Fig. 7. Cumulative GPP during the active season (ΣGPPAS) compared to the length of the active season (AS length) and date of full disappearance of snow (SAG). 
Data are shown for each site, with DBF (circles) and ENF (triangles) shown separately. Statistically significant regressions (p < 0.05) are shown with solid lines, 
regression details can be found in Table 5. Colors indicate multi-year mean summer climatic water deficit. 
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0.05). The partial residuals of the interaction between SAG and summer 
CWD are shown in Fig. 9, with the partial residuals of mean annual solid 
fraction shown in the inset. The explanatory power of the model was 
similar but slightly lower than the corresponding model with active 
season length (marginal R2=0.45 and conditional R2=0.86). These re-
sults demonstrate that in areas with low summer CWD (favorable 
moisture conditions), later snow disappearance has a negative effect on 
active season GPP, but this relationship diminishes with increasing 
CWD. Peak SWE never exhibited high importance in our models. These 
results provide mixed support for H3, based on CWD. 

4. Discussion 

Studying ecosystem dynamics on interannual scales is challenging 
conceptually and statistically. Conceptually, there are many environ-
mental and biotic drivers of interannual variability in C fluxes operating 
at different timescales with unknown lags and legacy effects (Richardson 
et al., 2010). However, it is difficult to distinguish between the inde-
pendent effects of particular drivers on carbon fluxes. The sensitivity of 
carbon fluxes to climatic variability appears to progressively decline or 
become more difficult to detect at increasing timescales, and our results 
support the general consensus in the literature that interannual variation 

in GPP is not well-represented by direct responses to fluctuating envi-
ronmental conditions (De Pue et al., 2023; Richardson et al., 2007; Stoy 
et al., 2009; Urbanski et al., 2007; J. Wu et al., 2012). GPP and other 
ecosystem processes respond to environmental variation in changing 
ways throughout the annual cycle (Launiainen et al., 2022). Statistically, 
it is difficult to obtain records of sufficient length to find significant 
relationships, as interannual variability in ecosystem C fluxes is large 
relative to any trend driven by a specific environmental variable (Bal-
docchi et al., 2018). Although the lengths of many eddy covariance re-
cords are now multi-decadal, the statistical significance of reported 
relationships between anomalies in active season length and carbon 
fluxes often remains weak (Richardson et al., 2009). 

We tested three hypotheses, with mixed results for all. We found that 
a longer active season for GPP occurred when photosynthesis started 
earlier in the year, but interannual variation in GPP was not directly 
affected by timing of snowmelt at individual sites (Fig. 3, Table 2). When 
sites were considered together with the use of mixed effects models, 
results indicated that later snowmelt timing had a negative effect on 
total active season length for ENF, but was not important for DBF 
(Fig. 5f, Table 3). We found significant correlations between environ-
mental variables and ΣGPPAS at some sites, but not others, and there was 
large variability in direct predictors of interannual GPP even among sites 

Table 5 
Results of linear regressions for data in Fig. 7. Statistically significant regressions (p < 0.05) are bolded.    

ΣGPPAS vs. active season length ΣGPPAS vs. SAG 

Biome Site Slope 
(gC m− 2 d− 1) 

Intercept 
(gC m− 2) 

p-value R2 Slope 
(gC m− 2 d− 1) 

Intercept 
(gC m− 2) 

p-value R2 

DBF CA-Cbo 1.7 1800 0.85 0.01 4.3 1700 0.71 0.03  
CA-TPD − 7.6 2900 0.49 0.13 8.2 650 0.24 0.32  
US-Bar 1.5 970 0.52 0.04 0.6 1200 0.84 0.00  
US-Ha1 8.5 250 0.03 0.30 ¡6.7 2200 0.04 0.29  
US-Syv − 5.8 2300 0.41 0.12 − 0.4 1300 0.96 0.00  
US-UMB 2.7 850 0.38 0.09 − 1.9 1500 0.32 0.11  
US-Wcr 9.6 200 0.21 0.19 − 3.4 1600 0.51 0.06           

ENF Ca-TP3 − 0.7 2000 0.79 0.02 − 3.9 2200 0.57 0.07  
CA-TP4 − 3.0 2500 0.23 0.27 8.4 860 0.24 0.26  
US-Ha2 3.6 490 0.13 0.16 ¡5.0 2000 0.04 0.29  
US-Ho1 2.1 950 0.09 0.20 − 2.4 1700 0.06 0.26  
US-Ho2 4.1 550 0.03 0.36 − 3.8 2000 0.12 0.21  
US-NR1 1.5 520 0.10 0.18 1.3 620 0.39 0.05  
US-Vcm ¡4.6 2000 0.05 0.91 4.0 330 0.20 0.06  

Fig. 8. Marginal effects plots for the three-way interaction between active season length, mean annual summer CWD and mean annual solid fraction of the total 
precipitation (%solid), with ΣGPPAS as the response variable. Slopes represent partial regression coefficients, while the points are partial residuals after holding all 
other terms constant. CWD and%solid grouping moderator values represent the mean ± 1 standard deviation. Shading indicates the 95% confidence interval on 
the slopes. 
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that were in the same functional class and climate zone, and relatively 
close geographically (Fig. 4). Mixed effects models indicated that, when 
sites were combined, ΣGPPAS was significantly and positively affected 
by active season length (Fig. 6) in both forest types. Further exploration 
with mixed effects models indicates that this pattern is dependent on 
long-term average CWD and solid fraction (Figs. 7, 8, 9). These results, 
taken together, highlight the complicated nature of the controls on 
interannual variability of forest carbon sinks. Our attempt to find direct 
predictors of interannual variation of GPP within sites was limited. 
Relationships that were found differed from site to site with no evident 
patterns between sites. That relationships were highly site-specific is 
consistent with other studies (see review by Baldocchi et al., 2018). 

Evidence suggests that recent warming trends have led to earlier SOS 
over the last few decades (Badeck et al., 2004; Jiang et al., 2023; 
Richardson et al., 2006). It is well established that delayed spring onset 
results in shorter active seasons for GPP (C. Wu et al., 2012b), and in the 
present study this was true at almost all sites (Fig. 3), capturing both 
interannual variability, as well as spatial (R2 = 0.87). We did not 
however find that autumn senescence was correlated with interannual 
variability in the active season length at individual sites (Table 2), in 
contrast with previous studies (Desai et al., 2022; Fu et al., 2017; Keenan 
and Richardson, 2015; C. Wu et al., 2012a). At US-NR1, interannual 
variation in the active season length was determined more by the 
duration of snow melt than the timing of senescence (Monson et al., 
2005). 

We did not find that peak SWE or timing of full melt (SAG) were 
useful to explain interannual variability in active season length using 
simple correlation at each site. However, SAG and timing of peak SWE 
were the most important variables for explaining interannual variability 
in the length of the active season across sites in ENF (Fig. 5). This was not 
true for DBF, however the inclusion of spring VWCmax timing suggests 
some importance of spring hydrology (Fig. 5). Overall, active season 
length in DBF was less responsive to environmental drivers with a low 
marginal R2 (see Table 3) indicating that fixed effects explained a very 
low proportion of variability. This perhaps reflects the general under-
standing that while ENF active season length is contingent on the sea-
sonal relief of environmental constraints (Bowling et al., 2018; Monson 

et al., 2005), in DBF the carbon uptake period can also be constrained by 
new leaf emergence (Barr et al., 2007; Desai et al., 2022; Gu et al., 
2003). 

The active season length was the most important predictor for vari-
ation in ΣGPPAS for both ENF and DBF across sites, despite only being a 
significant predictor of interannual variation at three sites (Fig. 4). 
Similarly, Wu et al. (2012b) found that active season length was a good 
indicator of spatial variability in annual net ecosystem productivity of 
North American forests, but that predictors which had strong spatial 
correlation were not good predictors of interannual variability. 
Numerous past studies have demonstrated positive relationships be-
tween NEE and active season length in ENF (Danielewska et al., 2015), 
DBF (Baldocchi et al., 2001; Desai et al., 2022; Finzi et al., 2020; Gu 
et al., 2003; Richardson et al., 2010, 2009; White et al., 1999), or both 
(Churkina et al., 2005; Fu et al., 2017). In agreement, our results showed 
a positive association in both biomes (Fig. 6), and the effect of prolonged 
active season length on ΣGPPAS was stronger in DBF than ENF (Table 4). 
Our model selection suggested that this could be attributed to the 
mediating negative relationship between GPP and CWD in ENF (Fig. 6b, 
c). Because CWD accounts for both reference and actual evapotranspi-
ration, it has the benefit of integrating over both the effects of soil 
moisture supply and atmospheric water vapor demand, which are often 
correlated and difficult to disentangle. However, the CWD is not a 
measure of actual stand water use with respect to water availability, and 
ignores species and stand-level controls on evapotranspiration (e.g., Fu 
et al., 2022; Launiainen et al., 2016). That CWD was better suited in the 
role of mediator compared to snow, rain, or soil moisture metrics alone, 
agrees with previous studies that have highlighted the importance of the 
vapor pressure deficit to limiting canopy conductance in mesic forests 
(Novick et al., 2016). Regardless, we found the relationship between 
active season length and ΣGPPAS had very weak marginal explanatory 
power for both ENF and DBF, while the site-level variation (explained by 
random intercepts in the statistical model) was extremely dominant 
(compare marginal and conditional R2, Table 4). These results highlight 
the large degree of variability between sites that is not well represented 
by seasonal or annual weather. 

In all instances where snowpack variables were important in 

Fig. 9. Marginal effects plot for the interaction between SAG and mean annual summer CWD with ΣGPPAS as the response variable. Slopes represent partial 
regression coefficients, while the points are partial residuals after holding all other terms constant. CWD grouping moderator values represent the mean ± 1 standard 
deviation. Shading indicates the 95% confidence intervals on the slopes. The inset plot shows the marginal effect of mean annual solid fraction (%solid). 
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determining the active season length and ΣGPPAS, there was a greater 
importance of snow timing metrics compared to the magnitude of peak 
SWE or total snowfall amount, in agreement with Knowles et al. (2018). 
This included 1) the importance of SAG in determining the active season 
length in ENF (Fig. 5c); 2) the appearance of timing metrics as statisti-
cally important for ΣGPPAS in ENF and DBF (though they did not end up 
in the final models); and 3) the finding that SAG was related to ΣGPPAS 
across sites after accounting for site differences in mean annual pre-
cipitation solid fraction and summer CWD (Fig. 9). We would expect that 
snowmelt timing would be an important factor for active season length 
and ΣGPPAS, under the premise that in some locations soil moisture is 
highest in spring and declines after snow is fully gone. In western U.S. 
conifer forests it was shown that peak annual soil moisture coincides 
with the date of snow disappearance (Harpold et al., 2015; Harpold and 
Molotch, 2015), yet we found this to be true only at the snow-dominated 
high-elevation subalpine forest site US-NR1 (R2=0.69, p < 0.001, data 
not shown). And although all sites showed a decline in mean VWC from 
spring to summer, mean spring VWC did not show significant increase 
compared to mean winter VWC at 8 of the 13 sites with available soil 
moisture data (not shown). These sites did not follow the textbook hy-
drologic dynamics of seasonally snow-covered forests that have stable 
dormant season soil moisture followed by a clear spring melt period (e. 
g., Maurer and Bowling, 2014), but rather experienced influxes of 
snowmelt and rain during the winter. These patterns complicate at-
tempts to understand the impact of snowmelt timing at these sites, and 
likely contribute to the variability in the interannual explanatory power 
of SAG at individual sites (Fig. 3, A2). Nevertheless, it appears that the 
timing of peak SWE and SAG is still important when considered across 
sites, despite the lack of coincidence with peak soil moisture. 

We did not find that peak SWE was important for GPP. At the site 
level, only US-WCr had a significant relationship between interannual 
ΣGPPAS and peak SWE (Fig. 4), as previously documented by Desai et al. 
(2022), though they attributed this to a soil temperature rather than 
moisture effect. Wang et al. (2018) suggest that the dependence of 
summer productivity on snowmelt is determined by both the legacy 
effect of winter SWE on active season soil moisture and by the degree to 
which vegetation growth is water limited. Regarding the former, there 
were mixed, inconsistent results as to whether there was a legacy effect 
of the amount of SWE on summer soil moisture at the site level (data not 
shown). For instance, total solid precipitation was significantly corre-
lated with minimum summer VWC at US-NR1 and CA-Cbo, however we 
did not find that this translated into a legacy effect of total snow on 
active season or summer GPP at these sites (Fig. 3). Similarly, 
Richardson et al. (2009) found that the lagged effect of spring pheno-
logical anomalies on summer fluxes was weak and non-significant, due 
to the larger influence of summer weather. Alternatively, there may be 
important seasonal moisture legacies associated with land-atmosphere 
teleconnections that we are missing. For example, high snow years in 
the Rocky Mountains are associated with lower North American 
Monsoon rainfall in the subsequent summer (Lo and Clark, 2002; Notaro 
and Zarrin, 2011). Patterns of seasonal water use by trees differ across 
the western US due to the spatial gradient in monsoon rainfall (Szejner 
et al., 2016). 

A primary goal was to determine whether we could detect which 
environmental controls determine the relative dominance of the mois-
ture vs. growth period effects of earlier snowmelt. We found that after 
accounting for the interannual variability at each site, mean annual 
summertime CWD and mean annual solid fraction mediated the 
response of ΣGPPAS to variation in active season length and SAG, and 
this was not dependent on forest type (Fig. 8). For sites with higher mean 
summer CWD (those with drier summers on average), ΣGPPAS decreased 
with longer active seasons (red lines in Fig. 8). For sites with wetter 
summers on average, ΣGPPAS increased with longer active seasons (blue 
lines in Fig. 8). The magnitude of these effects decreased as solid fraction 
increased, and active season GPP became less dependent on the active 
season length (Fig. 9). In forests with low summer CWD (sufficient 

moisture), later SAG had a negative effect on active season production, 
and this relationship diminished with increasing CWD (Fig. 9). These 
average climatic conditions were found to be more important in deter-
mining the magnitude and direction of the relationship between active 
season length and ΣGPPAS than when CWD or the annual precipitation 
solid fraction were examined interannually (Fig. 3). Thus, the oppor-
tunity for forests to capitalize on the C production potential of longer 
active seasons appears to be dependent on the degree of reliance of 
vegetation to average moisture conditions determined by long-term 
climate characteristics rather than interannual fluctuations in weather. 
For natural vegetation this may be a result of competition and adapta-
tion to local microclimate. This highlights the importance of considering 
longer-term ecological and demographic processes when trying to pre-
dict how vegetation will respond to future changes in climate. Previous 
studies have also found that average factors acting over long time scales, 
such as water table depth (Dunn et al., 2007), mean annual temperature 
(White et al., 1999), or the average vertical distribution of soil moisture 
(Martin et al., 2018), mediate sensitivity to changes in active season 
length. Our results add to the growing body of literature which has 
shown that drier sites are vulnerable to increasing summer drying in 
response to longer active seasons (Knowles et al., 2018; Parida and 
Buermann, 2014), and that this is true across different biomes (Buer-
mann et al., 2018; Butterfield et al., 2020; Xu et al., 2020). 

Some limitations apply to our study. First, our hypotheses are almost 
certainly too simplistic, particularly given the seasonal nature of rain 
and snowfall. Patterns of forest productivity in response to seasonal 
hydrologic variation, and its future change, are likely to vary for 
different seasonally snow-covered climates, such as those influenced by 
large-scale continental patterns of precipitation in the western US 
(Trujillo and Molotch, 2014), Europe (Beniston et al., 2018), and the 
Asian and North American monsoons (Adams and Comrie, 1997; Wu and 
Qian, 2003). Second, present availability of snowpack and related 
moisture data at flux towers is quite limited. We recommend that flux 
tower scientists in seasonally-snow-covered biomes consider the addi-
tion of continuous electronic snow depth and SWE instrumentation, and 
snow temperature (which indicates the melt process, Burns et al., 2014) 
as a part of the standard suite of environmental observations. We also 
share the building enthusiasm to include observations of soil and plant 
water potential, which are among the most useful metrics of plant 
physiological response to water availability (Novick et al., 2022). Third, 
geographical representation of SNODAS products severely limited the 
number of flux towers used and their representation across climate space 
(most of our study forests were similar in climate, Fig. 1, and they were 
all in North America). Fourth, the spatial resolution of the gridded 
SNODAS (1km2) and TerraClimate (4km2) products is coarse relative to 
flux tower footprints (Chu et al., 2021). These data-availability limita-
tions were a constraint on the breadth to which we were able to test our 
general hypotheses. Finally, we acknowledge that we have ignored un-
certainty in the standardized GPP products. In general there is large 
interannual variation in NEE, GPP, and ecosystem respiration, when 
compared to the multi-year mean at any site (Baldocchi et al., 2018), 
and there is likely to additional variation among the many GPP products 
available (Pastorello et al., 2020). Future analyses that examine the 
growth period and moisture effects in the context of climate and envi-
ronmental change will be strengthened if we can alleviate these 
challenges. 

5. Conclusions 

We synthesized 145 site years of eddy covariance flux data from 14 
deciduous and evergreen forest sites in the US and southeast Canada 
with gridded SWE and precipitation estimates from SNODAS. We used 
these data to study the spatiotemporal response of active season GPP to 
interannual and spatial variability in active season length, timing of 
snowmelt, and the date of disappearance of snow. We found that the 
relative dominance of the moisture and growth period effects of earlier 
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snowmelt and associated longer active seasons was dependent on site- 
average moisture conditions, determined by long-term summer cli-
matic water deficit and precipitation solid fraction, rather than inter-
annual fluctuations in weather. In addition, we did not find that the 
magnitude of peak SWE was important for determining the active season 
length or total GPP. SWE did not appear to have a legacy effect that 
influences active season GPP. However, lagged effects may have been 
overshadowed by the more direct influence of active season weather. 
Finally, we emphasize that although our hypotheses were supported 
across broader spatial and temporal scales, they were not correspond-
ingly supported within individual sites. There was a large degree of 
interannual variability both within and between sites that was not well 
represented by seasonal climate or phenology. 
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Appendix A. Evaluation of SNODAS SWE Product 

We used SNODAS data to characterize the snowpack, to overcome the general lack of observations of snowpack physical characteristics (such as 
SWE) at most flux towers. The SNODAS data are created using data assimilation and models, and comparisons with in-situ observations are necessary 
where possible, but are not independent. The data from the US Dept of Agriculture, Natural Resources Conservation Service, Snow Telemetry Program 
(SNOTEL stations), as well as airborne SWE data, are ingested as part of the assimilation process, so comparisons with SNOTEL data are helpful, but 
meaningful only in the sense that they test the accuracy of our processing methods. Nevertheless, we found that SNODAS estimates of SWE provided 
good 1:1 fits with in situ peak SWE at all three sites, which encompassed a wide range of SWE (Fig. A1). 

A few studies have performed snow surveys explicitly for the purpose of SNODAS validation and have confirmed that SNODAS performed well in 
forested areas, explaining 77% of the variance in SWE (Artan et al., 2013; Clow et al., 2012), and that SNODAS biases are relatively larger in alpine 
areas with exceptionally deep snowpack, but otherwise the model performs reasonably well and is generally consistent with other reference datasets 
(Anderson, 2011; Hedrick et al., 2015; Wrzesien et al., 2017). The comparison with in-situ observations at Niwot Ridge (Fig. A1) is favorable even with 
a deep snowpack. 

Fig. A2 
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Fig. A1. Comparison of April 1 SWE in multiple years of the SNODAS SWE product and in-situ observations using snow pillows. The SNODAS data were weighted by 
elevation as explained in Section 2.4. In-situ data for US-GLE are from Brooklyn Lake SNOTEL site (site 367), https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=367, 
and for US-NR1, Niwot USDA SNOTEL site (site 663) https://wcc.sc.egov.usda.gov/nwcc/site?sitenum=663. This site is ~ 400 m from the flux tower at the same 
elevation. Data provided by the United States Department of Agriculture, Natural Resources Conservation Service. In-situ data for US-Ha1 are from https://doi.org/ 
10.6073/pasta/cf7f702f1a3019662ef575a4b2b78102. The black dashed line is the 1:1 line, and error bars represent 1 standard deviation of pixel averaging. 

Fig. A2. : a-c) Comparison of DoY SAG determined from SNODAS versus in-situ data for the same sites as Fig. A1. Black dashed lines represent 1:1 fit. b) A few 
anomalous data points at US-Ha1 were found and illustrated in detail in d) which shows that a year with snowpack disappearance followed by a few small, isolated 
snowfall events can in a discrepancy in the SAG estimate. 
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Table B1 
Interannual variability of active season cumulative GPP and active season length, important dates, and variables found to be important for the mixed models in Tables 3 
and 4. Data shown as the interannual mean and standard deviation (in parentheses). Actual years analyzed were smaller than the full range available for some sites, 
based on data availability (particularly SNODAS and flux data overlap) and quality assurance. Exact years analyzed can be found in the supplemental dataset. Mean 
annual peak SWE and mean annual solid fraction were calculated from SNODAS, all other data were obtained from the literature cited. Sites are ordered by mean 
annual temperature for each forest type as in Table 1.  

Site Biome Number 
of Years 
Analyzed 

ΣGPPAS 

(g C m −
2) 

AS 
length 
(d) 

SAG 
(DoY) 

SOS 
(DoY) 

EOS 
(DoY) 

peak 
SWE 
(mm) 

DoY 
of 
peak 
SWE 
(DoY) 

Mean 
Annual 
Solid 
Fraction 
(%)  

Mean 
Spring 
Tair 

( ◦C) 

DoY of 
Spring 
Max. 
VWC 
(DoY) 

AS 
Climatic 
Water 
Deficit 
(mm) 

Mean 
Autumn 
PAR 
(μmol m 
− 2 s − 1)  

Sum 
Autumn 
Rain 
(mm) 

US-Syv DBF 8 898 
(127) 

178 
(9) 

123 
(9) 

124 
(9) 

248 
(14) 

172 
(58) 

69 
(20) 

30 
(0.05) 

12.9 
(1.9) 

147 
(9) 

6.9 
(4.5) 

252 
(32) 

130 
(84) 

US-WCr  10 883 
(122) 

144 
(8) 

120 
(13) 

135 
(5) 

245 
(10) 

116 
(49) 

63 
(21) 

23 
(0.05) 

15.2 
(1.9) 

140 
(5) 

7.5 
(4.7) 

306 
(32) 

91 
(57) 

US-Bar  12 869 
(113) 

185 
(14) 

115 
(12) 

116 
(12) 

245 
(17) 

181 
(67) 

69 
(13) 

23 
(0.06) 

12.1 
(1.3) 

126 
(16) 

8.5 
(8.7) 

286 
(58) 

226 
(68) 

US-UMB  11 973 
(132) 

176 
(8) 

103 
(13) 

124 
(9) 

256 
(11) 

112 
(36) 

42 
(31) 

24 
(10) 

13.5 
(1.5) 

140 
(9) 

25.3 
(11.2) 

253 
(32) 

133 
(68) 

US-Ha1  15 927 
(215) 

203 
(12) 

101 
(16) 

109 
(10) 

245 
(20) 

85 
(45) 

43 
(30) 

17 
(0.05) 

13.0 
(1.8) 

124 
(12) 

10.7 
(10.8) 

273 
(51) 

194 
(110) 

CA-Cbo  7 1449 
(276) 

193 
(17) 

103 
(13) 

113 
(6) 

253 
(14) 

146 
(49) 

73 
(18) 

21 
(0.05) 

13.5 
(1.6) 

133 
(22) 

16.4 
(9.7) 

243 
(40) 

161 
(100) 

CA-TPD  6 949 
(110) 

191 
(5) 

99 
(7) 

121 
(7) 

239 
(13) 

44 
(24) 

35 
(30) 

11 
(0.04) 

15.2 
(0.9) 

132 
(9) 

22.2 
(13.7) 

255 
(29) 

231 
(52) 

US-NR1 ENF 16 561 
(69) 

207 
(12) 

169 
(8) 

108 
(10) 

254 
(16) 

367 
(63) 

110 
(18) 

51 
(13) 

3.5 
(1.2) 

146 
(11) 

49.9 
12.9 

321 
(29) 

43 
(30) 

US-Ho2  13 981 
(161) 

266 
(16) 

102 
(13) 

78 
(10) 

264 
(16) 

114 
(57) 

44 
(32) 

19 
(0.07) 

7.9 
(1.1) 
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(14) 

8.4 
(8.2) 
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(37) 
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(101) 

US-Ho1  15 883 
(93) 
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(14) 

104 
(14) 
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(10) 

264 
(9) 

127 
(56) 

55 
(28) 

21 
(0.07) 

9.6 
(0.9) 
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(13) 

9.3 
(7.6) 
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(17) 

247 
(97) 

US-Vcm  4 523 
(100) 

247 
(16) 

132 
(15) 

80 
(12) 

270 
(6) 

175 
(77) 

43 
(25) 

36 
(0.08) 

5.1 
(2.3) 

NA 
(NA) 

52.6 
(11.1) 

364 
(24) 

35 
(9) 

US-Ha2  15 836 
(146) 

271 
(17) 

98 
(17) 

76 
(12) 

256 
(20) 

87 
(45) 

42 
(30) 

17 
(0.06) 

9.1 
(1.3) 

105 
(22) 

9.1 
(8.3) 

203 
(42) 

252 
(85) 

CA-TP3  7 1301 
(159) 

269 
(19) 

99 
(7) 

83 
(11) 

285 
(32) 

49 
(26) 

38 
(26) 

12 
(0.04) 

8.8 
(2.0) 

92 
(13) 

16.8 
(8.3) 

157 
(59) 

203 
(105) 

CA-TP4  7 979 
(175) 

267 
(20) 

99 
(7) 

85 
(10) 

256 
(23) 

48 
(25) 

38 
(26) 

12 
(0.04) 

11.1 
(1.9) 

93 
(10) 

16.4 
(8.4) 

213 
(48) 

313 
(95)   
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Ballesteros, A., López-Blanco, E., Loubet, B., Loustau, D., Lucas-Moffat, A., Lüers, J., 
Ma, S., Macfarlane, C., Magliulo, V., Maier, R., Mammarella, I., Manca, G., Marcolla, 
B., Margolis, H.A., Marras, S., Massman, W., Mastepanov, M., Matamala, R., Matthes, 
J.H., Mazzenga, F., McCaughey, H., McHugh, I., McMillan, A.M.S., Merbold, L., 
Meyer, W., Meyers, T., Miller, S.D., Minerbi, S., Moderow, U., Monson, R.K., 
Montagnani, L., Moore, C.E., Moors, E., Moreaux, V., Moureaux, C., Munger, J.W., 
Nakai, T., Neirynck, J., Nesic, Z., Nicolini, G., Noormets, A., Northwood, M., Nosetto, 

J.C. Yang et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0058
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0058
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0058
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0059
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0059
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0059
http://doi.org/10.1007/978-94-007-0632-3_29
http://doi.org/10.1007/978-94-007-0632-3_29
https://doi.org/10.1038/s43247-023-00751-3
https://doi.org/10.1002/2015GL065855
https://doi.org/10.1002/2015GL065855
https://doi.org/10.1002/hyp.10400
https://doi.org/10.1002/hyp.10400
https://doi.org/10.5194/tc-9-13-2015
https://doi.org/10.5194/tc-9-13-2015
https://doi.org/10.1029/2021JG006276
https://doi.org/10.1029/2021JG006276
https://doi.org/10.1029/2019GL085546
https://doi.org/10.1111/j.1365-2486.2009.01967.x
https://doi.org/10.1002/2014WR015809
https://doi.org/10.1111/j.1365-2486.2011.02397.x
https://doi.org/10.1111/j.1365-2486.2011.02397.x
https://doi.org/10.1038/s41612-023-00343-0
https://doi.org/10.1038/s41612-023-00343-0
https://doi.org/10.1038/nclimate2253
https://doi.org/10.1038/nclimate2253
https://doi.org/10.1111/gcb.12890
https://doi.org/10.1109/TGRS.2003.809118
https://doi.org/10.1002/2016WR019887
https://doi.org/10.1002/2016WR019887
https://doi.org/10.1002/2017GL076504
https://doi.org/10.1002/2017GL076504
https://doi.org/10.1111/ele.14260
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.18637/jss.v082.i13
https://doi.org/10.1111/j.1365-2486.2009.02041.x
https://doi.org/10.1111/j.1365-2486.2009.02041.x
https://doi.org/10.1111/gcb.13497
https://doi.org/10.1111/gcb.16117
https://doi.org/10.1111/gcb.16117
https://doi.org/10.1029/1999JD900227
https://doi.org/10.1029/1999JD900227
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0082
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0082
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0082
https://doi.org/10.1111/gcb.14435
https://doi.org/10.1002/2013WR014452
https://doi.org/10.1002/2013WR014452
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0085
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0085
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0085
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0085
http://refhub.elsevier.com/S0168-1923(24)00169-2/sbref0085
https://doi.org/10.5194/tc-14-1579-2020
https://doi.org/10.5194/tc-14-1579-2020
https://doi.org/10.1038/s41612-018-0012-1
https://doi.org/10.1038/s41612-018-0012-1
https://doi.org/10.1038/s41558-021-01014-9
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1111/j.2041-210x.2012.00261.x
https://doi.org/10.1029/2011GL048803
https://doi.org/10.1029/2011GL048803
https://doi.org/10.1038/s41561-022-00909-2
https://doi.org/10.1038/s41561-022-00909-2
https://doi.org/10.1038/nclimate3114
https://doi.org/10.1038/nclimate3114
https://doi.org/10.1016/j.agrformet.2018.03.017
https://doi.org/10.1016/j.agrformet.2018.03.017
https://doi.org/10.5194/bg-3-571-2006
https://doi.org/10.1002/2014GL060495


Agricultural and Forest Meteorology 353 (2024) 110054

20

M., Nouvellon, Y., Novick, K., Oechel, W., Olesen, J.E., Ourcival, J.-M., Papuga, S.A., 
Parmentier, F.-J., Paul-Limoges, E., Pavelka, M., Peichl, M., Pendall, E., Phillips, R. 
P., Pilegaard, K., Pirk, N., Posse, G., Powell, T., Prasse, H., Prober, S.M., Rambal, S., 
Rannik, Ü., Raz-Yaseef, N., Reed, D., de Dios, V.R., Restrepo-Coupe, N., Reverter, B. 
R., Roland, M., Sabbatini, S., Sachs, T., Saleska, S.R., Sánchez-Cañete, E.P., Sanchez- 
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