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Abstract

Understanding the relationships between climate and carbon exchange by terrestrial ecosystems
is critical to predict future levels of atmospheric carbon dioxide because of the potential
accelerating effects of positive climate–carbon cycle feedbacks. However, directly observed
relationships between climate and terrestrial CO2 exchange with the atmosphere across biomes
and continents are lacking. Here we present data describing the relationships between net
ecosystem exchange of carbon (NEE) and climate factors as measured using the eddy
covariance method at 125 unique sites in various ecosystems over six continents with a total of
559 site-years. We find that NEE observed at eddy covariance sites is (1) a strong function of
mean annual temperature at mid- and high-latitudes, (2) a strong function of dryness at mid- and
low-latitudes, and (3) a function of both temperature and dryness around the mid-latitudinal belt
(45◦N). The sensitivity of NEE to mean annual temperature breaks down at ∼16 ◦C (a threshold
value of mean annual temperature), above which no further increase of CO2 uptake with
temperature was observed and dryness influence overrules temperature influence.

Keywords: NEE, climate control, terrestrial carbon sequestration, temperature, dryness, eddy
flux, biomes, photosynthesis, respiration, global carbon cycle

S Online supplementary data available from stacks.iop.org/ERL/5/034007/mmedia

1. Introduction

Determining the relationships between terrestrial carbon
exchange and climate is fundamentally important because
climate–carbon cycle feedback could significantly accelerate
(or decelerate) future climate warming (Zeng et al 2004, 2005).
Globally, the observed growth rate anomaly of atmospheric
CO2 concentration is correlated with the multivariate El Niño-
Southern Oscillation index (Heimann and Reichstein 2008).
Inversion modeling (Bousquet et al 2000) and biome-based
analyses of climate anomalies (Zhou et al 2008) suggest that
the oceanic carbon reservoir is a minor player in this variability.
Instead, variations in the atmospheric CO2 growth rate result
largely from the impact of climate on terrestrial carbon
sequestration (Nemani et al 2003, Xiao and Moody 2004),
including regional impacts of extreme climate conditions such
as heat waves and droughts (Ciais et al 2005, Xiao et al 2009).

On much smaller spatial scales, large amounts of data
have been collected continuously over the last two decades
using the eddy covariance technique to measure directly the
net ecosystem exchange of CO2 (NEE) between the biosphere
and the atmosphere (Baldocchi et al 2001, Law et al 2002).
Although a typical eddy covariance footprint is relatively
small (ca. 1 km2), NEE variability at these sites is often
representative of variability over much larger spatial scales as
a result of the spatial coherence of climate anomalies (Ciais
et al 2005, Nemani et al 2003, Xiao and Moody 2004).
These temporal variations in NEE, the imbalance between
photosynthesis (fixation of atmospheric carbon dioxide into
organic carbon) and ecosystem respiration (plant and microbial
respiration converting organic carbon into atmospheric carbon
dioxide), are caused predominately by climatic drivers on daily

117 These authors are listed alphabetically and contributed equally to this
work.
118 Deceased.

and seasonal timescales (Law et al 2002). Although several
synthesis efforts have been conducted across eddy-flux tower
sites, the role of climatic drivers in causing NEE variability
across multiple sites on annual or longer timescales is still not
clear (Law et al 2002, Valentini et al 2000, Reichstein et al
2007).

Determining the environmental controls on NEE is com-
plicated because NEE is the difference between photosynthesis
and ecosystem respiration, and climate variations may affect
these two components in different ways. Spatial variability
in respiration is strongly correlated with temperature, pre-
cipitation and substrate supply (Raich et al 2002, Ryan and
Law 2005), and gross primary productivity has been shown
to be subject to climate-based limiting factors—temperature,
precipitation and/or radiation, depending on the region (Law
et al 2002). This paper seeks to identify the climate controls
on spatial NEE variability globally as represented within
FLUXNET, a global network of eddy covariance tower sites
(Baldocchi et al 2001). Other studies have shown that non-
climate factors, especially disturbance, are a major factor
causing NEE variability (Oren et al 2006, Thornton et al
2002, Foley et al 2005). The role of disturbance history may
be underplayed in FLUXNET synthesis studies because the
number of recently disturbed sites is limited. However, we
expect that other recent estimates that emphasize the effects
of other non-climate factors such as nitrogen (Magnani et al
2007, Sutton et al 2008) have downplayed the role of climatic
interactions.

2. Data and sites

The present analysis is based on 559 site-years of eddy
covariance data measured from 125 sites throughout the
world from 1992 to 2008 (supplementary table S1 available
at stacks.iop.org/ERL/5/034007/mmedia). The latitudes
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vary from 37◦S to 71◦N, longitudes are broadly covered,
and elevation ranges from −2 to 3288 m (supplementary
figure S1 available at stacks.iop.org/ERL/5/034007/mmedia).
The climatic zones of the sites include polar tundra,
maritime temperate, continental temperate, humid subtropical,
Mediterranean, arid, semi-arid, tropical monsoon, and tropical
wet-and-dry climates. The vegetation types include grassland,
evergreen needle-leaf forest, deciduous broad-leaf forest,
mixed forest, permanent wetland, open shrubland, closed
shrubland, savanna, evergreen broad-leaf forest, and tundra.
Stand age ranges from young seedlings to 500 years old
(Paw U et al 2004). Sites from all ecosystem types with
at least one year of complete NEE and meteorological
data are included. NEE and meteorological data used
in this analysis are taken from standardized files archived
in the FLUXNET-LaThuile database which includes data
from the AmeriFlux, Fluxnet-Canada, CARBOEUROPE,
USCCC, ChinaFlux, OzFlux, CarboAfrica, and AsiaFlux
networks. These data have been quality controlled and
gap-filled by consistent methods (Papale et al 2006, Moffat
et al 2007, Reichstein et al 2005). Meteorological
variables used include air temperature, net radiation and
precipitation. We have developed a new method to gap-fill
the half-hourly meteorological data to produce reliable annual
averages (see Methods in the supplementary data available
at stacks.iop.org/ERL/5/034007/mmedia). In many cases, the
site principal investigators have submitted revised annual NEE
estimates based on more detailed, site-specific reanalyses. The
data were used in this analysis only in those years when
temperature, precipitation, net radiation, and NEE all met the
gap-filling criteria (see Methods in the supplementary data
available at stacks.iop.org/ERL/5/034007/mmedia).

Eddy-flux measurements are inherently uncertain due
to: (1) advection errors caused by complex terrain (Aubinet
et al 2005, Feigenwinter et al 2008) and complicated canopy
structure (Yi 2008); (2) imbalance errors in the energy
budget (Massman and Lee 2002, Foken 2008), and (3) the
stochastic nature of turbulence (Hollinger and Richardson
2005, Moncrieff et al 1996). These errors have been studied
intensively and remain to be quantified exactly for all sites
(Reichstein et al 2007). The largest sources of uncertainty
that have been quantified in a standardized way in annual
NEE result from u∗ filtering, gap-filling of missing data, and
turbulent sampling errors (supplementary materials available
at stacks.iop.org/ERL/5/034007/mmedia).

3. Grouping analysis

We hypothesize that two direct climatic controls on NEE,
temperature and dryness (Budyko 1974), interact in complex
ways with non-climatic or indirect climatic factors such as
disturbance history, species, soil type and nutrient availability.
Although it is not possible to develop a predictive global
relationship of NEE with these variables, we ask does the
dominant climate factor at individual sites follow distinct
geographic patterns? While it is overly simplistic to argue that
NEE is a function of two climate variables, it is possible to
gain insight into global scale processes through the use of an

objective statistical method to group sites by their dominant
climate control.

We used a mixture regression model (see supplementary
materials available at stacks.iop.org/ERL/5/034007/mmedia)
to segregate sites into three groups (supplementary table S1
available at stacks.iop.org/ERL/5/034007/mmedia): (1) T-
group: variations in NEE are best explained by mean annual
temperature alone; (2) D-group: variations in NEE are best
explained by a dryness index alone; and (3) B-group: NEE
is co-limited by both mean annual temperature and dryness.
An independent approach—a nonparametric kernel regression
(Wand and Jones 1995) analysis of NEE against mean annual
temperature and dryness for all three groups—provides a
strong foundation for grouping the sites in this way. The
pattern of contour lines in the contour plot for all 125 sites
indicates a complex and mixed relationship for temperature
and dryness (figure 1(a)), in which NEE at colder sites is
generally a function of temperature and at warmer sites is
generally a function of dryness. The kernel regression also
confirms that the sites are successfully segregated according to
their functional dependence. The contour plot for the T-group
(figure 1(b)) shows that the contour lines are almost parallel to
the dryness index axis. This implies that NEE is a monotonic
function of temperature, and that the dryness index does not
significantly influence the NEE of the sites in the T-group.
The contour plot for the D-group (figure 1(c)) shows that the
contour lines are almost parallel to the temperature axis. This
implies that NEE is a monotonic function of the dryness index,
and that the temperature does not significantly influence the
NEE of the sites in the D-group. The contour plot for the B-
group shows that the contour lines are neither parallel to the
temperature axis nor parallel to the dryness index axis. This
implies that both the temperature and the dryness index are
contributors to the amount of NEE in the sites in the B-group.
Moreover, NEE seems to linearly decrease as temperature
increases or the dryness index decreases (figure 1(d)).

In the T-group, 84% of spatial variations in NEE can be
explained by mean annual temperature (figure 2(a)), while
in the D-group, 81% of spatial variation in NEE can be
accounted for by a dryness index (figure 2(b)). However,
in the smaller B-group, NEE is co-limited by mean annual
temperature and dryness, and the correlations between the NEE
and individual climate factors are relatively weak (figures 3(a)
and (b)). We speculate that the variance in NEE unexplained
by the climate factors in these three groups is primarily driven
by non-climate factors such as stand age, disturbance history,
species composition, or canopy leaf area index, reflecting
local variation in nutrient and water availability (Raich et al
2002). These non-climate factors are also likely to play a role
in the grouping algorithm and account for sites with similar
temperature and dryness being grouped differently.

4. Discussion and concluding remarks

The empirical subdivision of groups also corresponds to
latitudinal zonation (supplementary figure S1 available at
stacks.iop.org/ERL/5/034007/mmedia): most sites of the
temperature-limited group were located in the zones of
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Figure 1. Contour plots of site-average NEE (tC ha−1 yr−1) of: (a) all the 125 sites; (b) the T-group (47 sites); (c) the D-group (47 sites); and
(d) the B-group (32 sites). These contour plots of the regression surface were produced by two-dimensional kernel regression (Wand and
Jones 1995) based on the grouping data of the T-group, the D-group, the B-group, and the entire 125 sites (see Methods section and
supplementary table S1 available at stacks.iop.org/ERL/5/034007/mmedia). The kernel regression is a commonly used nonparametric
regression technique, which assumes the regression function is a smooth function of predictor variables rather than imposing a pre-specific
functional form (parametric model) on the regression function.

Figure 2. Climatic controls of the site-average net ecosystem exchange (NEE) across the FLUXNET sites (see supplementary table S1
available at stacks.iop.org/ERL/5/034007/mmedia): (a) temperature-limited group; and (b) dryness-limited group. The negative NEE values
indicate that atmospheric carbon is assimilated by terrestrial ecosystems, while the positive NEE values indicate that terrestrial organic carbon
is converted into atmospheric carbon. The filled circles with mango color in (a) are the site-average NEE of the sites in the prototype T-group
with very high posterior probability (>99%) belonging to the temperature group, while the filled circles with mango color in (b) are the
site-average NEE of the sites in the prototype D-group with very high posterior probability (>99%) belonging to the dryness group (see the
Methods section and supplementary table S1 available at stacks.iop.org/ERL/5/034007/mmedia). The thick green lines represent model
predictions.

7

http://stacks.iop.org/ERL/5/034007/mmedia
http://stacks.iop.org/ERL/5/034007/mmedia
http://stacks.iop.org/ERL/5/034007/mmedia


Environ. Res. Lett. 5 (2010) 034007 C Yi et al

Figure 3. The site-averaged NEE of B-group sites that are sensitive to both: (a) temperature and (b) dryness.

temperate and boreal climate (76% are located above 45◦N,
supplementary figure S2(a) available at stacks.iop.org/ERL/
5/034007/mmedia), while most sites of the dryness-limited
group were located in the zones of subtropical climate
(63% are located below 45◦N, supplementary figure S2(b)
available at stacks.iop.org/ERL/5/034007/mmedia). The B-
group sites were almost symmetrically distributed around 45◦N
(supplementary figure S2(c) available at stacks.iop.org/ERL/
5/034007/mmedia). The controlling function of temperature
for terrestrial carbon exchanges breaks down as mean annual
temperature approaches 16 ◦C. All sites with mean annual
temperature above 16 ◦C are in the dryness group (figures 2(a)
and 3(a)). Our findings suggest that NEE at mid-to-high
latitudes is controlled largely by the mean annual temperature,
while at mid-to-low latitudes, it is controlled largely by
dryness. The geographic region around 45◦N is a transition
zone where many sites are co-limited by both temperature and
dryness.

The global empirical patterns of NEE driven by climate
gradients found in this paper are partially supported by
another global data analysis conducted by Nemani et al (2003)
based on correlation between 18 years climate data and net
primary production (NPP) derived from spatially continuous
satellite data. This modeling study found that NPP is largely
controlled by temperature at mid-to-high latitudes, while at
subtropical and tropical it is controlled by radiation and water,
i.e. by dryness (ratio of net radiation to precipitation) as was
used in our analysis. Even though the predicted ecological
variables used here (NEE) and in Nemani et al (2003)’s
analysis (NPP = NEE − soil respiration) were not the same,
the consistent climate-driven spatial patterns derived from the
two independently global datasets at least indicates that climate
control plays an important role in the terrestrial carbon cycle.
On the other hand, it is noted that our findings are different
from the individual site analyses on climate control of NEE
(e.g. Dunn et al 2007). These analyses study the temporal
variability of NEE based on the measurements from a single
site, i.e. how climate factors drive NEE changes from year to
year. Our analysis studies the spatial variability of NEE based
on measurements from many sites, i.e. how spatial gradients
of climate drive NEE changes from location to location. Our
data analysis demonstrated that spatial variability of NEE

is 2.5 times greater than temporal variability of NEE (see
discussion in section 3 of supplementary materials available
at stacks.iop.org/ERL/5/034007/mmedia). Therefore, the
existing differences between temporal variability and spatial
variability are expected.

Why is the average annual temperature the main climate
driver of NEE at mid- and high-latitudes? The most likely
reason is that higher average annual temperature also reflects
prolonged growing seasons in cold climate regions and hence
increases carbon uptake in biomass (White et al 1999,
Malhi 2002, Kato and Tang 2008) relative to heterotrophic
decomposition. At many sites, respiration rates lag NPP rates
proportionally after disturbance, and a larger NPP resulting
from a longer growing season contributes to higher uptake
(Goulden et al 1996, Leuning et al 2005). In the absence
of other factors, we therefore expect higher carbon uptake at
warmer sites within the temperature group. This speculation
is partially supported by previous studies with limited data
(Goulden et al 1996, Leuning et al 2005). In warm climate
regions (low-latitudes), growing season length is less likely
to be affected by temperature variations because these regions
either experience a year-round growing season or a growing
season that is limited by factors other than temperature, mainly
water stress. The global-biome-climate data analysis (Zhou
et al 2008) indicates that the mean annual temperature of C4
grassland biome is about 23 ◦C, in other words it is much larger
than the threshold value of 16 ◦C, and hence C4 sites are much
more likely to be in a dryness group according to our findings
above. It is well known in physiology that the assimilation of
C4 ecosystems, which resides mainly in the subtropical regions
(Ehleringer et al 2005), is independent of temperature but is
limited by water stress (Lambers et al 1998). This fact partially
supports our findings that the NEE-driver of a site with mean
annual temperature larger than 16 ◦C is likely to be dryness and
such sites are likely located in tropical or subtropical regions.

The majority of the 125 sites are recovering from past
disturbance rather than being actively disturbed, and thus are
in the ‘slow in’ instead of the ‘rapid out’ phase of carbon flow
in the terrestrial biosphere as conceptualized by Korner (2003).
Disturbance history and stand age play a large role in NEE
variability (Amiro et al 2010), which is seen at chronosequence
sites with similar climates (Ryan and Law 2005). Though
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the temperature and dryness groups are correlated well with
their respective indices, the overlap of the two groups in
temperature–dryness space suggests that NEE is controlled by
a complex interaction of climate and non-climate factors. Our
results do not support the recent suggestion that a single abiotic
factor such as nitrogen supply dominates NEE (Magnani et al
2007, Sutton et al 2008).

Links between terrestrial CO2 exchanges and climate
controls are clearly demonstrated by many site-years of data
from the eddy-flux tower networks. Our findings are essential
to understand how future climate change may affect terrestrial
CO2 exchanges with the atmosphere in the 21st century (Qian
et al 2010). In the IPCC 2007 report, projected warming in the
21st century is expected to be greatest over land and at high
northern latitudes, while projected decreases in precipitation
are likely in most subtropical land regions (IPCC 2007).
Although climate controls on long-term changes in NEE may
be different from controls on spatial variability of NEE,
our results imply that the most likely future climate change
scenarios could strongly intensify terrestrial CO2 uptake in
high-latitudes and weaken CO2 uptake in low-latitudes.
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