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Abstract. The flow of carbon through terrestrial ecosystems
and the response to climate are critical but highly uncer-
tain processes in the global carbon cycle. However, with a
rapidly expanding array of in situ and satellite data, there
is an opportunity to improve our mechanistic understand-
ing of the carbon (C) cycle’s response to land use and cli-
mate change. Uncertainty in temperature limitation on pro-
ductivity poses a significant challenge to predicting the re-
sponse of ecosystem carbon fluxes to a changing climate.
Here we diagnose and quantitatively resolve environmen-
tal limitations on the growing-season onset of gross primary
production (GPP) using nearly 2 decades of meteorological
and C flux data (2000–2018) at a subalpine evergreen forest
in Colorado, USA. We implement the CARbon DAta-MOdel
fraMework (CARDAMOM) model–data fusion network to
resolve the temperature sensitivity of spring GPP. To capture
a GPP temperature limitation – a critical component of the
integrated sensitivity of GPP to temperature – we introduced
a cold-temperature scaling function in CARDAMOM to reg-

ulate photosynthetic productivity. We found that GPP was
gradually inhibited at temperatures below 6.0 ◦C (±2.6 ◦C)
and completely inhibited below −7.1 ◦C (±1.1 ◦C). The ad-
dition of this scaling factor improved the model’s ability to
replicate spring GPP at interannual and decadal timescales
(r = 0.88), relative to the nominal CARDAMOM configura-
tion (r = 0.47), and improved spring GPP model predictabil-
ity outside of the data assimilation training period (r = 0.88).
While cold-temperature limitation has an important influence
on spring GPP, it does not have a significant impact on in-
tegrated growing-season GPP, revealing that other environ-
mental controls, such as precipitation, play a more important
role in annual productivity. This study highlights growing-
season onset temperature as a key limiting factor for spring
growth in winter-dormant evergreen forests, which is critical
in understanding future responses to climate change.
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1 Introduction

Northern Hemisphere evergreen forests contribute signifi-
cantly to terrestrial carbon (C) storage and exchange (Beer
et al., 2010; Thurner et al., 2014). High-latitude and high-
elevation evergreen forests show increasing gross primary
productivity (GPP) with increasing temperature driven in
large part by earlier growing seasons (Myneni et al., 1997;
Randerson et al., 1999; Forkel et al., 2016; Winchell et al.,
2016; Lin et al., 2017). However, the response of gross and
net C fluxes to warming remains uncertain, especially in
subalpine temperate forests, which can experience freezing
temperatures while still absorbing large amounts of sunlight;
both these factors ultimately influence the timing and mag-
nitude of GPP (Bowling et al., 2018). In particular, warmer
springs can also lead to earlier snowmelt, which can re-
duce spring C uptake through increased surface exposure
to colder ablation-period air temperatures (Winchell et al.,
2016) and can reduce summer C uptake via drought (Hu et
al., 2010). Many subalpine forests in western North Amer-
ica are also highly water limited, with warming and ear-
lier snowmelt creating accumulated water deficits, increased
drought stress and growing-season C uptake losses (Wolf et
al., 2016; Sippel et al., 2017; Buermann et al., 2018; Goulden
and Bales, 2019); these factors ultimately make subalpine
forest ecosystems sensitive to the direct and indirect effects
of climate change and other disturbances, including the ef-
fects of droughts, fires and insect infestations (Keenan et
al., 2014; Frank et al., 2014; Knowles et al., 2015). The un-
certainty in the temperature sensitivity of springtime GPP,
increasing vulnerability to disturbance and GPP modeling
challenges (Anav et al., 2015) create urgency to improve our
ability to observe and model these ecosystems to understand
how C exchange will be altered in a warming climate.

Fortunately, availability of long-term ecosystem obser-
vations is improving. The expansion of international flux
tower networks over the last 3 decades (e.g., AmeriFlux,
FLUXNET, ChinaFLUX, ICOS) has greatly improved C flux
sampling across global ecosystems at a 1 km scale (Baldoc-
chi, 2008; Baldocchi et al., 2018), and the number of space-
borne sensors continues to grow, allowing global estimation
of gross primary production (GPP) and net ecosystem C ex-
change (NEE) over the last decade (e.g., Stavros et al., 2017;
Sun et al., 2017; Schimel et al., 2019). While uncertainties
in estimating C fluxes from in situ and satellite data remain a
challenge, the expanding observational record offers a great
opportunity to study the temperature sensitivity of subalpine
forests at multiple temporal scales.

The range of modeling tools available to quantify and
study major C pools under ever-growing observational con-
straints is also increasing. Process-based models, in gen-
eral terms, use explicit mathematical relationships to mech-
anistically describe biophysical processes (Korzukhin et al.,
2011; Huxman et al., 2003; Keenan et al., 2012). In contrast,
model–data fusion (MDF) is a relatively new tool that alters

model parameters to statistically reduce mismatches between
observations and model predictions (Raupach et al., 2005;
Wang et al., 2009; Keenan et al., 2012). MDF methods can
be used to statistically represent the terrestrial C balance by
generating optimized state and process variable parameteri-
zations, with uncertainties, which best match the signal and
noise in observations (Bloom et al., 2020).

Models of varying complexity and assimilation capabil-
ities have been used to study how C exchange varies with
temperature in subalpine evergreen ecosystems (e.g., Moore
et al., 2008; Scott-Denton et al., 2013; Knowles et al., 2018).
Moore et al. (2008) used a simplified ecosystem function
model and assimilated C flux data from the Niwot Ridge
(US-NR1) subalpine evergreen forest AmeriFlux tower in
Colorado to show the importance of accurate meteorolog-
ical forcing for parameter optimization and the usefulness
of assimilating C flux data for determining connections be-
tween the C and water cycles. Scott-Denton et al. (2013) in-
tegrated meteorological and flux data from 1999–2008 from
the same site with an ensemble of more sophisticated Earth
system models (ESMs) and showed higher rates of C uptake
by the end of the 21st century, associated with warming and
lengthening growing seasons, and driven by greater increases
in spring GPP relative to late-season respiration.

Interestingly, model and empirical studies of the C flux re-
sponse to climate at US-NR1 focus on the 2000–2011 pe-
riod, which saw increasing summer drought coupled with
sustained declines in spring temperature and GPP. US-NR1
has since experienced a gradual recovery of spring GPP with
increased spring warming throughout 2011–2018 (Fig. 1),
which begs the following questions: what is the temperature
sensitivity of spring GPP over multiple decades of spring
cooling and warming at US-NR1, and how well can data-
constrained models reproduce long-term variability? To an-
swer these questions, we combine a mechanistic ecosystem
C model (Data Assimilation Linked Ecosystem Carbon, or
DALEC2; Williams et al., 2005; Bloom et al., 2016) with the
CARbon DAta-MOdel fraMework (CARDAMOM; Bloom
and Williams, 2015; Bloom et al., 2020) driven by observed
meteorological forcing and constrained against eddy covari-
ance fluxes at US-NR1 to investigate the temperature sensi-
tivity of this subalpine evergreen forest at seasonal and inter-
annual timescales. We introduce a new cold-temperature lim-
itation function, trained on observed temperature, for more
realistic simulation of spring GPP onset. The use of high-
quality and long-term (2000–2018) meteorology and parti-
tioned GPP data at US-NR1 to drive and constrain the model
enables robust statistical analysis of interannual variabil-
ity (IAV) and assessment of “model predictability” through
training and validation against subsets of data. We also lever-
age a recent model intercomparison study (Parazoo et al.,
2020), driven by site level meteorological data at US-NR1, to
provide a model benchmark assessment and extract any com-
mon environmental controls on modeled GPP. Finally, we
examine whether using a decade of flux-tower-derived GPP
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observations to train the model is sufficient to match and pre-
dict seasonal to annual patterns in GPP. Given the complexity
of carbon–water cycle interactions during the growing (sum-
mer) season in this highly water limited ecosystem, as well as
the relatively weak correlation between tower-derived spring
and summer GPP (r =−0.31; p = 0.20), we focus on spring
GPP–temperature interactions, with the aim to resolve just
one piece of the larger, complex problem of understanding
changes in C uptake in a subalpine evergreen ecosystem.

2 Materials and methods

2.1 Study site – Niwot Ridge, CO, USA

Our study focuses on an AmeriFlux (https://ameriflux.lbl.
gov/, last access: September 2020) core site in Niwot Ridge,
Colorado, USA (US-NR1; 40◦1′58′′ N, 105◦32′47′′W),
where a tower-based eddy covariance system has been used
to continuously monitor the net ecosystem exchange (NEE)
of carbon dioxide over a subalpine forest since November
1998. The 26 m tall tower is located in a high-elevation
(3050 m) subalpine site in the Rocky Mountains of Colorado
(Monson et al., 2002). Located in an evergreen needleleaf
(ENF) ecosystem, the dominant tree species include lodge-
pole pine (Pinus contorta), subalpine fir (Abies lasiocarpa)
and Engelmann spruce (Picea engelmannii) (Turnipseed et
al., 2002, 2004). Average annual precipitation is 800 mm,
with a majority of precipitation falling in the winter as snow
(Greenland, 1989; Knowles et al., 2015), which creates a per-
sistent winter snowpack from November through early June
(Bowling et al., 2018).

2.2 Observations

NEE measurements are screened for calm conditions using
the standard ustar filtering, gap-filled, and partitioned into
GPP and ecosystem respiration based on the relationship be-
tween nighttime NEE (photosynthetically active radiation,
PAR, < 50 µmolm−2 s−1) and air temperature (Reichstein et
al., 2005; Wutzler et al., 2018). Monthly averages of GPP
based on nighttime partitioning show similar seasonal struc-
tures to results found using an alternative daytime partition-
ing algorithm (Lasslop et al., 2009), so only nighttime par-
titioned GPP data are reported here. All GPP estimates are
processed as half-hourly means and then averaged monthly.
Details on the flux measurements, data processing and qual-
ity control are provided in Burns et al. (2015).

2.3 The CARDAMOM model–data fusion system

The CARbon DAta-MOdel fraMework (CARDAMOM;
e.g., Bloom et al., 2016; Yin et al., 2020; Exbrayat et al.,
2018; Smallman et al., 2017; Quetin et al., 2020; López-
Blanco et al., 2019; Famiglietti et al., 2021; Bloom et al.,
2020; Yang et al., 2021a) uses carbon cycle and meteorolog-

ical observations to constrain carbon fluxes, states and pro-
cess controls represented in the DALEC2 model of terrestrial
C cycling (Williams et al., 2005; Bloom and Williams, 2015).
Specifically, CARDAMOM uses a Bayesian model–data fu-
sion approach to optimize DALEC2 time-invariant param-
eters (such as leaf traits, allocation and turnover times) and
the “initial” C and H2O conditions (namely biomass, soil and
water states at the start of the model simulation period).

The DALEC model (e.g., Williams et al., 2005; Row-
land et al., 2014; Fox et al., 2009; Richardson et al., 2010;
Famiglietti et al., 2021; Bloom and Williams, 2015) is a box
model of C pools connected via fluxes that has been used
to evaluate terrestrial carbon cycle dynamics across a range
of ecosystems and spatial scales. In all site, regional, and
global applications, DALEC parameters are subject to very
broad, but physically realistic, prior distributions and are in-
dependently estimated and constrained by available obser-
vations at each grid point. Here we use DALEC version 2
(DALEC2; Yin et al., 2020; Quetin et al., 2020; Bloom et al.,
2020); gross and net carbon fluxes are determined as a func-
tion of 33 parameters, including 26 time-invariant parameters
relating to allocation, turnover times, plant traits, respiration
climate sensitivities, water-use efficiency and GPP sensitiv-
ity to soil moisture, and 7 parameters describing the initial
conditions of live biomass pools (live biomass C, dead or-
ganic C and plant-available H2O). Within DALEC2, GPP es-
timates are generated in the aggregated canopy model (ACM;
Williams et al., 1997); the ACM is derived from simple func-
tional relationships with environmental and plant structural
and biochemical information (Williams et al., 1997) that are
produced from a sensitivity analysis of GPP estimates from a
more comprehensive SPA (soil–plant–atmosphere) land sur-
face model scheme (Williams et al., 1996, 2001). ACM GPP
estimates are contingent on plant structural and biochemical
variables (including LAI, foliar nitrogen and nitrogen-use ef-
ficiency) and meteorological forcing (total daily irradiance,
maximum and minimum daily air temperature, day length,
atmospheric CO2 concentration). In DALEC2, water limita-
tion on the ACM is prescribed as a linear response to the soil
water deficit (Bloom et al., 2020). For more details on the
model–data fusion methodology and CARDAMOM ensem-
bles, we refer the reader to Appendix A. For a comprehen-
sive overview of the DALEC2 model, we refer the reader to
Bloom et al. (2020) and references therein.

2.4 Experiment design

In order to develop model experiments that can reliably eval-
uate temperature–GPP interactions, we first examine the ob-
served environmental controls on tower-derived GPP. We fo-
cus on GPP during spring, defined here as the period from
March–May, which encompasses the climatological onset
of GPP and transition from dormant winter conditions to
peak summer conditions (Fig. 1a). Mean spring GPP exhibits
large interannual variability (IAV) with both a small decreas-
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Figure 1. Time series of (a) mean monthly GPP (blue) and air temperature (orange) and (b) mean spring (March–May) GPP and air
temperature at Niwot Ridge (US-NR1) from 2000–2018. GPP data are derived using a nighttime partitioning technique based on tower
observations of NEE and air temperature.

ing trend from 2000–2010 (−0.02 g C m−2 d−1 yr−1) and an
increasing trend from 2010–2018 (0.04 g C m−2 d−1 yr−1)
(Fig. 1b). Comparison to tower-observed temperature data
(Figs. 1b and 2) shows that spring GPP is positively cor-
related to mean spring air temperature (Pearson’s linear
r = 0.89; p = 0.000004) and summer (June–September) air
temperature (r = 0.10; p = 0.70; Fig. S1a in the Supple-
ment). Mean winter (December–February) precipitation also
has a positive correlation with spring GPP (r = 0.07; p =
0.77; Fig. S1b), but it is much smaller than spring temper-
ature. At interannual timescales, mean annual GPP shows
a small increasing trend (0.0072 g C m−2 d−1 yr−1) over the
time period (Fig. S2) and the largest correlation with win-
ter (December–February) precipitation (Pearson’s linear r =
0.63; p = 0.003; Fig. S3d) and shortwave irradiance (r =
−0.30; p = 0.22; Fig. S3f). In contrast, spring temperature
shows little correlation with mean annual GPP (r =−0.02;
p = 0.92; Fig. S3c). It appears that winter precipitation and
total irradiance are the dominant drivers in annual produc-
tivity, both of which are correlated, while spring temperature
shows a first-order effect in driving spring GPP.

We also find that cold temperature is an important lim-
itation on seasonal GPP at US-NR1. The seasonal cycle
of GPP shows peak productivity in early summer (around
June), falling to near-zero values by early winter (Novem-
ber) and continuing through late winter (February–March).
Comparison of monthly GPP and minimum, maximum and
mean monthly air temperature shows an initiation of pho-
tosynthesis at monthly maximum air temperatures above
0 ◦C (Fig. 3a) and monthly minimum air temperatures above
−5 ◦C (Fig. 3b). The strong dependence of monthly GPP on
temperature is consistent with previous findings that temper-
ature is an important driver of spring onset and seasonal vari-

Figure 2. Scatterplot of mean spring (March–May) GPP with mean
spring air temperature with the color bar showing the corresponding
year (2000–2018). r is Pearson’s correlation coefficient.

ability in GPP in evergreen forests (e.g., Pierrat et al., 2021;
Parazoo et al., 2018; Euskirchen et al., 2014; Arneth et al.,
2006). As temperature falls in winter-dormant plants, pro-
ductivity becomes negligible. Productivity is triggered again
when spring air temperature becomes warm enough to thaw
stems, trigger xylem flow and promote access to soil mois-
ture (e.g., Pierrat et al., 2021; Bowling et al., 2018; Ishida et
al., 2001). Due to this observed dependence of GPP on tem-
perature at US-NR1, we focus our analysis specifically on
spring GPP, where we hypothesize that cold temperature is
the dominant control on spring GPP variability.
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Figure 3. Scatterplot of mean monthly GPP vs. (a) mean maximum air temperature, (b) mean minimum air temperature and (c) mean air
temperature for 2000–2018. Dots are colored with the corresponding month.

In the baseline version of CARDAMOM, seasonal GPP in
DALEC2 is limited primarily by incoming shortwave radia-
tion. This light-focused limitation works well for deciduous
forests where spring temperature and sunlight are correlated,
as well as for high-latitude regions where sunlight is limited.
However, for reasons discussed above, this method fails in
evergreen forests such as Niwot Ridge, whose green canopies
are exposed to high sunlight and below-freezing temperature
in spring. As temperature increases, evergreen stems slowly
thaw, which enables the trees to access available soil mois-
ture and slowly reactivate their carbon and water exchange
processes (Mayr et al., 2014; Bowling et al., 2018). Temper-
ature also impacts the reactivation of photosynthetic activ-
ity after winter dormancy (Öquist and Huner, 2003; Tanja et
al., 2003). For example, fluctuating temperature in the spring
has been shown to limit and sometimes reverse the activation
of biochemical processes needed for photosynthesis recov-
ery (Ensminger et al., 2004). Exposure to cold temperature,
when combined with increased irradiance in the spring, can
also damage evergreen trees (Öquist and Huner, 2003; Yang
et al., 2020), therefore disrupting CO2 assimilation. Previ-
ous studies have captured these cold-temperature impacts at
Niwot Ridge and other evergreen sites. For example, varia-

tions in photosynthetic pigments have been tied to seasonal
temperature at Niwot Ridge (Magney et al., 2019). Pierrat
et al. (2021) identified an increase in plant water flow (mea-
sured via changes in the diurnal stem radius) and a change in
carotenoid : chlorophyll ratios as temperature increases. The
activation of water flow in the evergreen trees, combined with
the pigment changes to absorb more sunlight, allows for the
recovery of photosynthesis in the spring.

To represent the integrated impact of the cold-weather pro-
cesses, here we implement a cold-temperature scaling fac-
tor (g) in DALEC2. This scaling factor is developed by
analyzing the relationship between monthly minimum and
maximum air temperature with tower-derived monthly GPP,
where

if Tmin(t) < T0, g = 0,

if Tmin(t) > Tg, g = 1;

else g(t) =
(Tmin(t)− T0)

(Tg − T0)
; (1)

GPPcold(t)= GPP(t) · g(t). (2)

Tmin(t) is the observed minimum air temperature at Niwot
Ridge at time t , GPP(t) is the nominal ACM-based DALEC2
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Table 1. Summary of CARDAMOM modeling experiments to determine sensitivity of seasonal and interannual spring GPP variability to
cold-temperature limitation (CARD vs. CARDcold) and the ability to perform outside the training window (Half).

Experiment name MET Time period GPP Time period considered Uncertainties Cold-temp.
drivers assimilation in assimilation in GPP limitation

CARD yes 2000–2018 yes 2000–2018 20 % no
CARD-Half yes 2000–2018 yes 2000–2009 20 % no
CARDcold yes 2000–2018 yes 2000–2018 20 % yes
CARDcold-Half yes 2000–2018 yes 2000–2009 20 % yes

GPP estimate (see Sect. 2.3) and GPPcold is the correspond-
ing cold-temperature GPP estimate. Equation (2) may rep-
resent the integrated effect of all cold-weather biophysi-
cal limitations, including processes such as the impact of
cold weather on plant hydraulics, and changes to carotenoid-
chlorophyll ratios. We also theorize that our temperature
scaling factor partially captures soil moisture disruptions due
to changing soil temperature. The temperature thresholds in
Eq. (1) may account for the connection between air tempera-
ture and soil temperature, with initial and full soil thawing
temperature potentially mirroring the photosynthesis shut-
down and initiation air temperature. CARDAMOM does not
currently have explicit representations of soil moisture stress
due to soil freezing. Therefore, soil freezing stress and other
biophysical processes impacted by cold temperature may be
approximated by this cold-temperature scaling factor added
to CARDAMOM. The temperature thresholds for photosyn-
thesis shutdown (referred to as T0) and initiation (referred to
as Tg) are added as model parameters in DALEC2, bring-
ing the total number of parameters to 35. These 35 DALEC
parameters are simultaneously optimized in CARDAMOM.
The CARDAMOM Bayesian-inference probability distribu-
tions (see Appendix A) for the T0 (−7.1± 1.1 ◦C) and Tg
(6.0± 2.6 ◦C) parameters used to define the cold-temperature
limitation are plotted in Fig. S4. We refer to the cold-
temperature-constrained version of DALEC2 (within CAR-
DAMOM) as DALEC2cold.

The baseline (DALEC2) and cold-temperature
(DALEC2cold) versions of the model are run for the
2000–2018 period using tower-observed, gap-filled, monthly
meteorological (MET) drivers (including minimum and
maximum air temperature, shortwave radiation, vapor pres-
sure deficit, and precipitation). We conduct four experiments,
summarized in Table 1: experiments using DALEC2 and
DALEC2cold within CARDAMOM, where 19 years of GPP
data is assimilated (referred to as CARD and CARDcold)
and a corresponding pair of experiments where only the first
decade of data (2000–2009) is assimilated (referred to as
CARD-Half and CARDcold-Half) and the second decade of
data (2010–2019) is withheld for validation, as a train–test
scenario. All months of GPP data are assimilated into the
model; however our analysis focuses on the constraints on
spring (March–May) GPP. These four experiments serve

to evaluate the sensitivity of modeled GPP at Niwot Ridge
to cold-temperature limitation and parameter optimization.
Specifically, the objective of experiments CARD and
CARDcold is to determine whether the cold-temperature
scaling factor improves the representation of spring GPP
variability across the 2000–2018 period; the objective of
experiments CARD-Half and CARDcold-Half is to cross
validate the predictive skill of CARDcold by assessing
whether the addition of a cold-temperature scaling factor,
informed by a subset of GPP data, can improve prediction of
a withheld subset of GPP data.

2.5 Comparison to terrestrial biosphere model
ensemble

A recent model intercomparison study provides an ideal
benchmark for evaluating CARDAMOM simulations
(Sect. 2.4). Parazoo et al. (2020) conducted an experiment
in which an ensemble of state-of-the-art terrestrial biosphere
models (TBMs) were forced by the same observed meteorol-
ogy at Niwot Ridge from 2000–2018 but with differences in
spin-up, land surface characteristics and parameter tuning.
The TBMs are designed to simulate the exchanges of carbon,
water and energy between the biosphere and atmosphere,
from global to local scales depending on inputs from
meteorological forcing, soil texture and plant functional type
(PFT). The experiment was designed primarily to evaluate
simulations of solar-induced fluorescence (SIF) and GPP,
the latter of which we focus on here. We refer the reader
to Parazoo et al. (2020) for a more complete description
of models, within-model experiments and between-model
differences.

The most important model differences worth noting here
include the representation of stomatal conductance, canopy
absorption of incoming radiation and limiting factors for
photosynthesis. We analyze a subset of the models, which
were run for multiple years, including SiB3 and SiB4 (Sim-
ple Biosphere model versions 3 and 4, respectively), OR-
CHIDEE (Organizing Carbon and Hydrology In Dynamic
Ecosystems), BEPS (Boreal Ecosystems Productivity Sim-
ulator), and CLM4.5 and CLM5.0 (Community Land Model
versions 4.5 and 5.0, respectively). We also analyze within-
model experiments in SiB3 and ORCHIDEE to isolate ef-
fects related to the prescription of the leaf area index
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(LAI; varying monthly in SiB3-exp1, fixed at 4.0 m2 m−2

in SiB3-exp2), temperature and water stress (ORCHIDEE-
exp1 includes temperature stress; ORCHIDEE-exp2 ac-
counts for temperature and water stress) and data assimila-
tion (ORCHIDEE-exp3, in which a subset of model parame-
ters controlling photosynthesis and phenology are optimized
against global OCO-2 (Orbiting Carbon Observatory 2) SIF
data; Bacour et al., 2019). Most of the TBM model exper-
iments were run with default parameters (BEPS, CLM50,
SiB3, SiB4, ORCHIDEE-exp1 and ORCHIDEE-exp2). The
other experiments were optimized in the following ways: ei-
ther (a) parameters were hand-tuned based on the US-NR1
data (CLM4.5) or (b) the parameters were optimized using
OCO-2 SIF data (ORCHIDEE-exp3). For more details on
the parameterization of the TBM-SIF experiments, we refer
the reader to Parazoo et al. (2020). The use of these models
provides insight into the spread in model structures and the
use of their default parameters. Finally, we note that not all
model simulations span the entire observed record (2000–
2018). While our analysis focuses on the long-term record
from 2000–2018, we provide multiple comparisons to ensure
consistency of the time period: (1) IAV from 2001–2018 for
SiB3, SiB4, ORCHIDEE and CLM4.5; (2) IAV from 2012–
2018 for SiB3, SiB4, ORCHIDEE, CLM4.5 and CLM5.0;
and (3) seasonal variability from 2015–2018 for all models.
We refer to the ensemble of models and within-model exper-
iments collectively as TBM-MIP.

3 Results and discussion

3.1 Evaluation of CARDAMOM 2000–2018 GPP

When the 19 years of tower-derived GPP data is assimi-
lated into both versions of the model, the mean seasonal
cycle is accurately replicated (Fig. 4). Pearson’s r val-
ues for CARD (Fig. 4a) and CARDcold (Fig. 4b) are al-
most equal (r is 1.0 and 0.99) with minimal increases
in root mean square error (RMSE) and mean bias error
(MBE) for CARDcold (RMSE is 0.24 and 0.23 g C m−2 d−1

and MBE is 0.06 and 0.19 g C m−2 d−1 for CARD and
CARDcold, respectively). Assimilating only the first decade
of GPP data (Half experiments) does not drastically al-
ter model performance (Fig. S5), with only slight changes
in RMSE and MBE (1RMSE = 0.008 g C m−2 d−1 and
1MBE = 0.03 g C m−2 d−1 for CARD-Half; 1RMSE =
−0.003 g C m−2 d−1 and 1MBE = 0.02 g C m−2 d−1 for
CARDcold-Half).

The cold experiments exhibit an improved fit to the
observed IAV in spring productivity (Fig. 5), relative to
CARD (r = 0.47 and SD= 0.03 g C m−2 d−1 for CARD; r =
0.88 and SD= 0.27 g C m−2 d−1 for CARDcold). CARD-
cold also has slightly reduced RMSE (−0.01 g C m−2 d−1)

and larger MBE (0.13 g C m−2 d−1). Similarly to the sea-
sonal cycle analysis, the assimilation of only the first

decade of GPP data (Half experiments) has minimal impact
on model performance (1RMSE = 0.007 g C m−2 d−1 and
1MBE = 0.06 g C m−2 d−1 for CARD-Half, and 1RMSE
= 0.02 g C m−2 d−1 and 1MBE = 0.02 g C m−2 d−1 for
CARDcold-Half). We find less agreement between modeled
and tower-derived GPP IAV in summer for both CARD and
CARDcold (CARD r = 0.32 and SD= 0.11 g C m−2 d−1;
CARDcold r = 0.05 and SD= 0.10 g C m−2 d−1; Fig. S6).
While there is little variation in RMSE between the half-
and full-assimilation experiments, RMSE is larger for sum-
mer than spring GPP (average RMSE= 0.23 g C m−2 d−1

for spring model outputs; average RMSE= 0.35 g C m−2 d−1

for summer model outputs). Model agreement is further re-
duced when considering annual average GPP (Fig. S7, Ta-
ble S2). Although the cold-temperature limitation improves
IAV slightly, it is still small compared to observed variabil-
ity (mean annual SD= 0.14 g C m−2 d−1). Correlations to
tower-derived GPP at the annual scale are small for both
CARD and CARDcold (r = 0.19 and r = 0.22, respectively;
Fig. S7a–b). Overall, the cold-temperature limitation sub-
stantially improves agreement between the model and tower-
derived spring GPP, with slight reductions in performance for
summer and annual GPP.

The standard deviation in tower-derived mean spring GPP
(March–May) is approximately 0.25 g C m−2 d−1. The addi-
tion of the cold-temperature limitation improves the model’s
ability to match the IAV of mean spring GPP (Fig. 6a–b).
An examination of all modeled scenarios for CARD and
CARDcold (i.e., all 4000 DALEC2 simulations) shows that
the cold-temperature limitation produces spring IAV values
much closer to what is observed in the tower-derived GPP
data. Only 0.3 % of CARD ensembles produce mean spring
IAV values within 20 % of the tower-derived spring GPP
standard deviation (0.25± 0.05 g C m−2 d−1), whereas 69 %
of CARDcold ensembles have standard deviation values
within the same range. Interestingly, assimilating only the
first 10 years of GPP data (Half experiments, Fig. 6b) slightly
increases the number of ensemble members with standard
deviations within the mentioned range for both CARD-Half
(2.4 %) and CARDcold-Half (70 %). It is promising to see
that despite not assimilating the 2010–2018 GPP data into
the model, CARDcold-Half is still able to match the average
spring IAV of the full data record.

We also consider the IAV in spring GPP for just
the second half of the data record (2010–2018). IAV
of tower-derived spring GPP increases slightly in 2010–
2018 (0.32 g C m−2 d−1). Once again, the cold-temperature
limitation enables CARDAMOM to match spring GPP
IAV (Fig. 6c–d). Of CARD ensembles, 0.03 % produce
mean spring IAV values within 20 % of the tower-derived
spring GPP standard deviation for the 2010–2018 period
(0.32± 0.06 g C m−2 d−1), whereas 76 % of CARDcold en-
sembles have standard deviation values within the same
range. For the Half experiments, 0.6 % of CARD and 75 %
of CARDcold ensembles have IAV values within 20 % of
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Figure 4. Tower-derived average monthly GPP (black line) and modeled GPP seasonal cycles at US-NR1 for 2000–2018, for (a) CARD
and (b) CARDcold experiments. The half-assimilation experiments (CARD-Half and CARDcold-Half) can be found in the Supplement
(Fig. S5). Model outputs include the median value of each experiment (bold colored line) with the 25th–75th percentiles of the ensembles
(shaded area). The median is plotted instead of the mean to avoid impact of outlier ensemble members (N = 4000). Error bars are tower-
derived GPP multiplied and/or divided by exp(

√
(log(2)2 · n)/n). n is number of years on average (n= 19). r is Pearson’s coefficient.

the standard deviation for 2010–2018. This improvement in
matching IAV is also observed when considering mean an-
nual GPP (Fig. S8), but it is much smaller than the improve-
ments made for spring GPP. Overall, CARDcold produces
a less biased distribution of IAV values (relative to both
assimilated and withheld observations), whereas CARD is
more skewed towards smaller IAVs, which indicates that the
cold-temperature limitation enables a mechanistic and statis-
tical improvement in capturing the interannual variability in
spring GPP.

3.2 Temperature controls on springtime GPP

The added value of the DALEC2 cold-temperature limita-
tion for modeling mean spring (March–May) GPP is logi-
cally due to large fluctuations in spring temperature at Niwot
Ridge. The cold-temperature limitation allows DALEC2–
CARDAMOM to match the IAV of tower-derived spring
GPP closely. Furthermore, the cold-temperature limitation
enables the model to match tower spring IAV in the sec-
ond half of the time period (2010–2018) when only the first
10 years of GPP data is assimilated (2000–2009). This indi-
cates that the cold-temperature limitation is able to estimate
spring GPP outside of its training window and could be use-
ful at other sites where data availability is limited. Future
work will include evaluating the cold-temperature limitation
at other sites to ensure that it is applicable beyond Niwot
Ridge, for example using forecast skill metrics proposed by
Famiglietti et al. (2021).

The temperature-induced spring onset of GPP is driven by
two general processes: (1) initiation of bud burst and leaf ex-
pansion leading to an increasing LAI and/or (2) initiation of
photosynthetic activity (photosynthetic efficiency, i.e., GPP
per unit of LAI) due to temperature-induced changes in plant
hydraulics (Ishida et al., 2001; Pierrat et al., 2021) or kinetics
of the photosynthetic machinery (e.g., Medlyn et al., 2002).
In situ LAI measurements suggest that the LAI at Niwot
Ridge is relatively constant across the season, which is some-
what expected given the dominant tree species at the site.
Hence, the temperature-induced onset of GPP is likely due
to the latter process, increased photosynthetic efficiency, as
supported by the measurements (Figs. 1–2), although small
changes in the LAI are still feasible given uncertainties in the
measurements. The inclusion of the cold-temperature limita-
tion scaling factor in the model, a semi-empirical process,
leads to a substantial improvement in the model representa-
tion of GPP at the site. Further development may also look to
identify the relative roles of an increased LAI and increased
photosynthetic efficiency at Niwot Ridge and other evergreen
needleleaf sites as changes in GPP can lead to changes in car-
bon allocation to the LAI, among other plant carbon pools.

Temperature is important in both the reactivation of pho-
tosynthetic activity in the spring and the wind down of pro-
ductivity in the fall (Flynn and Wolkovich, 2018; Stinziano
and Way, 2017). Therefore, we anticipate that the cold-
temperature scaling function may also improve our ability to
model fall productivity. However, other factors such as wa-
ter availability and the photoperiod must also be considered
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Figure 5. Tower-derived (black line) mean spring (March–May) GPP with model interquartile range (shaded area) and median (bold colored
line) spring GPP outputs for (a) CARD, (b) CARDcold, (c) CARD-Half and (d) CARDcold-Half experiments. The grey regions indicate no
data assimilation (i.e., testing window). Model experiments are the same as in Fig. 4. Uncertainty is exp(

√
(log(2)2 · n)/n), where n is the

number of months on average (n= 3).

(Bauerle et al., 2012; Stinziano et al., 2015). Future studies
at Niwot Ridge and other sites should investigate the role of
these factors (temperature, water, photoperiod) in regulating
fall GPP and how we can represent these processes in CAR-
DAMOM.

With the inclusion of the cold-temperature limitation on
GPP and its application in CARDAMOM, we provide a data-
constrained estimate of the climate sensitivity of the Niwot
Ridge forest to spring temperature. Posterior estimates indi-
cate that GPP is gradually inhibited below 6.0 ◦C± 2.6 ◦C
(Tg) and completely inhibited below −7.1 ◦C± 1.1 ◦C (T0).
The gradual limitation of GPP by temperature has been ob-
served on hourly and daily timescales in other cold-weather
ecosystems, such as Alaskan conifers (Parazoo et al., 2018)
and Canadian spruce (Pierrat et al., 2021). This has been con-
nected to the triggering of transpiration and water flow from
xylem into leaves (Ishida et al., 2001). However, both biotic
(e.g., carotenoid : chlorophyll ratios) and abiotic (e.g., open-
ness of canopy) factors together regulate GPP response to
meteorological forcings, and further process-oriented inves-
tigations are required to resolve the emergent response of

GPP to temperature. Furthermore, the use of process-based
models will be needed to disentangle the individual cold-
weather biophysical processes currently represented in the
scaling factor (Eqs. 1–2). For now, this is a useful metric for
the climate sensitivity of spring GPP, at least in the absence
of long-term adaptations. Furthermore, over the 19-year ob-
servation period investigated here, the use of temporally con-
stant T0 and Tg yields significantly improved GPP estimates,
suggesting that much of the variability can be attributed to
climate-driven changes, not interannual variation in vegeta-
tion parameters. As temperature continues to increase due
to climate change (particularly in the early growing season),
productivity at US-NR1 could increase as a result and there-
fore increase carbon uptake, with productivity peaking ear-
lier in the year (e.g., Xu et al., 2016). However, these spring
gains in GPP have been shown to not offset the losses of car-
bon due to summer droughts (e.g., Buermann et al., 2013;
Knowles et al., 2018). It is also unclear how the long-term
stress of increased temperature could affect forest productiv-
ity directly.
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Figure 6. Histograms comparing standard deviation in mean spring GPP across all ensembles (N = 4000) for CARD (red bars) and CARD-
cold (blue bars) experiments with (a) full assimilation, (b) half assimilation, (c) full assimilation for the second decade (2010–2018) and
(d) half assimilation for the second decade (2010–2018). The black line indicates the standard deviation in tower-derived mean spring GPP
(SD= 0.25 g C m−2 d−1 for full period (a–b); SD= 0.32 g C m−2 d−1 for 2010–2018 (c–d)).

This study focuses on the relationship between tempera-
ture and GPP and its usefulness for model predictions of
spring GPP, but an important component that cannot be
ignored is the confounding effect of water availability on
GPP. Future changes in winter precipitation are more un-
certain, therefore limiting our ability to analyze how pre-
cipitation changes will alter future productivity. While pre-
cipitation observations are analyzed to discern any major
connections between GPP and meteorological controls, an
analysis of how precipitation affects model predictability is
not included in this study. The combined results, including
the cold-temperature limitation and train–test data assimila-
tion experiments, suggest that other factors besides spring
temperature, most notably winter and summer precipitation
(Fig. S3) and resulting soil water limitation, also have im-
portant impacts on summer GPP. We therefore highlight the
need to jointly resolve springtime temperature limitation in
conjunction with water stress limitations in future efforts to
understand the integrated role of environmental forcings on
interannual GPP variability. Furthermore, this analysis does
not consider how winter precipitation as snowfall versus rain-
fall affects productivity or how resulting changes to winter
snowpack could alter productivity in the long term. Since an-

nual average GPP appears to be more dependent on winter
precipitation/snowpack (Pearson’s linear r = 0.63; Fig. S3a),
future work will include improving model predictability of
late-season productivity and quantifying temperature–water
effects on carbon uptake. The definition of the seasons could
also alter the connections drawn between seasonal tempera-
ture, precipitation and productivity.

3.3 Model intercomparison and implications for GPP
models

Here, we evaluate DALEC2–CARDAMOM against mean
spring GPP estimates from TBM-MIP models (Sect. 2.5 and
Parazoo et al., 2020). It is important to remind the reader
that the CARDAMOM runs have a significant advantage
over the TBM-MIP models in this analysis, as CARDAMOM
is trained on US-NR1 GPP data. While TBM-MIP models
use tower-observed meteorological inputs, prescribe tower-
specific and time-invariant structural properties such as the
LAI observed at US-NR1 (SiB3-exp2 and CLM4.5), and use
data assimilation of global remote sensing data to constrain
globally representative plant functional types (ORCHIDEE-
exp3), they are not directly constrained by time-varying car-
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bon fluxes at the tower. As such, we emphasize that our
model comparison is not a strict assessment of performance
but rather an attempt to learn how model simulation of GPP
at an evergreen needleleaf site can be improved.

There is a wide range in performance of TBM-MIPs
in representing the magnitude and IAV of tower-derived
spring GPP (Fig. 7a). Pearson’s r correlations range from
0.25 to 0.82 (mean r = 0.6; Table 2) from 2001–2018, with
the same models showing slightly improved performance
over the second decade (mean r = 0.73 from 2012–2018).
ORCHIDEE-exp1 and CLM4.5 show consistently high per-
formance over all three periods analyzed, with CLM5.0 ex-
celling from 2012–2018 and BEPS from 2015–2018 (Ta-
ble S1). CLM4.5 also shows the smallest mean bias of the
TBM-MIP models (RMSE∼ 0.35) and high agreement in
the magnitude of spring GPP variability (1σ standard devi-
ation is 0.21 g C m−2 d−1 for CLM4.5 vs. 0.25 g C m−2 d−1

observed). While acknowledging the advantage of data as-
similation, it is promising to see that CARDAMOM (with
the addition of the cold-temperature limitation) is able to
perform comparably to the TBM-MIP models. In particular,
CARDcold is well correlated in the direction (r = 0.88) and
magnitude (1σ ∼ 0.26) of interannual variability, as well as
the overall magnitude of spring GPP (low RMSE and MBE).

The range of performances across within-model experi-
ments reveals important processes, as well as uncertainty in
process representation, in driving the magnitude and variabil-
ity in spring GPP. For example, the ORCHIDEE data assim-
ilation experiment (exp3) shows consistently and substan-
tially lower overall correlation (e.g., r = 0.59 from 2001–
2018) than corresponding free-running experiments (exp1
and exp2, r is 0.78–0.82) but has reduced RMSE and MBE
(RMSE is 0.63 g C m−2 d−1 vs. 1–1.14 g C m−2 d−1). Like-
wise in SiB3, prescribing an empirically based but fixed-
in-time LAI of 4.0 m2 m−2 (exp2) reduces mean bias but
degrades variability (r = 0.25) compared to a time-variable
LAI (exp1) prescribed from satellite data (r = 0.50).

There is also large variability in the modeled seasonal cy-
cle (Fig. 7b) and mean annual GPP (Fig. S9). For mean
annual GPP estimates, Pearson’s r values are reduced for
all models (Table S2). Once again, ORCHIDEE-exp2 and
ORCHIDEE-exp3 stand out with some of the higher cor-
relations (r = 0.60 and r = 0.64) and p values below the
5 % significance level. Furthermore, ORCHIDEE-exp3 (tem-
perature stress with SIF data assimilation) has the lowest
RMSE and MBE of the model set. SiB3-exp2 (fixed LAI)
has a standard deviation closest to that of “observations”
(0.14 g C m−2 d−1) and the smallest RMSE and MBE of the
TBM models.

Most TBM-MIP models capture the shape of the seasonal
cycle at Niwot Ridge. For the 2015–2018 period, all mod-
els have Pearson’s r values larger than 0.91, with p values
much smaller than a 5 % significance level (Table S3). With
the help of data assimilation, CARDcold accurately cap-
tures the seasonal cycle at Niwot Ridge with reduced error

(RMSE= 0.22 g C m−2 d−1; MBE= 0.07 g C m−2 d−1), and
data assimilation experiments in ORCHIDEE-exp3 show re-
duced bias relative to free-running experiments. The cold-
temperature limitation has little impact on the modeled mean
seasonal cycle or mean annual GPP estimates in CAR-
DAMOM and appears to be most valuable for improving
spring GPP variability.

In summary, TBM-MIP experiments reveal several key
factors that can improve or degrade estimates of spring
GPP at Niwot Ridge. For example, adapting model param-
eters to needleleaf species based on hand-tuning to tower
data and formal data assimilation methods (CLM4.5 and
ORCHIDEE-exp3, respectively) improves the overall magni-
tude of spring GPP. Likewise, prescribing the LAI a constant
value of 4.0 m2 m−2 based on tower measurements (SiB3-
exp2) improves year-to-year variability, while prescribing the
time-variable LAI based on MODIS data improves spring
GPP magnitude (SiB3-exp1). SiB4, which has prognostic
rather than prescribed phenology, represents a compromise in
magnitude and variability when looking at the entire record
(2001–2018) but is one of the top performers across all TBM-
MIP models over the most recent period (2012–2018).

We did not directly consider changes in canopy structural
or biophysical characteristics in our CARDAMOM experi-
ments. In CARDAMOM, the LAI is a prognostic quantity (a
function of foliar C and leaf carbon mass per area). In the
absence of LAI observational constraints, the CARDAMOM
LAI is indirectly informed by the constraints of time-varying
GPP on DALEC2 parameters (see Sect. 2.3). Our results sug-
gest that additional improvements are possible with careful
consideration of in situ-measured vegetation parameters.

TBM-MIP experiments also offer insight into important
environmental controls and process representation. Air tem-
perature is an effective constraint of spring GPP onset
(CLM4.5, ORCHIDEE-exp1, Fig. 7 and Table 2), but it can
be degraded when large-scale data assimilation does not ac-
count for local to regional vegetation characteristics in pa-
rameter optimization (e.g., ORCHIDEE-exp3, Table 2). Wa-
ter availability appears to be a secondary but still important
driver of spring GPP. While acknowledging the numerous
differences between CLM4.5 and CLM5.0, we find it impor-
tant to note that plant hydraulic water stress (CLM5.0) shows
improved IAV performance (high correlation, Table 2) over
simplified soil moisture stress functions (CLM4.5). This re-
sult further supports efforts to closely analyze seasonal GPP
to locate different environmental controls for future model
improvements.

Our study of the controls of cold temperature on GPP has
important implications for modeling seasonal productivity.
First, future work must evaluate cold-temperature limitation
at other sites across an array of ecosystem types. Addition-
ally, it is important to determine if the temperature thresholds
of photosynthesis initiation and cessation are similar across
locations or unique to ecosystem type and/or site. Previous
studies have had mixed results, supporting the use of both

https://doi.org/10.5194/bg-19-541-2022 Biogeosciences, 19, 541–558, 2022



552 S. G. Stettz et al.: Temperature limitation on spring productivity in an evergreen forest

Figure 7. Comparison of TBM-MIP models to CARD and CARDcold experiments for (a) mean spring GPP for 2000–2018 and (b) monthly
GPP from 2015–2018. Note that fill values are ignored when calculating mean annual values for TBM-MIP experiments. Uncertainty is
exp(

√
(log(2)2 · n)/n), where n is the number of years on average (n= 19).

Table 2. Pearson’s linear r , R2, p value, standard deviation, root mean square error (RMSE), and mean bias error (MBE) for TBM-MIP
and all CARDAMOM experiments for Niwot Ridge tower-derived mean spring (March–May) GPP. Open values reflect statistics for the
2001–2018 period, while values in parentheses represent the 2012–2018 period. All relevant statistics are calculated at a 5 % significance
level.

Model r value R2 p value RMSE MBE Standard deviation
(α = 0.05) (g C m−2 d−1) (g C m−2 d−1) (g C m−2 d−1)

CARD-Half 0.47 (0.55) 0.22 (0.30) 0.05 (0.20) 0.24 (0.26) −0.005 (0.06) 0.03 (0.04)
CARD 0.45 (0.57) 0.20 (0.33) 0.06 (0.18) 0.24 (0.28) 0.05 (0.12) 0.03 (0.04)
CARDcold-Half 0.88 (0.93) 0.77 (0.86) 0.00 (0.002) 0.21 (0.24) 0.17 (0.22) 0.26 (0.29)
CARDcold 0.87 (0.93) 0.76 (0.87) 0.00 (0.00) 0.23 (0.26) 0.20 (0.24) 0.26 (0.28)
SiB3-exp1 0.50 (0.81) 0.25 (0.66) 0.04 (0.03) 1.07 (1.23) 1.04 (1.21) 0.16 (0.13)
SiB3-exp2 0.25 (0.41) 0.06 (0.17) 0.32 (0.36) 0.97 (1.15) 0.92 (1.13) 0.26 (0.10)
SiB4 0.34 (0.91) 0.12 (0.83) 0.16 (0.00) 0.90 (1.04) 0.86 (1.02) 0.22 (0.09)
ORCHIDEE-exp1 0.82 (0.82) 0.68 (0.67) 0.00 (0.02) 1.14 (1.24) −1.08 (−1.16) 0.56 (0.67)
ORCHIDEE-exp2 0.78 (0.79) 0.61 (0.63) 0.00 (0.03) 1.00 (1.20) −0.95 (−1.12) 0.51 (0.64)
ORCHIDEE-exp3 0.59 (0.55) 0.35 (0.31) 0.01 (0.20) 0.63 (0.81) −0.57 (−0.76) 0.35 (0.36)
BEPS∗ X X X X X X
CLM4.5 0.82 (0.85) 0.68 (0.73) 0.00 (0.01) 0.34 (0.35) −0.31 (−0.31) 0.21 (0.18)
CLM5.0 (0.96) (0.92) (0.00) (1.09) (−1.08) (0.42)

∗ BEPs statistics are not included in this table as this model only has GPP estimates for 2015–2018.
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customized temperature threshold parameters dependent on
the site (Tanja et al., 2003; Chang et al., 2020) and a gen-
eral parameter across multiple sites or biome type (Bergeron
et al., 2007). These differences could be due to variations
in other variables (e.g., soil temperature, irradiance) and/or
physiological differences in the vegetation species. Identify-
ing how photosynthesis temperature thresholds vary across
space and ecosystem type would be beneficial in improving
model performance in simulating productivity. Our model
intercomparison study also provides insights into how we
may improve our ability to model seasonal GPP. For exam-
ple, in Fig. 7b, we see that the ORCHIDEE model growing
season starts too early. In the photosynthesis module of OR-
CHIDEE, the temperature dependency of parameters are de-
scribed by Arrhenius or modified Arrhenius functions fol-
lowing Medlyn et al. (2002) and Kattge and Knorr (2007). In
general, the functions are used to estimate the potential rates
of Rubisco activity and electron transport based on temper-
ature, as these rates are needed to determine photosynthetic
capacity (Medlyn et al., 2002). The lowest temperatures for
productivity mentioned in these studies are 5 and 11 ◦C, re-
spectively. Additionally, there is a test at the start of the pho-
tosynthesis subroutine that prevents the computation of pho-
tosynthesis if the mean temperature over the last 20 d falls be-
low −4 ◦C. For our study, the only ORCHIDEE experiment
that uses specific data related to the plant functional type of
this site (OCO-2 SIF data for US-NR1) is ORCHIDEE-exp3.
This experiment improves the general behavior of the mod-
eled GPP seasonal cycle but does not improve ORCHIDEE’s
ability to capture the start of the growing season. So with the
future evaluation of cold-temperature limitation at other sites
and further study of the potential temperature-influenced bias
in the model, ORCHIDEE (and other process-based models)
may need to improve its photosynthesis temperature depen-
dency for cold plant functional types. Therefore, we recom-
mend implementing a cold-temperature GPP limitation in a
process-based model to confirm its ability to improve model
performance. If we (1) identify how photosynthesis initiation
and shutdown vary with temperature and location and (2) ap-
ply a cold-temperature limitation successfully in a process-
based model, then we could expand our analyses to answer
bigger Earth science questions. For example, we could use
Earth system model temperature trends to determine how
changing temperature will impact GPP in the future.

While further experiments are needed, these results
demonstrate the value of (1) site level data assimilation for
local-scale prediction of GPP magnitude and variability, (2)
global data assimilation for reducing magnitude biases, and
(3) process formulation for accounting for sensitivity to tem-
perature limitation and water stress. Overall, these results are
encouraging for model–data fusion systems which have de-
veloped the capacity to bring together temporally and spa-
tially resolved functional and structural vegetation compo-
nents such as the LAI, SIF, soil organic matter, and above-
and belowground biomass (e.g., Bacour et al., 2019; Smith

et al., 2020; Bloom et al., 2020). Joint assimilation of these
datasets, coupled with observed meteorological forcing, has
the potential to introduce more emergent constraints of vege-
tation change with respect to environmental change, thus im-
proving overall estimates of productivity. Future work will
assess the joint impact of SIF, ET (evapotranspiration), the
LAI, and biomass data as effective constraints on light-use
and water-use efficiency (Smith et al., 2020), which is ex-
pected to improve the ability of CARDAMOM to use light
with respect to increasing biomass subject to longer growing
seasons and heat and water stress.

4 Conclusions

Despite mechanistic advances in ecosystem modeling, it is
still a challenge to simulate temporal variations in GPP. In an
attempt to dissect the environmental controls on GPP in an
evergreen needleleaf ecosystem, we analyzed the impact of
temperature on spring (March–May) productivity by imple-
menting a cold-temperature GPP limitation within a model–
data fusion system (DALEC2–CARDAMOM). The cold-
weather GPP limitation allows for improved model estimates
of mean spring productivity at Niwot Ridge, specifically
CARDAMOM’s ability to match the interannual variability
observed in tower-derived mean spring GPP. Furthermore,
CARDAMOM is able to match spring interannual variability
between model and tower data outside of the training period.
When compared to TBM-MIP models, controls that appear
to impact model performance include the inclusion of water
stress (e.g., soil moisture) and vegetation parameters (e.g.,
prescription of the LAI). The fact that the cold-temperature
limitation does not improve CARDAMOM’s annual GPP es-
timates suggests that other controls (i.e., winter precipitation)
drive GPP variability in other parts of the year, most likely
summer (June–September). The cold-temperature limitation
may prove useful in understanding future changes in spring
productivity due to changes in temperature in other ecosys-
tems as well.

Appendix A: Model–data fusion methodology

The DALEC2 model parameter values and state variable ini-
tial conditions (henceforth x) are optimized using a Bayesian
inference approach, where the posterior probability distribu-
tion of x given observations O, p(x|O), can be expressed
as

p(x|O) ∝ p(x)L(x|O) , (A1)

where p(x) is the prior probability distribution of x and
L(x|O) is the likelihood of the DALEC parameters and ini-
tial conditions given observations O. We define the likeli-
hood function as

L(x |O)= e
−

1
2
∑
i

(
mi (x)−Oi

σ

)2

+ e
−

1
2
∑
a

(
ma ′(x)−Oa ′

σ ′

)2

, (A2)
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where for monthly time step i, mi(x) and Oi represent
monthly modeled GPP (based on parameters x) and flux
tower GPP observation, respectively. Following model–data
fusion efforts with a spectrum of temporal modes of variabil-
ity (Desai, 2010; Quetin et al., 2020; Bloom et al., 2020),
we extend the cost function to include mean annual model
and tower-derived GPP, ma(x) andOa, respectively, where a
is the year, which allows the GPP cost function to be sen-
sitive to both seasonal and interannual components of the
flux tower GPP signal. We log transform modeled and tower-
derived GPP values (as done in Bloom and Williams, 2015,
and Bloom et al., 2016), which is preferable for character-
izing model–data residuals between strictly positive quanti-
ties (such as GPP). For lack of better uncertainty estimates
of monthly and annual flux tower GPP accuracy – including
lack of knowledge on GPP error characteristics at monthly
timescales, error covariance between individual GPP esti-
mates and model structural error impacts on GPP – we
conservatively prescribed an uncertainty factor of σ = 2 for
monthly values (roughly ∼ 75 %) and σ ′ = 1.2 (∼ 18 %) for
annual values; in general we found that these values led to ro-
bust agreements between flux tower and DALEC2 GPP vari-
ability (model–data mismatch metrics are reported in Sect. 3
of the paper).

For all model experiments, we sample the probability of
p(x |O), the posterior probability distribution of initial con-
ditions x given observations O; we use the Metropolis–
Hastings Markov chain Monte Carlo (MHMCMC; Haario et
al., 2001) with four chains for 108 iterations; and we subsam-
ple 1000 parameter vectors x, from the latter 50 % of each
chain (in total 1000 samples× 4 chains= 4000 samples). We
test for convergence in the MHMCMC estimates of x using a
the Gelman–Rubin convergence diagnostic to measure con-
vergence between the four chains.
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