
Incorporation of needleleaf traits improves estimation of light absorption 
and gross primary production of evergreen needleleaf forests

Baihong Pan a, Xiangming Xiao a,* , Li Pan a, Cheng Meng a, Peter D. Blanken b ,  
Sean P. Burns b,c, Jorge A. Celis a , Chenchen Zhang a, Yuanwei Qin a

a School of Biological Sciences, Center for Earth Observation and Modeling, University of Oklahoma, 101 David L. Boren Blvd., Norman, OK 73019, USA
b Department of Geography, University of Colorado, Boulder, CO 80309, USA
c National Center for Atmospheric Research, Boulder, CO 80305, USA

A R T I C L E  I N F O

Keywords:
GPP
Vegetation photosynthesis model
ENF
FPARchl

A B S T R A C T

The seasonal dynamics and interannual variation of gross primary production (GPP, g C/m2/day) of evergreen 
needleleaf forest (ENF) are important but most of models underestimate ENF GPP. In this work, we selected three 
ENF sites with 10+ years of data from the eddy flux towers and investigated temporal dynamics of GPP, climate, 
and vegetation greenness (as measured by vegetation indices from MODIS surface reflectance data) during 
2000–2020. We found that the seasonal dynamics of GPP and vegetation indices were correlated highly at two 
sites (US-Ho2, US-NR1) under Warm Summer Continental climate (Dfb) and Subarctic climate (Dfc), where the 
seasonality of air temperature, radiation and rainfall are synchronized, but weakly at the site (US-Me2) under 
Mediterranean climate (Csb), where the seasonality of air temperature and radiation is asynchronized with that 
of rainfall and trees have deep roots for access to deep soil water in a year. We incorporated the needleleaf traits 
and modified the equation that estimates light absorption by chlorophyll of needleleaf in the data-driven 
Vegetation Photosynthesis Model (VPM), which resulted in substantial improvement of GPP estimates. Daily 
GPP estimates over 2000–2020 from the VPM (v3.0) agreed well with the GPP estimates provided by AmeriFlux. 
As ENF at the US-Me2 site under the Mediterranean climate has deep roots for access water in the deep soils, we 
incorporated no-water stress in the wet season for the VPM (v3.0) simulations, which further improved GPP 
estimates of ENF at the site. This study highlights the importance of needleleaf traits and plant root traits in the 
VPM v3.0 for estimating GPP of evergreen needleleaf forests under different types of climate systems.

1. Introduction

The exchange of carbon dioxide (CO2) between the land and the 
atmosphere is fundamental to the carbon cycle (Green et al., 2019; 
Knutti et al. 2017). The carbon sequestration potential via photosyn-
thesis of evergreen needleleaf forests (ENFs) is high, with an uptake of 
approximately 2 billion tons of carbon dioxide per year (Keenan et al. 
2015). At the ecosystem scale, the eddy covariance method has been 
used to measure net CO2 exchange between the land and the atmosphere 
at various sites (Baldocchi 2020). Eddy flux towers in evergreen nee-
dleleaf forests provide comprehensive flux measurements over areas 
ranging from a few to many hectares, depending on the tower height and 
weather conditions (Xiao et al. 2004). The data from the flux towers are 
limited to local areas, and researchers use these data to develop and 
evaluate models, including process-based models (Smallman and 

Williams 2019; Vinukollu et al. 2011) and data-driven models (Jung 
et al. 2020; Wagle et al. 2016).

Many models are driven by remote sensing data and provide time 
series data of gross primary production (GPP) across the scales from 
local to the globe (Junttila et al. 2023; Pierrat et al. 2022). Some of these 
models use reflectance-based vegetation indices such as the Normalized 
Difference Vegetation Index (NDVI), the near-infrared reflectance of 
vegetation index (NIRV) and the Enhanced Vegetation Index (EVI), 
which are widely used for monitoring canopy greenness and structure 
(Huang et al. 2019; Zeng et al. 2022). NDVI is less effective in ENFs due 
to the limited seasonal variation in canopy greenness and structure 
(Tucker 1979; Wang et al. 2023). The NIRV is considered as a good proxy 
for daily GPP in ENFs (Wong et al. 2020), as it effectively tracks seasonal 
GPP dynamics by capturing vegetation light absorption influenced by 
greenness, leaf area, orientation, and canopy structure (Badgley et al. 
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2019). EVI is closely related to leaf and canopy chlorophyll content and 
the fraction of light absorbed by chlorophyll in leaf and canopy of forests 
(Zhang et al. 2005; Zhang et al. 2006) and has strong linear relationship 
with GPP (Xiao et al. 2004). As the Photochemical Reflectance Index 
(PRI) is sensitive to xanthophyll pigment activity and modulates thermal 
energy dissipation, some models use PRI for tracking photosynthetic 
phenology (Gamon et al. 1992; Wong and Gamon 2015). The 
chlorophyll-carotenoid index (CCI), the satellite proxy for PRI, was 
designed to track the seasonal dynamics of the 
chlorophyll-to-carotenoid ratio, which makes it an effective proxy for 
ENF carbon uptake (Gamon et al. 2016). In recent years, solar-induced 
chlorophyll fluorescence (SIF) has shown significant potential for 
tracking GPP of ENF, which is then used as a robust proxy for photo-
synthesis even in the presence of snow and cloud cover (Kim et al. 2021). 
At present, satellite-based SIF measurements have coarse spatial reso-
lution and require complex instruments for accurate measurement of SIF 
(Mohammed et al. 2019).

The light use efficiency (LUE) models estimate GPP by multiplying 
the energy absorbed by plants with the actual LUE that converts energy 
to carbon fixed during the Calvin cycle (Monteith 1972). These LUE 
models can be driven by remote sensing vegetation index data, which 
are globally available at various spatial resolutions (Huang et al. 2021; 
Pei et al. 2022). Several LUE models have been developed, for example, 
the MOD17 model (Running and Zhao 2015), the eddy covariance 
(EC-LUE) model (Yuan et al. 2007; Zheng et al. 2020), the 
Carnegie-Ames-Stanford Approach (CASA) (Cao et al. 2016; Potter et al. 
1993), and the Vegetation Photosynthesis Model (VPM) (Xiao et al. 
2005a; Zhang et al. 2017). The EVI-driven VPM has demonstrated its 
ability to simulate GPP of forests (Xiao et al. 2004; Xiao et al. 2005a; 
Zhang et al. 2016). EVI captures the changes in chlorophyll content 
within evergreen leaves and reflects canopy-level structural changes 

(leaf area index, plant area index), even though they only change 
moderately over the growing season (Xiao et al. 2005b).

In this study we investigated the seasonal dynamics and interannual 
variation of carbon fluxes over three evergreen needleleaf forest sites 
under varying climate and soil water conditions, which has 10+ years of 
data from the eddy flux tower systems. Note that although there are 
many ENF sites in the AmeriFlux and Fluxnet, few of them have 10+
years of data. We developed and evaluated the performance of a new 
version of VPM (VPM v3.0) in estimating GPP at the three sites. By 
integrating remote sensing and eddy flux tower data, our study 
addressed three major questions: (1) What are the ranges of inter-annual 
variation of ENF GPP over 10+ years? (2) How to incorporate needleleaf 
traits to improve estimation of light absorption by needleleaf and then 
GPP estimates of ENF in the VPM v3.0 model? and (3) how to incor-
porate the deep roots of ENF under the Mediterranean climate, which 
enables its access to deep soil water in the site, to assess the effect of 
water stress and improve GPP estimates of ENF in the VPM v3.0 model? 
This study could help us to better understand interannual variation of 
GPP over 10+ years and improve and evaluate VPM v3.0 for estimating 
daily GPP of evergreen needleleaf forests over years.

2. Materials and methods

2.1. Study area

We chose three ENF sites in the AmeriFlux based on three criteria: (1) 
availability of 20+ years of observational records, with usable data 
filtered to 10+ years (Table 1); (2) a minimum of 60 % coverage by ENF 
within the 500-m MODIS pixel that encompasses the eddy flux tower 
location (Fig. 1); and (3) a predominance of ENF within approximately 
an area of 1-km2 surrounding the eddy flux tower. In specific, among the 

Table 1 
Overview of characteristics for three ENF eddy flux tower sites. MAP - mean annual precipitation (mm); MAT - mean annual air temperature ( ◦C); LAI - leaf area index 
(m2/m2).

Sites 
Variables

US-Ho2 US-NR1 US-Me2

Geolocation (latitude, longitude, elevation 
a.s.l.)

(45.2091◦, − 68.7470◦, 61-m) (40.0329◦, − 105.5464◦, 3050-m) (44.4523◦, − 121.5574◦, 1253-m)

Climate Type Warm Summer Continental Subarctic Mediterranean
MAP(mm) 1064 800 523
MAT( ◦C) 5.1 1.5 6.3

Soil Type Loamy sand Loamy sand Sandy
Access to deep 
soil water

/ / Yes

Vegetation and leaf 
traits

Major tree species Red spruce and eastern hemlock Subalpine fir, Engelmann spruce and 
lodgepole pine

Ponderosa pine

Peak LAI (m2/m2) 5 4.2 2.8
Forest stand ages Mean age ≈ 120y Varied from 80 to 120y Mean age ≈ 71y

Data period 2007–2020 2000–2016 2002–2019
Reference (Davidson et al. 2006; Richardson et al. 

2019; Xiao et al. 2005a)
(Burns et al. 2015; Knowles et al. 
2020)

(Law 2022; Law et al. 2001; Still et al. 2021; 
Thomas et al. 2009)

Fig. 1. Geographic positions and adjacent areas of three evergreen needleleaf forest sites. The light blue polygon represents the area covered by a MODIS pixel with a 
spatial resolution of 500 m The red dot represents the location of the flux tower. (a) US-Ho2 site, (b) US-NR1 site, and (c) US-Me2 site.
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54 ENF sites in the "AmeriFlux FLUXNET Data", only six sites met the 
criteria of having 20+ years of observational records. From these six, we 
selected Howland Forest site (West Tower, US-Ho2), Niwot Ridge Forest 
site (Long Term Ecological Research, NWT1, US-NR1), and Metolius 
Mature Ponderosa Pine site (US-Me2). These sites were chosen to 
represent three distinct temperate climate systems: Warm Summer 
Continental, Subarctic (located in a mid-latitude mountainous region), 
and Mediterranean climates, respectively. Other sites with similar cli-
mates were excluded. Table 1 contains a concise overview of these three 
ENF sites.

2.2. Datasets

2.2.1. In-situ data from the eddy flux tower sites
We used half-hourly meteorological and GPP data provided by the 

AmeriFlux dataset (https://ameriflux.lbl.gov/data/flux-data-products/
). The meteorological data include incoming photosynthetic photon flux 
density (PPFD_IN), air temperature (TEC), precipitation (PEC) and soil 
water content (SWCEC). We used GPPEC, which was estimated by the 
method that partitions daytime NEE data into GPP and ecosystem 
respiration (ER) (NEE = GPP - ER) (Lasslop et al. 2009). In this method, 
both the GPP and ER are estimated simultaneously by the model.

We calculated the photosynthetically active radiation (PAREC) from 
PPFD_IN (Eq. (1)): 

PAREC = PPFD IN × 10− 6 × 60 × 30 (1) 

Here, PPFD_IN is in the unit of µmol m⁻² s⁻¹. The formula converts 
PPFD_IN to PAREC over 30 min, resulting in the unit of mol m⁻² per half- 
hour, accounting for the conversion from micromoles to moles and ag-
gregation over a half-hour. In this study we used the daytime data, 
following the same procedure used in previous publication (Chang et al. 
2021). For simplicity, the daytime period is delineated by PAREC greater 
than 0 (Ogle et al. 2012). We averaged the half-hourly TEC with PAREC 
greater than 0 to calculate the daily daytime air temperature (TEC-DT). 
We summed the half-hourly PAREC and the GPPEC respectively during 
the daytime as the daily daytime data. We calculated the averages of the 
half-hourly SWCEC, and sums of the half-hourly PEC as the daily data. For 
each of these variables, we calculated an average at eight-day interval, 
aligning with the MODIS temporal resolution.

2.2.2. MODIS land surface reflectance and vegetation indices during 
2000–2020

We used the Moderate Resolution Imaging Spectroradiometer 
(MODIS) surface reflectance product (MOD09A1 V6.1), which has seven 
spectral bands (1–7), covering wavelengths from 0.459 μm to 2.155 μm 
(Vermote 2015). The MOD09A1 dataset has a spatial resolution of 500 m 
and an 8-day temporal resolution, and has been atmospherically cor-
rected to account for gases, aerosols, and Rayleigh scattering. We used 
surface reflectance state flags (StateQA) of MOD09A1 V6.1 to identify 
bad-quality observations affected by cloud (Fig. 2). The bad-quality 
observations for the US-Ho2 and US-NR1 sites were mainly concen-
trated in the winter season (snow season). The data analyses are thus 
focused on the snow-free periods at the US-Ho2 and US-NR1 sites. 
During May through October, approximately 92 % of observations are 
classified as good quality at the US-Ho2 and US-NR1 sites (see 

calculation of snow-free seasons see Section 2.3.1). The data analyses 
used data over the entire year at the US-Me2 site, where on the average 
88 % of the observations are good-quality observations.

For the time series data, we gap-filled the bad-quality observations 
with the linear interpolation method. After pre-processing MOD09A1 
V6.1 data, red (RED) (620–670 nm), blue (BLUE) (459–479 nm), near 
infrared (NIR) (841–876 nm) and short wavelength near infrared 
(SWIR) (1628–1652 nm) were used to calculate three vegetation indices 
(Table 2): (1) Normalized Difference Vegetation Index (NDVI; (Tucker 
1979)), (2) Enhanced Vegetation Index (EVI; (Huete et al. 2002)), and 
(3) Land Surface Water Index (LSWI; (Xiao et al. 2002)).

Since the flux towers may be situated on the edges of MODIS pixels, 
we evaluated all MODIS pixels within a 500-meter radius centered on 
each tower (Fig. 3). This 500-meter radius was selected based on pre-
vious research showing that the daytime footprints of the three sites fall 
within this range (Chu et al. 2021). Using EVI as an example, the EVI 
from the pixel containing the flux tower closely aligns with the average 
EVI of all selected MODIS pixels (Fig. 3). Therefore, for simplicity and 
consistency with the procedure reported in previous work (Xiao et al., 
2005), the MODIS pixel with the tower is used for data analyses in this 
study.

2.2.3. Climate data from the fifth generation ECMWF atmospheric 
reanalysis dataset (ERA5)

ERA5-Land dataset is a reanalysis climate dataset and provides a 
consistent representation of land variables over time at fine spatial 
resolution (9-km grid spacing) (Muñoz Sabater 2019). It is produced by 
the ECMWF ERA5 climate reanalysis and ERA-Land uses ERA5 atmo-
spheric variables (e.g., air temperature, humidity, pressure) as input to 
control the simulated land fields. We used the ERA5-Land hourly dataset 
(Muñoz-Sabater et al. 2021) as input data for simulations of VPM from 
2000 to 2020. The hourly downward surface solar radiation (SW_IN) 
was summed to generate daily daytime data, and then averaged over 
8-day period to match the model simulation interval. SW_IN was used to 
calculate the PARERA5 (Eq. (2)). 

PARERA5 = SW IN × fPAR × β (2) 

where SW_IN (J/m2) represents the incoming shortwave radiation from 
the ERA5 dataset; fPAR = 0.45 indicates the portion of PAR relative to 
SW (Ma et al. 2014; Meek et al. 1984), β = 4.56 μmol J− 1 is the con-
version factor for energy to quanta (Dye 2004). The hourly air temper-
ature ( ◦C) during the daytime (defined as PARERA5 greater than 0) was 
averaged to generate daily daytime data, and then averaged over each 
8-day period to generate TDT-ERA5.

The relationships between climate data from ERA5 (PARERA5, TDT- 

ERA5) and those observed at the flux tower sites (PAREC, TDT-EC) during 
the whole year were plotted for each site (Fig. 4). PARERA5 was highly 
correlated with PAREC (R2 value > 0.91), and the slope values for a 
regression line between PARERA5 and PAREC were small at the US-Ho2 (3 
%) site, moderate at US-Me2 (6 %) site, but large at the US-NR1 (28 %) 
site, which may be related to local complex topography (Urraca et al. 
2018). TDT-ERA5 was also highly correlated with TDT-EC (R2 > 0.94), and 
the slope value for a regression line between TDT-ERA5 and TDT-EC ranged 
from moderate (8 %) to large (21 %), which was consistent with an 
earlier study showing R2 between PARERA5 (TDT-ERA5) and PAREC 
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Fig. 2. Annual bad-quality observations labeled as cloud-affected by StateQA: monthly counts and yearly proportions (shown at each subfigure’s far right). (a) US- 
Ho2, 2007–2020; (b) US-NR1, 2000–2016; (c) US-Me2, 2002–2019.
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(TDT-EC) higher than 0.7 in 90 % of 204 sites in FLUXNET 2015 (Zeng 
et al. 2020).

2.2.4. The snow-free season and active growing season at the individual 
sites

As snow affects surface reflectance and vegetation indices, we 
delineated the snow-free season and our data analyses focused on ob-
servations within the snow-free season. which is defined by daytime 
mean air temperature at the EC tower sites (TDT-EC) (Chang et al. 2019). 
The start of the snow-free season was defined as the third date of three 
consecutive 8-day observations with TDT-EC above 5 ◦C, and the end of 
the snow-free season date was defined as the date before three consec-
utive 8-day observations with TDT-EC below 5 ◦C (Chang et al. 2021). We 
further selected observations with TDT-EC greater than 5 ◦C in the above 
time period to avoid the effects from possible temperature dips in the 
spring (Gu et al. 2008). We delineated the snow-free season for each 
site-year at the three ENF sites by TDT-EC and TDT-ERA5 respectively. The 
data within the snow-free season were used to estimate site-specific 
apparent optimum air temperature for photosynthesis (Topt-site), which 
is then used for VPM simulation.

For comparison between predicted GPP from model simulations and 
GPP from the eddy flux tower sites, we delineated the active growing 
season by using air temperature and vegetation productivity as an in-
dicator for the “active growing season” (Korner et al. 2023; Liu et al. 
2016; Yuan et al. 2018). The sites were divided into two groups 

according to their winter climate: (1) US-Ho2 and US-NR1, where ENF 
experiences dormancy every year during the cold winter (Havranek and 
Tranquillini 1995; Knowles et al. 2020), and (2) US-Me2, where ENF 
experiences different winter conditions, including some years charac-
terized by cold winters resulting in ENF dormancy and other years 
marked by warm winters conducive to regular ENF growth. For the 
US-Ho2 and US-NR1 sites, we delineated the period between the first 
observation with TDT-EC above − 1 ◦C and the last observation with 
TDT-EC above − 1 ◦C in each year, as − 1 ◦C is considered as the minimum 
air temperature threshold value (Tmin) for photosynthesis of ENFs in 
some ecosystem models (Zhang et al. 2017). We used GPPEC larger than 
1 g C/m2/day to delineate the start of the active growing season (SOS) 
and GPPEC lower than 1 g C/m2/day at the next 8-day observation as the 
end of the growing season (EOS) (Xin et al. 2017). We further selected 
observations with TDT-EC greater than − 1 ◦C in the above active growing 
season. For the US-Me2 site, we selected observations from whole year 
with TDT-EC above − 1 ◦C and GPPEC above 1 g C/m2/day as the active 
growth season. We did not delineate the SOS and EOS at the US-Me2 site 
because it has both warm and cold winters varying from year to year and 
photosynthesis can start at any time as long as the air temperatures are 
favorable.

2.3. Vegetation photosynthesis model (VPM)

The VPM estimates daily GPP (g C/m2/day) as the product of light 

Table 2 
Vegetation indices.

Index Formula Description

NDVI NDVI =
NIR − RED
NIR + RED

Related to green leaf area index (LAI), often used to assess vegetation density and health.

EVI EVI = 2.5×

NIR − RED
(NIR + 6 × RED − 7.5 × BLUE + 1)

Related not only to LAI but also sensitive to chlorophyll content and leaf age, providing enhanced monitoring of canopy 
variations and reducing atmospheric effects.

LSWI LSWI =
NIR − SWIR
NIR + SWIR

Useful for assessing water content in vegetation and soil moisture; used for evaluation of moisture stress and drought 
conditions.

Fig. 3. Distribution of EVI values in the footprint of each flux site. Figures (a) to (c) are the footprint of each flux site (Red circle with a radius of 500 m) and the 500- 
m MODIS pixels (Blue polygon) intersecting this circle. Figures (d) to (f) are the histograms of EVI for the MODIS pixels of the three flux towers, using data from July 
20, 2010 as an example. The red dot line indicates the EVI of the pixel where the tower is located (EVITower, which is utilized as an input in VPM v3.0). The blue dot 
line indicates the mean EVI of all the pixels (EVIMEAN).
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absorption by chlorophyll in the canopy (APARchl) and the light use 
efficiency (εg): 

GPP = APARchl × εg (3) 

APARchl is calculated as a product of photosynthetically active ra-
diation (PAR) and the fraction of PAR absorbed by chlorophyll 
(FPARchl): 

APARchl = FPARchl × PAR (4) 

The FPARchl is calculated as a linear function of EVI (Zhang et al. 
2016; Zhang et al. 2017).

εg in Eq. (5) is downregulated by air temperature limitation (Tscalar) 
and water stress (Wscalar) from its maximum value (ε0): 

εg = ε0 × Tscalar × Wscalar (5) 

where ε0 differs by plant function types (C3 vs C4 plants) (Wang et al. 
2016; Xiao 2004).

2.3.1. Methods to calculate the fraction of light absorbed by chlorophyll in 
broadleaf and needleleaf plants

We have used the following equation to calculate the fraction of light 
absorption by chlorophyll in the canopy (FPARchl): FPARchl = a * EVI - b. 
In the VPM v1.0 (Xiao et al. 2004), and VPM v2.0 (Zhang et al. 2017), we 
treat both flat (broad) leaf and needleleaf with the same equation. In the 
VPM 3.0, we treat broadleaf and needleleaf with different parameter 
values. 

Broadleaf : FPARchl− broadleaf = EVI − 0.1 (6) 

Needleleaf : FPARchl− needleleaf = 1.25*EVI − 0.1 (7) 

We assume a = 1.25 in Eq. (7) after we carried out both literature 
review of empirical studies and leaf-trait-based calculation. Among the 

literature review of empirical studies, one study at the MS-Me2 site (Law 
et al. 2001) reported needle-to-shoot area ratio of 1.25 and used it to 
adjust leaf area index estimates of needleleaf trees at the site. Here we 
briefly explain our assumption from the perspective of needleleaf 
structure or leaf trait. At the leaf level, in the cross-section of a needle-
leaf, the distribution of chloroplasts is arranged in circle and can be 
approximated as a ring (Fig. 5d). The inner part of the needleleaf are 
transport tissue and endoderm, and the outer part is wrapped by 
mesophyll, and chloroplasts are distributed in mesophyll (Trueba et al. 
2022). The ratio of mesophyll volume to total leaf volume is assumed as 
the ratio of ring area to the concentric circle area, and one study re-
ported the ratio (γE) as 1.27 (1.28) based on mean (medium) values of 34 
species across conifer plants (Trueba et al. 2022). Here we use a simple 
way to estimate the ratio (gneedleleaf) (Fig. 5, Eq. (8)). At the 
cross-section, leaf area from a flat-shape broadleaf (e.g., width = 5 mm) 
is smaller than leaf area from a needleleaf (e.g., diameter = 5 mm), as 
needleleaf has a cylindrical shape and its perimeter is larger than 
diameter (Fig. 5b, d). The ratio of the perimeter from the outer 
semi-circle over the diameter is pi/2 (3.14/2 = 1.57). We simply assume 
R3
R1 

as 0.8 and then γE was about 1.2566, ~1.26. In this study, for 
simplicity and imperfect circle of a needleleaf, we used 1.25 for nee-
dleleaf at the three sites. Here we assume that these two approaches (our 
leaf structure approach vs the needle-to-shoot area approach) offer 
similar solutions to adjust the light absorption of ENF. 

γE =
1
2 × 2 × π × R3

2 × R1
=

π
2
×

R3

R1
(8) 

To fully consider the light absorbed by needle leaves at three ENF 
sites, we multiplied the needle-to-flat area ratio (γE, 1.25) to calculate 
FPARchl-needleleaf and we considered that green vegetation didn’t exist 
when EVI is <0.1, at which FPARchl-needleleaf is 0: 

Fig. 4. The relationships between climate data obtained by ERA5 and observed by flux tower during the whole year. (a~b) US-Ho2, 2007–2020; (c~d) US-NR1, 
2000–2016; (e~f) US-Me2, 2002–2019. The darker the color of the scatterplot, the more dots there are.
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FPARchl− needleleaf =

{
0, EVI ≤ 0.1

1.25 × EVI − 0.1, EVI > 0.1 (9) 

2.3.2. Methods to estimate site-specific apparent optimum air temperature 
for photosynthesis of evergreen needleleaf forests (Topt-site)

Tscalar ranges from 0 to 1 and is calculated as follows: 

Tscalar =
(T − Tmax) × (T − Tmin)

(T − Tmax) × (T − Tmin) −
(
T − Topt

)2 (10) 

where the T, Tmax, Tmin and Topt refer to the daytime mean air temper-
ature, and maximum, minimum, and optimum air temperature param-
eters for photosynthesis, respectively. Tmin and Tmax can be obtained 
from a look-up table (Zhang et al. 2017).

In both VPM v1.0 and v2.0, we used biome-specific Topt (Topt-biome) 
parameter values. Our previous studies reported the procedure to esti-
mate site-specific Topt (Topt-site) parameter values by (1) GPPEC versus air 
temperature response curves and (2) EVI versus air temperature 
response curves, where air temperature data are from the in-situ mea-
surements at the tower sites or the climate data products (Chang et al. 
2021; Chang et al. 2020). In specific, the site-year specific Topt (Top-

t-site-year) is determined by averaging the temperature (TDT) corre-
sponding to the 95th percentile of peak GPPEC (or EVI) values in the 
response curves for that year. Then, Topt-site is obtained by averaging 
Topt-site-year values across multiple years, excluding those years in which 
the number of air temperature observations accounted for <50 % of the 
total possible observations during the snow-free season. For the US-Ho2 

and US-NR1 sites, the observations during the snow-free seasons were 
used. For the US-Me2 site, the observations from mid-May to late-July 
are used. We estimated Topt-site (GPPec - Tec) and Topt-site (EVI - Tec) by 
using the air temperature data from the tower sites, and Topt-site (GPPec - 

Tera5) and Topt-site (EVI - Tera5) by using the air temperature data from the 
ERA5 data products (Table 3).

2.3.3. Methods to estimate effect of water on GPP
Wscalar ranges from 0 to 1 and is calculated as follows: 

Wscalar =
1 + LSWI

1 + LSWImax
(11) 

LSWImax is the maximum LSWI during the snow-free season in a year. 
To reduce any bias, a temporal smoothing technique is employed, 
encompassing data from the four adjacent years (two years preceding 
and two years following), to determine the second highest LSWImax over 
this five-year timeframe, which will be used as input “LSWImax” (Zhang 
et al. 2017). Wscalar represents the water stress from land surface 
(including both plant leaves and soils).

The Mediterranean climate is characterized with a wet season and a 
dry season, thus evergreen forests under this climate condition often 
develop deep roots for access to deep soil water. The forest at the US- 
Me2 site have deep roots to get water from the ground during the dry 
seasons (Thomas et al. 2009). The deep roots also have access to water 
throughout the soil profiles in the wet season, too, which may further 
ensure plants free from water stress during the wet season. Thus, for the 
US-Me2 site, we set Wscalar = 1 at the US-Me2 site during the wet seasons 

Fig. 5. Three-dimensional (3D, cross-session) diagrams of (a) broadleaf and (c) needleleaf. Solid green dots represent chloroplasts. Simplified cross-section of (b) 
broadleaf and (d) needleleaf; the green triangles represent the distribution of chloroplasts. In (d), R1 represents the radius of the concentric circle, R2 represents the 
width of the ring and R3 represents the width of the averaged ring.

Table 3 
ε0 and air temperature parameter values used in the VPM for the three sites. Minimum and maximum air temperature parameters were from the leaf-based laboratory 
experiment. Biome-optimal air temperature parameters were defined in biome-specific lookup tables. Site-specific air temperature (Topt-site) were calculated by the 
methods in Section 2.3.2.

Site_ID 
Parameter

US-Ho2 US-NR1 US-Me2

ε0 

(g C/mol APAR)
0.53 0.53 0.53

Tmin ( ◦C) − 1 − 1 − 1
Tmax ( ◦C) 40 40 40
Topt- biome ( ◦C) 20 20 20
Topt-site-(GPPec - Tec) ( ◦C) 22 14 16
Topt-site-(EVI - Tec) ( ◦C) 20 13 16
Topt-site-(GPPec - Tera5) ( ◦C) 23 17 19
Topt-site-(EVI - Tera5) ( ◦C) 22 16 19
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(January to June, October to December), and calculated Wscalar as Eq. 
(11) during the dry season (July to September).

2.4. Simulations of VPM v3.0 under two FPARchl estimates, climate 
datasets and two wscalar parameters

We run and compare the VPM simulations (Table S1): (1) two 
FPARchl estimates (with or without 1.25 in FPARchl estimation), (2) two 
meteorological datasets (EC vs ERA5), (3) two Topt-site estimates with 
ERA5 climate data (Topt-site-GPP vs Topt-site-EVI). For additional informa-
tion on the VPM simulations, please consult Supplementary Methods 
#1.

2.5. Statistical analyses

2.5.1. GPPEC, vegetation indices, and air temperature comparison
To investigate the relationships between GPPEC and vegetation 

indices (NDVI and EVI), the relationships between GPPEC and TDT-EC, 
and the relationships between EVI and TDT-EC, we employed simple 
linear regression analysis. This analysis was based on two statistical 
measures for comparison: slope (α) and the coefficient of determination 
(R2) (Janssen and Heuberger 1995). Details on the calculation of the 
slope (α) and intercept (b) in the linear regression equation (y = α * x +
b) can be found in Supplementary Methods #2.

2.5.2. Comparison between predicted GPP (GPPVPM) and estimated GPP 
(GPPEC)

To quantify the difference or agreement of GPP datasets from two 
methods, for example, predicted GPP by models (GPPVPM; y) versus 
estimated GPP (GPPEC; x) by partitioning of NEE data at the tower site, 
we used a simple linear regression (GPPVPM = α * GPPEC; y = α * x, no 
intercept) with three statistical measures: slope (α), R2 and RMSE. In this 
study, the slope (α) was calculated with the y-intercept set to zero 
(GPPVPM = α * GPPEC), following the approach described in Supple-
mentary Methods #3 (Pan et al. 2024a). We used y = α * x to assess 
whether GPPVPM overestimates (α > 1) or underestimates (α < 1) GPPEC. 
This y = α * x approach has been used in previous studies for comparison 
between predicted GPP and estimated GPPEC (Chang et al. 2021; Pan 
et al. 2024a; Zhang et al. 2017). See Supplementary Methods 2 and 
Methods 3 for more information on the simple linear regression models 
in the equation of y = α *x + b and in the equation of y = α * x.

3. Results

3.1. Seasonal dynamics of climate, vegetation indices and carbon fluxes

At the US-Ho2 site, PAREC (Fig. 6a) has a strong seasonal dynamic, 
ranging from ~10 mol/day in winter to ~45 mol/day in summer. TDT-EC 
also had a strong seasonal dynamic with a winter season from late- 
November to February (<= 0 ◦C), and rose to ~5 ◦C in April, and 
reached its peak (~22 ◦C) in August. The seasonal dynamics of PEC had 
moderate precipitation in spring, small precipitation in July, and large 
precipitation in late fall and winter (snowy winter). High LSWI values in 
the winter season (late-November to February) indicate snow cover in 
the site (Fig. 6b), and LSWI shows that snow-free season starts in April 

and ends in November. After the snow melt in spring, NDVI, EVI, and 
LSWI began to increase by mid-March (Fig. 6b), stabilized at a high level 
during the summer, and then declined gradually. GPPEC (Fig. 6c) 
experienced a swift rise in April (1 g C/m2/day or higher), peaked in 
July, and fell to below 1 g C/m2/day by mid-November.

At the US-NR1 site, PAREC (Fig. 6d) exhibited strong seasonal dy-
namics, ranging from ~15 mol/day in the winter to ~50 mol/day in 
June. TDT-EC displayed a seasonal pattern with a winter season from 
early-November to mid-April (<= 0 ◦C) and rose to approximately 5 ◦C 
in mid-May, and reached a peak of around 15 ◦C in mid-July. PEC had a 
moderate seasonal dynamic, relatively small amount of precipitation in 
the winter season (mostly snow), and large amount of precipitation in 
the summer. SWCEC stabilized at ~8 % from December to early April, 
rose rapidly in mid-April, peaked at ~30 % in early June, then declined 
steadily until early August, and has been around 10 % since then. High 
LSWI in the winter season (late-October to April) indicates snow cover at 
the site (Fig. 6e) and LSWI shows that snow-free season starts in late 
April and ends in October. As snow melts in spring (March-May) and 
June, NDVI and EVI rose in May and peaked in late-July (~0.75 for 
NDVI) and in early-July (~0.4 for EVI). GPPEC (Fig. 6f) rose in late-April 
(1 g C/m2/day or higher), peaked in mid-July, and fell to below 1 g C/ 
m2/day by late-October.

At the US-Me2 site, PAREC (Fig. 6 g) exhibited a distinct seasonal 
dynamic, with values ranging from ~10 mol/day in winter to ~60 mol/ 
day in July. TDT-EC showed a marked seasonality with the winter season 
from December to early-January (<= 0 ◦C), and then rose to 5 ◦C in mid- 
April and peaked at ~22 ◦C in early-August. The seasonal dynamics of 
PEC were characterized by little to small amounts of precipitation in 
summer (July-September), and moderate to large amounts of precipi-
tation in the other seasons (Fig. 6 g). From January to April, the SWCEC 
stayed above 30 %. It began to decline continuously from mid-April until 
it reached 10 % by late July. It then held steady at 10 % from July to 
September, before rising sharply in early October, and nearing 30 % 
again by the end of December. High LSWI in the winter season indicated 
snow cover (Fig. 6h) and LSWI showed that snow-free season starts from 
March and ends in November. NDVI and EVI increased gradually from 
early-April to mid-November (Fig. 6h), with both curves reaching a peak 
in mid-November. GPPEC (Fig. 6i) was low in the winter season and rose 
rapidly in March and reached peak by early-July. The large drop in 
GPPEC over the period of mid-July to September reflects the effect of 
limited water availability on GPP during the dry and hot July - 
September.

We delineated the snow-free seasons by TDT-EC consistently higher 
than 5 ◦C at three sites (Fig. 7). For US-Ho2 site (Fig. 7a), the calculated 
snow-free seasons ranged from late-April to early-November. The 
absence of an end date for the snow-free season in 2014 and the un-
usually short snow-free season in 2015 were due to a lack of TDT-EC data 
from early October 2014 to early September 2015. For the US-NR1 site 
(Fig. 7b), the calculated snow-free seasons ranged from June to October. 
For the US-Me2 site (Fig. 7c), the calculated snow-free seasons ranged 
from early-February to late November with large difference varied 
years. The 2006 result was shorter than the remaining years because of 
missing TDT-EC data from January through mid-June 2006. The absence 
of an end date for 2011 was attributed to a lack of TDT-EC data from mid- 
November to mid-December 2011.
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Fig. 6. Multi-year averaged seasonal dynamics of photosynthetically active radiation (PAREC), air temperature (TDT-EC), precipitation (PEC), soil water content 
(SWCEC), vegetation indices (NDVI, EVI, LSWI), and carbon fluxes (GPPEC) at three evergreen needleleaf forest sites: (a~c) US-Ho2, from 2007 to 2020; (d~f) US- 
NR1, from 2000 to 2016; (g~i) US-Me2, from 2002 to 2019. Solid lines and light blue bars represent multi-year averages. The shadows indicate the range (standard 
deviation) of variables over multiple years.
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Fig. 7. The snow-free season delineated by TDT-EC, and active growing season delineated by both TDT-EC and GPPEC. (a) US-Ho2, 2007–2020; (b) US-NR1, 2000–2016; 
(c) US-Me2, 2002–2019.

Fig. 8. Relationships between GPPEC and vegetation indices (NDVI, EVI) at three evergreen needleleaf forest sites during snow-free seasons. (a~b) US-Ho2, snow- 
free seasons (2007–2020); (c~d) US-NR1, snow-free seasons (2000–2016); (e~f) US-Me2, mid-May to late-July (2002–2019). The darker the color of the scatterplot, 
the more dots there are.
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We delineated the active growing seasons by TDT-EC higher than − 1 
◦C and GPPEC higher than 1 g C/m2/day at three sites (Fig. 7). For the 
US-Ho2 site (Fig. 7a), the calculated active growing seasons ranged from 
March to November. Short results for 2014 and 2015 were attributed to 
a lack of GPPEC data from early October 2014 to early September 2015. 
For US-NR1 site (Fig. 7b), the calculated active growing seasons ranged 
from mid-April to mid-November. Missing results for 2004 and 2005 
were attributed to a lack of GPPEC data from 2004 to 2005. For the US- 
Me2 site (Fig. 7c), active growth could occur at any time of the year. The 
2006 result was shorter than the remaining years because of missing 
GPPEC data from January through mid-June 2006.

3.2. Quantitative relationships between GPPEC, vegetation indices, and air 
temperature

The relationships between GPPEC and vegetation indices (NDVI and 
EVI) were plotted for the three sites (Fig. 8). At the US-Ho2 and US-NR1 
sites, the relationship between GPPEC and VIs (NDVI and EVI) during the 
snow-free seasons was positive (Fig. 8a~d). At the US-Me2 site 
(Fig. 8e~f), we analyzed relationships between GPPEC and vegetation 
indices from mid-May to late-July, a period when GPPEC reaches its 
peak. This approach was chosen instead of considering the entire snow- 
free seasons, as the seasonal dynamics of GPPEC do not closely corre-
spond to those of vegetation indices throughout the entire growing 
season at the US-Me2 site (Fig. 6h~i). At the three sites, GPPEC had 
stronger relationships (higher R2) with EVI than NDVI.

We analyzed the relationships between GPPEC and TDT-EC at three 
sites. At the US-Ho2 site (Fig. 9a), GPPEC rose with increasing temper-
ature, peaked at 21 ◦C, and then decreased slightly after 23 ◦C. At the 
US-NR1 site (Fig. 9c), GPPEC rose with temperature, peaked at ~14 ◦C, 
and then decreased after ~16 ◦C. At the US-Me2 site (Fig. 9e), GPPEC 
increased with temperature up to a stable point at ~14 ◦C, and then 

decreased after ~17 ◦C. As described in Section 2.3.2, Topt-site (GPP-Tec) 
estimates at the three sites are approximately 22 ◦C (US-Ho2), 14 ◦C (US- 
NR1) and 16 ◦C (US-Me2), respectively.

We explored the relationships between EVI and TDT-EC at the three 
sites. At the US-Ho2 site (Fig. 9b), EVI rose with temperature to a 
maximum at ~21 ◦C, and then decreased slightly when temperature 
kept increasing. At the US-NR1 site (Fig. 9d), EVI increased with 
warming up to a peak at approximately 15 ◦C, and then decreased after 
17 ◦C. At the US-Me2 site (Fig. 9f), EVI increased slightly to reach a 
plateau at approximately 16 ◦C. Finally, EVI turned to decrease after 18 
◦C. As described in the Section 2.3.2, Topt-site (EVI-Tec) estimates at the 
three sites are 20 ◦C (US-Ho2), 13 ◦C (US-NR1) and 16 ◦C (US-Me2), 
respectively.

This study first showed that EVI has a stronger relationship with 
GPPEC than does NDVI, supporting the choice of EVI for subsequent 
analyses. We then examined the relationship between GPPEC and air 
temperature to determine site-specific apparent optimal temperatures 
(Topt-site (GPP-Tec)). We analyzed the relationship between EVI and air 
temperature with an aim to derive site-specific apparent optimal tem-
peratures from analyses of EVI (Topt-site (EVI-Tec)) and air temperature 
data. As the numbers of eddy flux tower sites with GPPEC data are 
limited, this EVI-based approach provides a pathway for estimating Topt- 

site over the land surface in the globe by using EVI data, which can be 
derived from surface reflectance data, and air temperature dataset such 
as ERA5. Our recent publication released the global Topt-site dataset from 
analyses of MODIS and ERA5 data (Pan et al. 2024b).

3.3. Comparison between GPPEC and GPPVPM from simulation of VPM 
v3.0 with in-situ climate data

At the US-Ho2 site, we compared GPPEC and GPPVPM from two 
simulations of VPM v3.0: (1) FPARchl = EVI - 0.1, EC site climate data, 

Fig. 9. The relationships between GPPEC and TDT-EC, and relationships between EVI and TDT-EC at three evergreen needleleaf forest sites. (a~b) US-Ho2, snow-free 
seasons (2007–2020); (c~d) US-NR1, snow-free seasons (2000–2016); (e~f) US-Me2, mid-May to late-July (2002–2019).
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and (2) FPARchl = 1.25 * EVI - 0.1, EC site climate data (Fig. 10). The use 
of new needleleaf-specific FPARchl equation substantially improves the 
seasonal dynamics of GPPVPM in comparison to that of GPPEC. In specific, 
although the RMSE for US-Ho2 increased slightly from 2.32 to 2.57 
(Fig. 10b vs. Fig. 10d), the slope improved significantly from 0.81 to 
1.07, indicating a shift from substantial underestimation (− 19 %) to 
moderate overestimation (+7 %). Both RMSE and slope are important 
metrics for evaluating model performance, and the improved slope in-
dicates better agreement with GPPEC trends.

At the US-NR1 site, we conducted the same analysis as at the US-Ho2 
site, using the two simulations of VPM v3.0 described above (Fig. 11). 
The use of new needleleaf-specific FPARchl equation substantially im-
proves the seasonal dynamics of GPPVPM in comparison to that of GPPEC.

At the US-Me2 site, we compared GPPEC and GPPVPM from three 
simulations of VPM v3.0: (1) FPARchl = EVI - 0.1, Wscalar as calculated, 
EC site climate data, (2) FPARchl = 1.25 * EVI - 0.1, Wscalar as calculated, 
EC site climate data, and (3) FPARchl = 1.25 * EVI - 0.1, Wscalar as 1.0 
during wet seasons while Wscalar as calculated during dry seasons, EC site 
climate data (Fig. 12). The use of new needleleaf-specific FPARchl 
equation substantially improves the seasonal dynamics of GPPVPM in 
comparison to that of GPPEC (Fig. 12a,b vs. Fig. 12c,d). The use of Wscalar 
as 1.0 during wet seasons also substantially improves the seasonal dy-
namics of GPPVPM in comparison to that of GPPEC (Fig. 12c,d vs. Fig. 12e, 
f). This is due to the high soil water content during the wet seasons and 
the plants’ deep roots, which allow them to access water and grow 
without being limited by water availability.

3.4. Comparison between GPPEC and GPPVPM from simulation of VPM 
v3.0 with ERA5 climate data

In Section 3.3, we ran different VPM simulations with site-specific 
climate data and identified the best model-setup based on two criteria: 
(1) how well the multi-year averaged GPPVPM time series captured the 
seasonal dynamics of GPPEC, and (2) how well the GPPVPM aligned with 

GPPEC data during the active growing season over years, by using 2-D 
scatter plots and a simple statistical model (GPPVPM = a * GPPEC; 
slope, R², and RMSE). In this section, we selected the best simulation 
setup and ran simulations of VPM v3.0 with ERA5 climate data and then 
we compared the resultant GPPVPM-ERA5 with GPPEC data.

For the US-Ho2 site, we compared GPPEC with GPPVPM-ERA5 simu-
lated using FPARchl = 1.25 * EVI - 0.1 and ERA5 climate data 
(Fig. 13a~b). The simulated GPPVPM-ERA5 captured the seasonal dy-
namics of GPPEC well, as shown by the close match in the multi-year 
average time series (Fig. 13a). Additionally, when comparing individ-
ual observations across multiple years, the results showed a strong 
correlation, with an R² of 0.64 and slope of 1.08 (Fig. 13b). The results 
were very similar to those from the previous comparison of GPPEC with 
GPPVPM-EC simulated using the same model (FPARchl = 1.25 * EVI – 0.1) 
but driven by EC site climate data (Fig. 10c~d). This is primarily due to 
minor differences between the EC site climate data and ERA5 climate 
data at this site (Fig. 4a~b).

For the US-NR1 site, we compared GPPEC with GPPVPM-ERA5 simu-
lated using FPARchl = 1.25 * EVI – 0.1 and ERA5 climate data 
(Fig. 13c~d). The results showed notable differences compared to the 
previous comparison of GPPEC with GPPVPM-EC simulated using the same 
model but driven by EC site climate data (Fig. 11c~d). These differences 
are primarily driven by significant discrepancies between the EC site 
climate data and ERA5 climate data at the US-NR1 site (Fig. 4c~d).

For the US-Me2 site, we compared GPPEC with GPPVPM-ERA5 simu-
lated using the following model settings: (1) FPARchl = 1.25 * EVI - 0.1, 
and (2) Wscalar as 1.0 during wet seasons while Wscalar as calculated 
during dry seasons (July to September). The GPPVPM-ERA5 was simulated 
by ERA5 climate data (Fig. 13e~f). The results showed moderate dif-
ferences compared to the previous comparison of GPPEC with GPPVPM-EC 
simulated using the same model settings but driven by EC site climate 
data (Fig. 12e~f). These differences are driven by moderate differences 
between EC site climate data and ERA5 climate data at the US-Me2 site 
(Fig. 4e~f).

Fig. 10. (US-Ho2 site) Seasonal dynamics of GPPVPM-EC, GPPVPM-ERA5 and GPPEC at US-Ho2 site, which are averaged from 2007 to 2020. The comparison between 
GPPVPM and GPPEC at US-Ho2 site during active growing seasons from 2007 to 2020. (a~b) GPPVPM-EC with γE as 1.0; (c~d) GPPVPM-EC with γE as 1.25. The active 
growing seasons are defined by TDT-EC and GPPEC. The darker the color of the scatterplot, the more dots there are.
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Fig. 11. (US-NR1 site) Seasonal dynamics of GPPVPM-EC, GPPVPM-ERA5 and GPPEC at US-NR1 site, which are averaged from 2000 to 2016. The comparison between 
GPPVPM and GPPEC at US-NR1 site during active growing seasons from 2000 to 2016. (a~b) GPPVPM-EC with γE as 1.0; (c~d) GPPVPM-EC with γE as 1.25. The active 
growing seasons are defined by TDT-EC and GPPEC. The darker the color of the scatterplot, the more dots there are.

Fig. 12. (US-Me2 site) Seasonal dynamics of GPPVPM-EC, GPPVPM-ERA5 and GPPEC at US-Me2 site, which are averaged from 2002 to 2019. The comparison between 
GPPVPM and GPPEC at US-Me2 site during active growing seasons from 2002 to 2019. (a~b) GPPVPM-EC with γE as 1.0 and Wscalar as calculated; (c~d) GPPVPM-EC with 
γE as 1.25 and Wscalar as calculated; (e~f) GPPVPM-EC with γE as 1.25 and Wscalar as 1.0 during wet seasons while Wscalar as calculated during dry seasons. The active 
growing seasons are defined by TDT-EC and GPPEC. The darker the color of the scatterplot, the more dots there are.
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Overall, the results show that substituting ERA5 climate data for EC 
measurements results in limited differences at the studied sites, which 
are characterized by different climate and soil water conditions. ERA5 
climate data are used as it offers global coverage, making it an essential 
dataset for simulations of VPM v3.0 over those areas without local 
climate data.

4. Discussion

4.1. Biophysical performance of vegetation indices in evergreen needleleaf 
forests under three different climate types

Vegetation indices have been widely used to investigate vegetation 
canopy dynamics (Huete et al. 2002). One study reported temporal 
consistency between monthly vegetation indices (NDVI and EVI) and air 
temperature among 12 ENF sites over the central North America (Liu 
et al. 2016). Evergreen needleleaf forests are characterized with green 
leaves throughout the year and these green leaves have different ages 
(from months to one year and multiple years old leaves), therefore, the 
seasonal dynamics of vegetation indices reflects the combined effects of 
both leaf area index and the mixed ratio of young, mid-age, and old 
leaves in the ENF canopies. At the US-Ho2 and US-NR1 sites, the sea-
sonal dynamics of PAREC, TDT-EC and precipitation were synchronous 
over the season (Fig. 6a, d). The presence of snow cover during winter 
leads to higher values in the RED band, resulting in low NDVI. As the 
snowpack melts after winter season, surface reflectance values in RED 
band decrease and NDVI values increase. Trees grow new leaves in later 
spring and early summer, which contributes only moderately to the rise 
of NDVI and EVI in that period. In comparison, at the US-Me2 site, the 
seasonal dynamics of PAREC, TDT-EC and precipitation were asynchro-
nous over the season (Fig. 6 g), which represents typical Mediterranean 
climate that is characterized by hot and dry summer, and warm and 

rainy fall/winter/spring. Trees at the site grow new leaves in fall and 
winter, as rainfall started to arrive in October, which explains why 
vegetation indices (NDVI, EVI) were higher in October - March than in 
the summer months. Higher NDVI values in August-September than 
June-July reflects the large loss (leaf litterfall) of old leaves in 
August-September.

In short, the seasonal dynamics of vegetation indices at the US-Ho2 
and US-NR1 sites are primarily influenced by fluctuations in air tem-
perature, whereas the seasonal dynamics of vegetation indices at the US- 
Me2 site are predominantly determined by changes in precipitation 
(water). At the three ENF sites, LSWI maintains positive values over the 
entire year, which supports the previous forest mapping studies that 
used LSWI >0 threshold value to identify and map evergreen forests 
(Zhang et al. 2023).

4.2. Light absorption and gross primary production of evergreen 
needleleaf forests

The amount of light absorption by chlorophyll in the canopy 
(APARchl) is calculated as the product of the fraction of light absorption 
by chlorophyll in the canopy (FPARchl) and the amount of incoming 
PAR. FPARchl is estimated as a function of EVI (Liu et al. 2017; Zhang 
et al. 2018) or SIF (Zhang et al. 2020). In this study for the VPM 3.0, we 
proposed a new equation to estimate FPARchl of evergreen needleleaf 
forests, which is based on the needleleaf structure and chloroplast dis-
tribution within a needleleaf (leaf traits). The new equation (FPARchl =

1.25 x EVI - 0.1) results in higher FPARchl of evergreen needleleaf for-
ests, which leads to an improved simulation accuracy of GPPVPM at the 
three ENF sites. Previous research established that the spherically 
averaged projection area of a needleleaf is precisely one-fourth of its 
total surface area (Lang 1991; Oker-Blom and Kellomäki 1981; Stenberg 
2006). Previous studies and our approach focus on the needle-like 

Fig. 13. Seasonal dynamics of GPPVPM-ERA5 and GPPEC at three sites: (a~b) US-Ho2 (2007–2020), GPPVPM-ERA5 with γE as 1.25 and Wscalar as calculated; (c~d) US- 
NR1 (2000–2016), GPPVPM-ERA5 with γE as 1.25 and Wscalar as calculated; (e~f) US-Me2 (2002–2019), GPPVPM-ERA5 with γE as 1.25 and Wscalar as 1.0 during wet 
seasons while Wscalar as calculated during dry seasons. The comparison between GPPVPM-ERA5 and GPPEC during active growing seasons of each year. The active 
growing seasons are defined by TDT-EC and GPPEC. The darker the color of the scatterplot, the more dots there are.
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structure of leaves and consider the differences in leaf area between flat 
leaves and needle leaves, while our method further incorporates the 
circular distribution of chloroplasts within needle leaves and their 
decreasing concentration toward the center of the needle. In recent 
years, substantial progress has been made to estimate canopy-averaged 
chlorophyll content from time series satellite images, including MODIS 
images (Croft et al. 2020; Xu et al. 2022), which opens an opportunity to 
compare APARchl estimates from these two approaches in the near 
future.

4.3. Water stress for evergreen needleleaf forests under the Mediterranean 
climate

The Mediterranean climate is characterized with a wet season and a 
dry season, and during the dry season water availability is the primary 
environmental driver of carbon fluxes (Luo et al. 2020). One of the most 
characteristic traits of plants in Mediterranean ecosystems is the 
development of deep and extensive root systems, which enable them to 
absorb water from deeper soil layers (Sardans and Penuelas 2013). 
Previous studies reported that Ponderosa pine trees at the US-Me2 site 
have access to additional water from the deep soils in the wet season 
(Irvine et al. 2004; Thomas et al. 2009). High soil moisture (Fig. 6 g) and 
vegetation indices (NDVI, EVI, and LSWI) (Fig. 6h) in the wet season (e. 
g., January – June, October - December) at the site suggest limited or no 
water stress, too. Based on the previous studies at the US-Me2 site, we 
assumed Wscalar = 1.0 during the wet season. During the three-months of 
dry season (July - September), GPPEC was reduced substantially, indi-
cating the effect of water stress on GPP. In this study we ran the VPM 
simulations at the US-Me2 site with two different Wscalar equations over 
the dry season (Wscalar = (1+ LSWI) / (1+LSWmax)) and wet season 
(Wscalar = 1.0), which represents how the seasonal dynamics of GPP at 
the US-Me2 site is affected by water availability over the seasons. The 
results from the US-Me2 site suggests that the use VPM over other ENF 
sites in the Mediterranean climates may benefit substantially from (1) 
evaluating whether trees at those sites have deep roots with access to 
deep soil water during the wet and dry seasons and (2) assuming Wscalar 
= 1.0 in the wet season (no water stress).

A study in Mediterranean climate ecosystems in Spain used meteo-
rological data instead of vegetation indices to construct water stress on 
GPP and obtained similar results to ours. It found no water stress during 
the wet season and some stress during the dry season, enhancing the 
accuracy of GPP simulations (Gilabert et al. 2015). Another study on 
pine trees in the Mediterranean climate calculated a water availability 
factor using two-month accumulations of daily rainfall and evapo-
transpiration (ET). This approach improved modeled GPP by addressing 
its underestimation during the wet season under the assumption of no 
water limitations and addressing its overestimation during the dry sea-
son by incorporating water limitations (Helman et al. 2017). These 
studies collectively demonstrate the importance of distinguishing be-
tween wet seasons (limited or no water stress) and dry seasons (sub-
stantial water stress) in Mediterranean climate ecosystems for 
improving GPP simulation accuracy, aligning with the findings of our 
study. Our use of LSWI produced results similar to those reported in 
studies using meteorological data, demonstrating that remote sensing 
indices can also effectively estimate water stress under the Mediterra-
nean climate. In the future, meteorological data can complement remote 
sensing indices like LSWI by helping identify wet and dry seasons, while 
satellite-based indices can provide detailed spatial and temporal esti-
mates of varying levels of water stress, further enhancing the applica-
bility of our approach.

5. Conclusion

This study analyzed the seasonal dynamics of climate, vegetation 

indices and carbon fluxes at three evergreen needleleaf forest sites with 
three types of climates (near coastal area, high mountain area, and 
Mediterranean climate area). At the US-Ho2 and US-NR1 sites, the 
seasonal dynamics of radiation, air temperature are synchronous with 
that of precipitation, and vegetation indices and carbon fluxes are pri-
marily influenced by air temperature. At the US-Me2 site, the seasonal 
dynamics of radiation, air temperature are asynchronous with that of 
precipitation, and there are clearly a wet season and a dry season. The 
seasonal dynamics of vegetation indices and carbon fluxes are largely 
driven by water availability, including both rainfall and water in deep 
soils.

This study improved and evaluated the performance of the VPM 
(v3.0) for evergreen needleleaf forests. The new equation (FPARchl =

1.25 x EVI - 0.1) for estimating FPARchl incorporates needleleaf traits 
(leaf shape and chlorophyll distribution), which leads to improving GPP 
estimation for ENF. As ENF are extensive in the world, incorporating 
new FPARchl equation for ENF could lead to further improving estima-
tion of light absorption by chlorophyll and GPP for ENF in the world. At 
the US-Me2 site, we adjusted Wscalar in VPM simulations to reflect deep 
soil water availability during the wet season. Our results suggest that for 
ENF with the Mediterranean climate, it is important to gather additional 
information on whether trees have access to deep soil water or not in the 
wet season. In those situations where trees have access to deep soil water 
in the wet season, assuming Wscalar = 1.0 during the wet season could 
lead to improving model accuracy of GPP estimates. The results from 
these ENF sites lay out a foundation for us to use the VPM v3.0, MODIS 
images, and ERA5 climate data for estimating GPP of evergreen nee-
dleleaf forests under diverse climate conditions over large spatial 
domain.
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Staebler, R., Stoy, P.C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R.C., 
Suyker, A., Ueyama, M., Vargas, R., Wood, J.D., Zona, D., 2021. Representativeness 
of Eddy-Covariance flux footprints for areas surrounding AmeriFlux sites. Agric. For. 
Meteorol. 301–302.

Croft, H., Chen, J.M., Wang, R., Mo, G., Luo, S., Luo, X., He, L., Gonsamo, A., Arabian, J., 
Zhang, Y., Simic-Milas, A., Noland, T.L., He, Y., Homolová, L., Malenovský, Z., Yi, Q., 
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Ortiz, P., Carrara, A., 2015. Daily GPP estimates in Mediterranean ecosystems by 
combining remote sensing and meteorological data. ISPRS J. Photogramm. Remote 
Sens. 102, 184–197.

Green, J.K., Seneviratne, S.I., Berg, A.M., Findell, K.L., Hagemann, S., Lawrence, D.M., 
Gentine, P., 2019. Large influence of soil moisture on long-term terrestrial carbon 
uptake. Nature 565, 476–479.

Gu, L., Hanson, P.J., Post, W.M., Kaiser, D.P., Yang, B., Nemani, R., Pallardy, S.G., 
Meyers, T., 2008. The 2007 eastern US spring freeze: increased cold damage in a 
warming world? Bioscience 58, 253–262.

Havranek, W.M., Tranquillini, W., 1995. 5 - Physiological processes during winter 
dormancy and their ecological significance. W.K. Smith, & T.M. Hinckley (Eds.). 
Ecophysiology of Coniferous Forests. Academic Press, San Diego, pp. 95–124.

Helman, D., Lensky, I.M., Osem, Y., Rohatyn, S., Rotenberg, E., Yakir, D., 2017. 
A biophysical approach using water deficit factor for daily estimations of 
evapotranspiration and CO&lt;sub&gt;2&lt;/sub&gt; uptake in Mediterranean 
environments. Biogeosciences 14, 3909–3926.

Huang, X., Xiao, J., Ma, M., 2019. Evaluating the performance of satellite-derived 
vegetation indices for estimating gross primary productivity using FLUXNET 
observations across the globe. Remote Sens. 11 (Basel). 

Huang, X., Xiao, J., Wang, X., Ma, M., 2021. Improving the global MODIS GPP model by 
optimizing parameters with FLUXNET data. Agric. For. Meteorol. 300.

Huete, A., Didan, K., Miura, T., Rodriguez, E.P., Gao, X., Ferreira, L.G., 2002. Overview 
of the radiometric and biophysical performance of the MODIS vegetation indices. 
Remote Sens. Environ. 83, 195–213.

Irvine, J., Law, B., Kurpius, M., Anthoni, P., Moore, D., Schwarz, P., 2004. Age-related 
changes in ecosystem structure and function and effects on water and carbon 
exchange in ponderosa pine. Tree Physiol. 24, 753–763.

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., 
Anthoni, P., Besnard, S., Bodesheim, P., Carvalhais, N., Chevallier, F., Gans, F., 
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2018. Spatio-temporal convergence of maximum daily light-use efficiency based on 
radiation absorption by canopy chlorophyll. Geophys. Res. Lett. 45, 3508–3519.

Zhang, Y., Xiao, X., Wu, X., Zhou, S., Zhang, G., Qin, Y., Dong, J., 2017. A global 
moderate resolution dataset of gross primary production of vegetation for 2000- 
2016. Sci. Data 4, 170165.

Zhang, Z., Zhang, Y., Zhang, Y., Gobron, N., Frankenberg, C., Wang, S., Li, Z., 2020. The 
potential of satellite FPAR product for GPP estimation: an indirect evaluation using 
solar-induced chlorophyll fluorescence. Remote Sens. Environ. 240.

Zheng, Y., Shen, R., Wang, Y., Li, X., Liu, S., Liang, S., Chen, J.M., Ju, W., Zhang, L., 
Yuan, W., 2020. Improved estimate of global gross primary production for 
reproducing its long-term variation, 1982–2017. Earth Syst. Sci. Data 12, 
2725–2746.

B. Pan et al.                                                                                                                                                                                                                                      Agricultural and Forest Meteorology 368 (2025) 110526 

17 

http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0050
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0050
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0050
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0050
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0050
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0051
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0051
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0051
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0052
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0052
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0052
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0054
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0054
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0055
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0055
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0055
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0056
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0056
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0057
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0057
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0057
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0058
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0058
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0058
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0058
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0059
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0059
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0059
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0060
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0060
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0061
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0061
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0061
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0061
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0063
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0063
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0063
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0064
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0064
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0064
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0064
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0065
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0065
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0065
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0065
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0066
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0066
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0066
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0066
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0066
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0067
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0067
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0067
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0067
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0068
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0068
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0069
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0069
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0070
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0070
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0070
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0071
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0071
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0071
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0072
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0072
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0072
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0073
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0073
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0073
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0073
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0074
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0074
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0074
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0074
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0075
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0075
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0075
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0076
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0076
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0076
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0077
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0078
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0078
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0078
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0079
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0079
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0079
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0079
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0080
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0081
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0081
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0081
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0082
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0082
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0082
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0082
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0083
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0083
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0083
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0083
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0084
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0084
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0084
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0084
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0085
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0085
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0085
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0086
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0086
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0086
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0087
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0087
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0087
http://refhub.elsevier.com/S0168-1923(25)00146-7/sbref0087

	Incorporation of needleleaf traits improves estimation of light absorption and gross primary production of evergreen needle ...
	1 Introduction
	2 Materials and methods
	2.1 Study area
	2.2 Datasets
	2.2.1 In-situ data from the eddy flux tower sites
	2.2.2 MODIS land surface reflectance and vegetation indices during 2000–2020
	2.2.3 Climate data from the fifth generation ECMWF atmospheric reanalysis dataset (ERA5)
	2.2.4 The snow-free season and active growing season at the individual sites

	2.3 Vegetation photosynthesis model (VPM)
	2.3.1 Methods to calculate the fraction of light absorbed by chlorophyll in broadleaf and needleleaf plants
	2.3.2 Methods to estimate site-specific apparent optimum air temperature for photosynthesis of evergreen needleleaf forests ...
	2.3.3 Methods to estimate effect of water on GPP

	2.4 Simulations of VPM v3.0 under two FPARchl estimates, climate datasets and two wscalar parameters
	2.5 Statistical analyses
	2.5.1 GPPEC, vegetation indices, and air temperature comparison
	2.5.2 Comparison between predicted GPP (GPPVPM) and estimated GPP (GPPEC)


	3 Results
	3.1 Seasonal dynamics of climate, vegetation indices and carbon fluxes
	3.2 Quantitative relationships between GPPEC, vegetation indices, and air temperature
	3.3 Comparison between GPPEC and GPPVPM from simulation of VPM v3.0 with in-situ climate data
	3.4 Comparison between GPPEC and GPPVPM from simulation of VPM v3.0 with ERA5 climate data

	4 Discussion
	4.1 Biophysical performance of vegetation indices in evergreen needleleaf forests under three different climate types
	4.2 Light absorption and gross primary production of evergreen needleleaf forests
	4.3 Water stress for evergreen needleleaf forests under the Mediterranean climate

	5 Conclusion
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgements
	Supplementary materials
	Data availability
	References


