Partitioning net ecosystem carbon exchange and the carbon isotopic disequilibrium in a subalpine forest

JOHN M. ZOBITZ*, SEAN P. BURNS†, MARKUS REICHSTEIN‡ and DAVID R. BOWLING§ *Department of Mathematics, University of Utah, 155 S 1400 E, Salt Lake City, UT 84112, USA, †Department of Ecology and Evolutionary Biology, University of Colorado, Boulder, CO 80309-0334, USA, ‡Biogeochemical Model-Data Integration Group, Max Planck Institute for Biogeochemistry, Hans Knöll Street 10, 07745 Jena, Germany, §Department of Biology, University of Utah, 257 S 1400 E, Salt Lake City, UT 84112, USA

Abstract

We investigate the utility of an improved isotopic method to partition the net ecosystem exchange of CO₂ (F) into net photosynthesis (F_A) and nonfoliar respiration (F_R). Measurements of F and the carbon isotopic content in air at a high-elevation coniferous forest (the Niwot Ridge AmeriFlux site) were used to partition F into F_A and F_R . Isotopically partitioned fluxes were then compared with an independent flux partitioning method that estimated gross photosynthesis (GEE) and total ecosystem respiration (TER) based on statistical regressions of night-time F and air temperature. We compared the estimates of $F_{\rm A}$ and $F_{\rm R}$ with expected canopy physiological relationships with light (photosynthetically active radiation) and air temperature. Estimates of F_A and GEE were dependent on light as expected, and TER, but not $F_{\rm R}$, exhibited the expected dependence on temperature. Estimates of the isotopic disequilibrium D, or the difference between the isotopic signatures of net photosynthesis ($\delta_{A\prime}$ mean value -24.6‰) and ecosystem respiration (δ_{R} , mean value -25.1‰) were generally positive ($\delta_A > \delta_R$). The sign of D observed here is inconsistent with many other studies. The key parameters of the improved isotopic flux partitioning method presented here are ecosystem scale mesophyll conductance (g_m) and maximal vegetative stomatal conductance (g_{cmax}). The sensitivity analyses of F_{A} , F_{R} , and D to g_{cmax} indicated a critical value of g_{cmax} $(0.15 \text{ mol m}^{-2} \text{ s}^{-1})$ above which estimates of F_A and F_R became larger in magnitude relative to GEE and TER. The value of D decreased with increasing values of g_m and g_{cmax} , but was still positive across all values of g_m and g_{cmax} . We conclude that the characterization of canopy-scale mesophyll and stomatal conductances are important for further progress with the isotope partitioning method, and to confirm our anomalous isotopic disequilibrium findings.

Keywords: carbon isotope discrimination, flux partitioning, mesophyll conductance, respiration, whole-ecosystem photosynthesis

Received 22 May 2007; revised version received 18 January 2008 and accepted 25 January 2008

Introduction

Terrestrial ecosystems worldwide are currently sequestering $1-2 \operatorname{GtC} \operatorname{yr}^{-1}$ (Prentice *et al.*, 2001). The strength of the global terrestrial carbon sink is ultimately an integration of processes regulating the assimilation of carbon dioxide (CO₂) into sugars and the production of CO_2 through respiration by all organisms. Understanding how leaf-level processes and parameters affect the estimates of the net CO_2 exchange at large spatial scales will help to constrain uncertainties on the estimates of the global carbon sink (Schimel *et al.*, 2001).

Measurements of the ${}^{13}C/{}^{12}C$ ratio in atmospheric CO₂ can be used to infer the terrestrial carbon sink strength (Lloyd & Farquhar, 1994; Ciais *et al.*, 1995b; Fung *et al.*, 1997; Randerson *et al.*, 2002; Scholze *et al.*, 2003). Through the process of photosynthesis, plants discriminate against ${}^{13}C$ and leave the atmosphere more ${}^{13}C$ -enriched. At the leaf level, the measure of

Correspondence: Present address: J. M. Zobitz, Department of Mathematics, Augsburg College, 2211 Riverside Avenue, Minneapolis, MN 55454, USA, fax + 1 612 330 1393, e-mail: zobitz@augsburg.edu

the deviation between the ${}^{13}C/{}^{12}C$ ratio of the plant compared to the atmosphere is defined as photosynthetic discrimination, represented in general by Δ (Farquhar et al., 1989) (a complete list of symbols is given in Table 1). At the ecosystem scale, the analogous discrimination is denoted by Δ_{canopy} (Lloyd *et al.*, 1996; Bowling et al., 2001, 2003c) and represents the fluxweighted average discrimination by the entire vegetation canopy. Randerson et al. (2002) showed that a 0.2‰ change in the global scale analogy of Δ_{canopy} changed the magnitude of the inferred terrestrial carbon sink by 25% (0.5 Pg C yr⁻¹), provided the change was correlated with a change in gross photosynthesis (GEE). Hence, reduction in uncertainty of Δ at a variety of spatial scales would be very helpful in reducing the uncertainty on the magnitude of the terrestrial carbon sink.

Uncertainties of global patterns of GEE, total ecosystem respiration (TER), and Δ can be constrained with records of these parameters at the ecosystem scale. The net CO₂ exchange between terrestrial ecosystems and the atmosphere (NEE, noted *F* here for convenience) is the sum of GEE and TER: *F* = GEE + TER. *F* is observed from flux towers at locations around the globe (Baldocchi *et al.*, 2001; Ciais *et al.*, 2005) using the eddy covariance technique (Wofsy *et al.*, 1993). Sign conventions in the micrometerological literature (and here) typically define all nonradiative fluxes as positive when directed to the atmosphere, so the GEE flux is negative.

Separating daytime *F* into its respective fluxes of carbon uptake and respiration is called *flux partitioning*. (Partitioning is not required at night in most ecosystems because there generally is no CO₂ fixation and *F* = TER). A variety of flux partitioning techniques have been used to separate *F* into GEE and TER. These include statistical parameter estimation using *F* and climatic variables (e.g. temperature, light, moisture) as covariates (Huxman *et al.*, 2003; Yi *et al.*, 2004; Reichstein *et al.*, 2005a; Stoy *et al.*, 2006); estimating components of *F* with process-based biophysical models (Aber *et al.*, 2005; Sacks *et al.*, 2006, 2007); and scaling leaf, stem, and soil chamber measurements to the ecosystem (Lavigne *et al.*, 1997; Law *et al.*, 1999).

Another flux partitioning approach utilizes stable carbon isotopes (Yakir & Wang, 1996; Bowling *et al.*, 2001; Lai *et al.*, 2003, 2004; Ogée *et al.*, 2003a, b; Griffis *et al.*, 2005; Knohl & Buchmann, 2005; Zhang *et al.*, 2006). The uptake and release fluxes obtained from the isotope method differ from the other methods in the attribution of foliar respiration. Because of the formulation of equations used for stable isotope partitioning [see 'Isotope flux partitioning', also Lloyd *et al.* (1996) and Bowling *et al.* (2003c) for the derivation], this method provides estimates of the net photosynthetic flux

Table 1 List of symbols used in text

Symbol	Units	Explanation
$\rho_{\rm a}$	$ m molairm^{-3}$	Molar air density
z _h	m	Reference height (21.5 m)
w'	${ m ms^{-1}}$	Turbulent component of
		vertical wind velocity
<i>C</i> ′.	μ mol m ⁻³	Turbulent component of CO_2
-a	,	molar density
c'	nnm	Turbulent component of [CO ₂]
a	PPm	mixing ratio
C	μ mol m ⁻³	CO ₂ molar density
C _a E	μ mol m ⁻² s ⁻¹	Not access tom avchange of
1	µmorm s	$CO_{\rm coo}$ Eqn (1)
г		Trucharlant adda CO flow
F _{eddy}	µmoi m s	Turbulent eddy CO_2 flux,
-	1 _2 _1	defined by $w'C'_a$
F _{storage}	μ mol m ⁻² s ⁻¹	Storage CO_2 flux, see Eqn (1)
GEE	μ mol m ⁻² s ⁻¹	Gross primary production flux
TER	μ mol m ⁻² s ⁻¹	Total ecosystem respiration
		flux
$F_{\rm A}$	μ mol m $^{-2}$ s $^{-1}$	Net photosynthetic flux (GEE –
		leaf respiration)
$F_{\rm R}$	$\mu mol m^{-2} s^{-1}$	Nonfoliar respiration flux
$F_{\rm L}$	μ mol m ⁻² s ⁻¹	Foliar respiration flux
Δ	‰	Leaf-level photosynthetic
		discrimination of ¹³ CO ₂
Δ	%	Whole canopy ecosystem-scale
-canopy	/00	photosynthetic discrimination
		of ${}^{13}CO$ [see Eqn (9)]
a (a)		CO_2 [see Eqn (9)]
$C_{a}(Z)$	ppm	$[CO_2]$ mixing ratio at height z
C _c	ppm	Chloroplast [CO ₂] mixing
5 ()	0/	ratio
$\partial_{a}(z)$	% 0	Isotope ratio at height z
$\delta_{\rm A}$	‰	Isotopic signature of net
		photosynthesis flux
δ_{R}	‰	Isotopic signature of total
		ecosystem respiration flux
D	‰	Isotopic disequilibrium
		between net photosynthesis
		and respiration, defined as
		$D = \delta_A - \delta_B$
ē.	nnm	Average [CO ₂] mixing ratio of
- a	rr	5 7 9 11 m canopy air
$\bar{\delta}$	0/	Average isotope ratio of 5 7 9
0 _a	/00	11 m canopy air
2	$m a 1 m^{-2} a^{-1}$	A are dynamic conductones to
8a	morm s	Aerodynamic conductance to
	• _2 _1	[CO ₂]
gs	$mol m^{-2} s^{-1}$	Vegetative surface conductance
		to $[CO_2]$
g _m	$\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$	Mesophyll conductance to
		$[CO_2]$ (0.125 mol m ⁻² s ⁻¹)
g _c	$\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$	Bulk canopy conductance to
0-	-	[CO ₂]
o	$mol m^{-2} s^{-1}$	Maximum canopy conduc-
ocmax	morni o	tance to [CO ₂] see Eqn (8)
a	$mol m^{-2} c^{-1}$	Overall conductance to $[CO_1]$
δ	morm s	over an conductance to $[CO_2]$,
		see Eqn (5)

Continued

Table 1. (Contd.)

Symbol	Units	Explanation
a _b	‰	Leaf boundary layer fractionation (2.9‰)
а	‰	Diffusion fractionation (4.4‰)
$a_{\rm s}(T)$	‰	Water dissolution fractionation (1.1‰)
<i>a</i> ₁	‰	Mesophyll diffusion (0.7%)
ā	‰	Overall fractionation, see Eqn (10)
$b_{\rm R}$	‰	Photosynthetic enzymatic fractionation of ¹³ CO ₂ (27.5‰)
Fisostorage	$\mu molm^{-2}s^{-1}\!\%$	Isotopic storage flux, expressed in permil notation [see Eqn (4)]
$\delta_{\rm N}$	‰o	Isotopic signature of daytime CO ₂ flux, calculated as the intercept of a daytime Keeling
F _{eddy-}	$\mu molm^{-2}s^{-1}\%$	plot. Eddy isoflux, expressed in
isoflux		permil notation, equal to
F_{δ}	$\mu molm^{-2}s^{-1}\!\%$	δ _N F _{eddy} Net ecosystem exchange of ¹³ CO ₂ , expressed in permil
		notation [see Eqn (2)]
$R_{\rm ref}$	$\mu molm^{-2}s^{-1}$	Temperature-independent
E ₀	°C	respiration rate [see Eqn (15)] Activation energy [see Ean (15)]
Т	°C	Air temperature
$T_{\rm ref}$	°C	Reference temperature for
		Eqn (2) (10 °C)
T_0	°C	Base temperature in Eqn (2) (-46.02 °C)
$Q_{\rm P}$	$\mu mol m^{-2} s^{-1}$	Photosynthetically active radiation
α	$\mu molm^{-2}s^{-1}$	Half-saturation constant in Eqn (8)
c _Q	Unitless	Photosynthetically active radiation attenuation
		coefficient (0.6)
$c_{\rm R}$	Unitless	Radiation attenuation
		coefficient (0.6)
R _n	$W m^{-2}$	Net radiation
R _{n,c}	$W m^{-2}$	Net radiation available to canopy
R _{n,s}	$W m^{-2}$	Net radiation available to soil
LE	$W m^{-2}$	Latent heat flux
LE _c	$W m^{-2}$	Canopy latent heat flux
LEs	$W m^{-2}$	Soil latent heat flux
8'a	$\mathrm{mol}\mathrm{m}^{-2}\mathrm{s}^{-1}$	Aerodynamic conductance for water vapor
8''a	$molm^{-2}s^{-1}$	Aerodynamic conductance for
c _p	$Jkg^{-1}J^{-1}$	Specific heat capacity of air (1012 J kg ⁻¹ J ⁻¹)
		Continued

Symbol	Units	Explanation
VPD LAI γ	kPa m ² leaf area m ⁻² ground area kPa K ⁻¹	Vapor pressure deficit Leaf area index of the forest (4.2) Psychrometric constant (0.0661 kPa K ⁻¹)

($F_A = GEE + F_L$, where GEE < 0 and F_L represents foliar respiration), and nonfoliar respiration ($F_R = TER - F_L$).

There are advantages and disadvantages in all flux partitioning methods. These have been reviewed by Reichstein et al. (2005a) and Stoy et al. (2006) for the nonisotopic methods. An advantage to isotope flux partitioning is that in addition to estimates of net photosynthetic and respiratory fluxes, Δ_{canopy} is directly estimated from the routine, which can provide additional information about ecosystem physiology and the relations between carbon and water vapor fluxes. A fundamental requirement of isotope flux partitioning is that the isotopic signature (δ_R) of the nonfoliar respiration flux must be distinct from the isotopic signature (δ_A) of the net photosynthesis flux, otherwise there is no unique information contained in ¹³CO₂ fluxes (Bowling *et al.*, 2001). The parameter δ_A is typically approximated as the difference between the isotope ratio of canopy air $(\bar{\delta}_a)$ and Δ_{canopy} (Lloyd *et al.*, 1996; Bowling *et al.*, 2003c). The difference between δ_A and δ_R is termed as the isotopic disequilibrium, $D = \delta_A - \delta_R$.

Global scale estimates of GEE, TER, Δ_{canopy} and Dwill ultimately reflect processes occurring at smaller spatial scales, but there can be a mismatch between global and local determinations of these quantities. Estimates of *D* from carbon cycle modeling studies at ecosystem, regional, or global scales have generally found **D** to be negative [i.e. δ_A more depleted than δ_R (Ciais et al., 1995a; Fung et al., 1997; Randerson et al., 2002; Baldocchi & Bowling, 2003; Scholze et al., 2003; Suits et al., 2005)]. In contrast, observational and modeling studies at the ecosystem scale have frequently produced estimates of D > 0 (Bowling et al., 2001, 2003c; Ogée et al., 2003b; Knohl & Buchmann, 2005; Aranibar et al., 2006; Zhang et al., 2006; Zobitz et al., 2007). Differences in D from different studies, if correct, have major implications for our understanding of the terrestrial carbon sink, and thus need to be resolved. Positive D is inconsistent in sign with the widely accepted concept of isotope disequilibrium between terrestrial photosynthesis and respiration (Yakir, 2004). The δ^{13} C of atmospheric CO₂ has become more negative over the last two centuries due to the ¹³C Suess effect (Francey et al., 1999). Because a large component of the

© 2008 The Authors

Journal compilation © 2008 Blackwell Publishing Ltd, Global Change Biology, 14, 1785-1800

respiratory flux consists of carbon that resides in the biosphere for many decades (Trumbore, 2000), δ^{13} C of the photosynthetic flux is expected to be more negative than the respiratory flux (e.g. D < 0) (Fung *et al.*, 1997; Yakir, 2004), given a fairly constant photosynthetic discrimination at a particular site through time. There are many factors influencing the isotope content of respiration (Bowling *et al.*, 2008), so this Suess-effect argument is perhaps oversimplified in the current literature and more research is needed. Other processes such as CO₂-dependent methanogenesis may also influence the value of D (Han *et al.*, 2007).

The value of δ_{R} in the isotope flux partitioning method is determined from measurements of [CO₂] and δ^{13} C and represents an integrated estimate of the isotopic ratio of all respiratory sources (foliar as well as nonfoliar). For isotope partitioning, this value is typically measured at night (when photosynthesis is inactive) and then applied and held constant the following day. This approach may not be appropriate for several reasons. (a) As described above, δ_{R} should actually be derived from measurements of the isotopic signature of the nonfoliar respiratory flux (F_R). In practice, δ_R measurements typically reflect the total nocturnal respiratory flux (TER). The possibility exists for a constant offset between δ_R of F_R and δ_R of TER, therefore, biasing the values of *D*. (b) The $\delta_{\rm R}$ of $F_{\rm R}$ and TER may exhibit different diurnal patterns. Hymus et al. (2005) and Prater et al. (2006) showed that foliar needle respiration exhibited diurnal variation; and because the soil respiration flux is dynamically related to recent carbon uptake [e.g. Hogberg et al. (2001) and Ekblad et al. (2005)] we would expect nonfoliar respiration to show diurnal variation as well. However, Betson et al. (2007) reported that there was no diurnal variation observed in the isotopic composition of soil respiration in a boreal forest. Diurnal variation in δ_R of F_R would require daytime determinations of δ_{R} rather than determining $\delta_{\rm R}$ from night-time measurements. (c) A growing body of research supports the presence of postphotosynthetic fractionations in various plant and ecosystem processes [see review by Bowling *et al.* (2008)]. If these processes were better understood then the simple respiration formulation that we use in the isotope-partitioning equations could be better represented.

Scaling leaf-level quantities of g_m or Δ to the canopy incorrectly in the isotope-partitioning model may also bias D to be more positive. Isotope flux partitioning models include equations to describe the overall pathway of CO₂ from the atmosphere to the sites of carboxylation (Yakir & Wang, 1996; Bowling *et al.*, 2001; Lai *et al.*, 2003, 2004; Ogée *et al.*, 2003a, b; Griffis *et al.*, 2005; Knohl & Buchmann, 2005; Zhang *et al.*, 2006). In addition, Ogée *et al.* (2003b) and Knohl & Buchmann (2005) considered mesophyll effects on F_A by including a mesophyll conductance term (g_m) that describes photosynthetic drawdown between internal CO₂ concentration (c_i) and CO₂ at the sites of carboxylation (c_c) . Consideration of mesophyll effects in isotope partitioning is probably important, because studies at the leaf level have shown that the photosynthetic drawdown between c_c and c_i is significant (Warren, 2006; Warren & Adams, 2006). Ecosystem models that ignore mesophyll effects could potentially bias the estimates of F, GEE, TER, and Δ_{canopy} and hence, D. Given a leaf-level value of g_m , the appropriate ecosystem-scale analogue of mesophyll conductance to use in isotope flux partitioning must be determined.

This study made use of continuous records of F, [CO₂], and δ^{13} C at a high-elevation forest (the Niwot Ridge Ameriflux site) during late summer 2003. These data were used to generate isotope flux partitioning estimates of F_A and F_R , as well as statistical flux partitioning estimates of GEE and TER (Reichstein *et al.*, 2005a). Three objectives of this study are as follows.

- 1. Comparison of isotope partitioning estimates of F_{A} , F_{R} , and Δ_{canopy} with statistical flux partitioning estimates of GEE and TER, as well as with expected functional relationships (ecosystem-scale light and temperature response curves).
- 2. Derivation of *D* for its discussion in the context of studies measuring postphotosynthetic fractionation of carbon pools.
- 3. Examination of isotope partitioning model parameters through a sensitivity analysis of F_{A} , F_{R} , and D to these parameters.

Site description and measurements

This study was conducted at the Niwot Ridge Ameri-Flux site ($40^{\circ}1'58''N$, $105^{\circ}32'46''W$), a subalpine forest at 3050 m elevation west of Boulder, Colorado, USA. The forest stand is a century old, recovering from early 20th century logging, and contains subalpine fir (*Abies lasiocarpa*), Engelmann spruce (*Picea engelmannii*), and lodgepole pine (*Pinus contorta*). Canopy height is 11-12 m. Mean annual precipitation averages 800 mm and the mean annual temperature is $1.5 \,^{\circ}$ C (Monson *et al.*, 2002). For this study, we focus on a time period over 3 summer months (4 July–15 October 2003). For additional information about the site and other studies conducted there see Bowling *et al.* (2005), Monson *et al.* (2002, 2005, 2006a, b), Sacks *et al.* (2006, 2007), Scott-Denton *et al.* (2003, 2006), and Turnipseed *et al.* (2003, 2004).

Average daytime temperatures during the study period were 12 °C, with minimum and maximum values ranging from -6 to 26 °C. Average vapor pressure deficit was 1 kPa but ranged from minimum and maximum values of 0–2.6 kPa. The study period was characterized by frequent late-afternoon rain events with small amounts of precipitation. The largest rain event (20 mm precipitation) during the study period occurred on August 30. The maximum period between rain events for the study period lasted 2 weeks from September 18 to October 1.

Atmospheric $[CO_2]$ and $\delta^{13}C$ measurements

The CO₂ mixing ratios and the carbon isotope ratios $(\delta^{13}\text{C})$ were measured by tunable diode laser absorption spectrometry (TDL) as described in detail by Bowling *et al.* (2005). Measurements at nine canopy heights (0.1, 0.5, 1, 2, 5, 7, 9, 11, and 21.5 m) were made every 6 min. For the isotope partitioning method we average midday measurements (11:00–12:00 hours local standard time) of CO₂ mixing ratio (denoted \bar{c}_a) and δ^{13} C (denoted $\bar{\delta}_a$) made in the canopy (5–11 m).

Flux and meteorological measurements

Net ecosystem exchange of CO_2 (*F*), sensible, and latent heat fluxes were measured via the eddy covariance technique. Details about the meteorological and flux measurements at Niwot Ridge can be found in Monson *et al.* (2002). Meteorological data used in this analysis included photosynthetically active radiation (Q_P), air temperature, net radiation, ground heat flux, and vapor pressure deficit of air (VPD).

Instrument failure and a requirement that there be no gap-filled or nonstationary data reduced the number of available measurements. Half-hourly periods were defined as stationary if the ratio of the 5 min covariance of vertical wind speed and temperature to the half-hourly covariance of vertical wind speed and temperature was between 0.75 and 1.25 (Foken & Wichura, 1996). There was a 20-day gap from days 240 to 260 where *F* was completely gap-filled and, therefore, excluded from the isotope flux partitioning. Conservation of CO_2 with the eddy covariance technique can be represented as follows:

$$\overline{w'C'_{a}} + \int_{0}^{z_{h}} \frac{\partial}{\partial t} (C_{a}(z)) dz = F_{eddy} + F_{storage} = F, \quad (1)$$

where the term F_{eddy} ($\overline{w'C_a}$) is the covariance between fluctuations in vertical wind velocity (w', in m s⁻¹) and CO₂ molar density (C'_a , in µmol m⁻³) and the term $F_{storage}$ represents time-dependent changes in CO₂ molar density through the canopy.

Theory

Isotope flux partitioning

The fundamental equations for isotopic flux partitioning were derived by Bowling *et al.* (2003c) and expanded by Ogée *et al.* (2003b) and Knohl & Buchmann (2005). The isotope partitioning approach for this study generates one daily value of F_A , F_R , and Δ_{canopy} derived from midday flux, meteorological, atmospheric [CO₂] and δ^{13} C measurements. Midday is defined to be 11:00– 13:00 hours local standard time. Using mass balance of ¹³CO₂, one can derive an equation that represents net ecosystem exchange of ¹³CO₂ [Eqn (2)]. The isotopic signature of photosynthetic products, δ_A , is expressed as the difference between the average isotope ratio of canopy air (5–11 m heights) ($\bar{\delta}_a$) and whole canopy photosynthetic discrimination Δ_{canopy} (details of how Δ_{canopy} is calculated are provided here).

$$\delta_{A}F_{A} + \delta_{R}F_{R} = (\bar{\delta}_{a} - \Delta_{canopy})F_{A} + \delta_{R}F_{R}$$

= $F_{eddy-isoflux} + F_{isostorage} = F_{\delta}.$ (2)

The isotopic content of total ecosystem respiration (δ_R) was derived from night-time [CO₂] and δ^{13} C measurements using a Keeling plot (Keeling, 1958). The parameter δ_R was calculated as an ordinary least squares (OLS, type I) intercept of an isotopic mixing line between 1/[CO₂] and δ^{13} C using 6-min data from all measurement heights (0.1–21.5 m) from 21:00 to 3:00 hours local standard time. This value was computed each night and applied the following day. OLS regression was used to avoid the inherent bias introduced by the geometric mean or other type II regressions (Zobitz *et al.*, 2006).

The eddy isoflux, $F_{eddy-isoflux}$ cannot at present be measured directly via eddy covariance due to instrument limitations (Saleska *et al.*, 2006). For this study, we approximate $F_{eddy-isoflux}$ by $\delta_N F_{eddy}$, where δ_N is the intercept from a Keeling plot using all heights (0.1– 21 m) during midday periods (11:00–13:00 hours). Sixminute measurement pairs of [CO₂] and δ^{13} C were used to calculate δ_N with OLS regression. $F_{isostorage}$ was calculated first by averaging 6 min [CO₂] and δ^{13} C measurements for a given half hour and then numerically determining the following quantity:

$$F_{\rm isostorage} = \rho_{\rm a} \int_{0}^{z_{\rm h}} \frac{\partial}{\partial t} [\delta_{\rm a}(z) \times c_{\rm a}(z)] dz, \qquad (3)$$

where $c_a(z)$ (in ppm) and $\delta_a(z)$ represent a half-hourly average of [CO₂] or δ^{13} C made at height *z*, respectively, and ρ_a is the air density (in mol m⁻³).

Net photosynthesis F_A is related to the [CO₂] mixing ratio in the chloroplast (c_c) via Fick's law.

$$F_{\rm A} = \bar{g}(c_{\rm c} - \bar{c}_{\rm a}),\tag{4}$$

© 2008 The Authors Journal compilation © 2008 Blackwell Publishing Ltd, Global Change Biology, 14, 1785–1800 where the overall conductance (\overline{g}) is composed of an aerodynamic conductance (g_a) , a vegetative surface conductance (g_s) , and g_m (all conductance units in mol m⁻² s⁻¹):

$$\frac{1}{\bar{g}} = \frac{1}{g_a} + \frac{1}{g_s} + \frac{1}{g_m}.$$
 (5)

The aerodynamic conductance depends on windspeed and other parameters and was calculated following Ogée *et al.* (2003b) [see their Eqn (11)] and Knohl & Buchmann (2005). There were no published values of mesophyll conductance for the conifer species in this study (Warren & Adams, 2006). The mesophyll conductance for the conifers in this study was fixed and assumed constant at 0.125 mol m⁻² s⁻¹ (William K. Smith, personal communication). In 'Sensitivity of isotope flux partitioning to g_m , g_{cmax} , and c_A' we examine the sensitivity of our isotope partitioning results to g_m .

For this study, we determined surface conductance using a two-box model similar to Kelliher *et al.* (1995) that separates evaporative influences from the canopy and soil. The model assumes that the total latent evaporation (LE) from the forest is the sum of latent evaporation from the canopy (LE_c) and soil (LE_s). Similarly, the net radiation available to the forest (R_n) is split between the canopy ($R_{n,c}$) and the soil ($R_{n,s}$). A bulk canopy conductance for the forest can be given by the inversion of Penman–Monteith equation: (Grace *et al.*, 1995).

$$\frac{1}{1.6g_{\rm c}} = \frac{s(R_{\rm n,c} - \rm LE_{\rm c})/g_{\rm a}'' + \rho_{\rm a}c_{\rm p}\rm VPD}{\gamma \times \rm LE_{\rm c}} - \frac{1}{g_{\rm a}'}, \qquad (6)$$

where *s* is the slope of the saturation vapor pressure curve (kPa K⁻¹), $R_{n,c}$ the net radiation available to the canopy (W m⁻²), LE_c the vegetative latent heat flux (W m⁻²), c_p the specific heat capacity of air (J kg⁻¹ K⁻¹), VPD the vapor pressure deficit, and γ is the psychrometric constant (kPa K⁻¹). The conductances g'_a and g''_a are the aerodynamic conductances for water vapor and heat, respectively [see Eqn (10) in Ogée *et al.* (2003b)].

In theory, a bulk vegetative surface conductance (g_s) for the entire forest can be determined with Eqn (6) by replacing LE_c with LE, and $R_{n,c}$ with R_n and g_c with g_s . This process is called Penman–Monteith inversion and has been used in previous isotope partitioning studies (Bowling *et al.*, 2001; Ogée *et al.*, 2003b; Knohl & Buchmann, 2005). Knohl & Buchmann (2005) noted that direct Penman–Monteith inversion following rain events overestimated g_s because measured values of the latent heat flux include contributions due to evaporation from soils and wet surfaces in the forest.

For this study, three key assumptions are made to determine g_s . First, soil evaporation is assumed to occur

at the following equilibrium rate (Priestley & Taylor, 1972; Kelliher *et al.*, 1995):

$$LE_s = \frac{\gamma \times s}{\gamma \times s + 1} R_{n,s}.$$
 (7)

Second, the net radiation incident on the soil surface $(R_{n,s})$ is assumed to equal $R_n e^{-c_R LAI}$, where LAI is the leaf area density (m² leaf area m⁻² ground area) and c_R is an attenuation coefficient. Third, we assume that bulk canopy conductance, g_c , is a saturating function of photosynthetically active radiation Q_P (µmol m⁻² s⁻¹) (Jarvis, 1976):

$$g_{\rm c} = \left(\frac{g_{\rm cmax}Q_{\rm P}}{\alpha + Q_{\rm P}}\right)(1 - e^{-c_{\rm Q}{\rm LAI}}),\tag{8}$$

where $g_{\rm cmax}$ is the maximal canopy conductance $({\rm mol} \, {\rm m}^{-2} \, {\rm s}^{-1})$, $c_{\rm Q}$ the coefficient of attenuation for $Q_{\rm P}$, and α is the half-saturation constant $(\mu {\rm mol} \, {\rm m}^{-2} \, {\rm s}^{-1})$ (Kelliher *et al.*, 1995). The term $1 - {\rm e}^{-c_{\rm Q} {\rm LAI}}$ represents the fraction of photosynthetically active radiation absorbed by the canopy. For simplicity, we assume that $c_{\rm R} = c_{\rm Q}$ (Kelliher *et al.*, 1995). LAI at Niwot Ridge is assumed to be $4.2 \, {\rm m}^2 \, {\rm m}^{-2}$ (Monson *et al.*, 2002).

With these assumptions, $R_{n,c}$ equals $R_n - R_{n,s} = R_n$ (1 – e^{- $c_Q \times LAI$)}. Measurements of R_n and Q_p determine $R_{n,c}$ and g_c [Eqn (8)]. Eqn (6) can then be solved to obtain values of LE_c. Since LE = LE_c + LE_s, with LE_s specified by Eqn (7), Penman–Monteith inversion can be done to estimate g_s . For this study we chose g_{cmax} to equal 0.15 mol m⁻² s⁻¹, α to equal 500 µmol m⁻² s⁻¹, $c_{Q'}$, and c_r to equal 0.6. Sensitivity analysis for these parameters is conducted in 'Sensitivity of isotope flux partitioning to $g_{m'} g_{cmax'}$ and c_A .'

The parameter Δ_{canopy} describes the total isotope fractionation when CO₂ (a) is transported through the leaf boundary layer, (b) diffuses into the stomatal cavity, (c) enters solution, (d) diffuses through the mesophyll to the sites of carboxylation, and (e) is reduced via photosynthesis. Eqns (9) and (10) are a simplified form of the model used for a more complete model of isotope fractionation that includes additional processes such as photorespiration (Vogel, 1980; Farquhar & Sharkey, 1982; Farquhar *et al.*, 1989; Farquhar & Lloyd, 1993):

$$\Delta_{\text{canopy}} = \bar{a} + (b_{\text{R}} - \bar{a}) \frac{c_{\text{c}}}{\bar{c}_{\text{a}}}$$
(9)

$$\bar{a} = \frac{g_{\rm s}g_{\rm m}a_{\rm b} + g_{\rm a}g_{\rm m}a + [a_{\rm s}(T) + a_{\rm 1}]g_{\rm s}g_{\rm a}}{g_{\rm s}g_{\rm m} + g_{\rm a}g_{\rm m} + g_{\rm s}g_{\rm a}}.$$
 (10)

In Eqn (9), $b_{\rm R}$ is the photosynthetic enzymatic fractionation of ¹³CO₂ [constant at 27.5‰, Farquhar *et al.* (1982)]. By the model formulation of Farquhar *et al.* (1982), $\Delta_{\rm canopy}$ is understood to be a net photosynthetic discrimination (photosynthesis less leaf respiration). Because of this necessary formulation, the appropriate

Fig. 1 Midday (11:00–13:00 hours local standard time) averages for each of the parameters used in isotope flux partitioning [see Eqns (11)–(14)]. Values of \bar{c}_a (panel a) and $\bar{\delta}_a$ (panel b) were found by averaging 6 min TDL data [see 'Atmospheric [CO₂] and δ^{13} C measurements']. Values of *F* (panel c) and F_{eddy} (panel d) were derived from eddy covariance measurements (see 'Flux and meteorological measurements'). Values of \bar{g} (panel e) were derived from Eqn (5). Values of \bar{a} (panel f) were derived from Eqn (10). Values of δ_N (panel g) were generated from a Keeling plot of CO₂ and δ^{13} C TDL measurements at all measurement heights. The isostorage (panel h) is numerically calculated from Eqn (3).

uptake flux for isotope flux partitioning must be F_A , not GEE (Lloyd *et al.*, 1996; Bowling *et al.*, 2003c).

Half-hourly measurements (F, F_{eddy} , \bar{c}_a , δ_a) or derived parameters (δ_{N} , \bar{a} , \bar{g} , and $F_{isostorage}$) between the hours of 11:00 and 13:00 local standard time were subsequently averaged into one representative value for the day. Time series of these measurements and derived parameters are shown in Fig. 1. From this averaging, all measurements (F, F_{eddy} , \bar{c}_a , $\bar{\delta}_a$) or derived parameters (δ_N , \bar{a} , \bar{g} , $F_{isostorage}$, and additionally δ_R) were on the same timescale.

Combination of the following equations generates an isotope flux partitioning estimate of F_{A} , F_{R} , Δ_{canopy} , and c_c :

$$F_{\rm A} + F_{\rm R} = F \tag{11}$$

$$(\bar{\delta}_{a} - \Delta_{canopy})F_{A} + \delta_{R}F_{R} = F_{\delta}$$
 (12)

$$F_{\rm A} = \bar{g}(c_{\rm c} - \bar{c}_{\rm a}) \tag{13}$$

$$\Delta_{\text{canopy}} = \bar{a} + (b_{\text{R}} - \bar{a}) \frac{c_{\text{c}}}{\bar{c}_{\text{a}}}.$$
 (14)

The Appendix in Bowling *et al.* (2001) shows how the combination of Eqns (11)–(14) can yield a solution for F_A by solving a quadratic equation for F_A . We present the derivation of the solution for F_A in the Appendix for two reasons: (a) errors were present in Eqn (A5) in Bowling *et al.* (2001) and (b) Bowling *et al.* (2001) claimed that the solution for F_A . As we demonstrate in the Appendix, under certain conditions the isotope-partitioning model can yield no unique, biologically realistic solutions for F_A .

Temperature-based statistical flux partitioning

Reviews of temperature-based partitioning methods were provided by Reichstein *et al.* (2005a) and Stoy *et al.* (2006). We briefly describe the method used here and refer to the method as 'statistical flux partitioning.' At night, GEE = 0, implying F = TER. Night-time regressions of F and air temperature (T) were calculated using an exponential regression model (Lloyd & Taylor, 1994):

TER =
$$R_{\rm ref} \times e^{E_0 \left(\frac{1}{T_{\rm ref} - T_0} - \frac{1}{T - T_0}\right)}$$
, (15)

where $T_0 = -46.02^\circ$, $T_{ref} = 10^\circ C$, and R_{ref} , the temperature-independent respiration rate, and temperature sensitivity, E_0 , were free parameters. The temperature sensitivity E_0 was estimated on a 15-day time scale, but then averaged and assumed to be constant in time. Then a temporally varying estimate of R_{ref} was generated; hence, linking variation in F between shorter and longer time scales. Once $R_{ref}(t)$ and E_0 are determined, half-hourly daytime TER was modeled with Eqn (11) from measured air temperature, and GEE was calculated as the difference between *F* and TER. The uncertainty in a TER estimate from using the expected values plus or minus the standard errors of $R_{ref}(t)$ and E_0 led to an intrinsic uncertainty in TER of $0.7 \,\mu\text{mol}\,\text{m}^{-2}\,\text{s}^{-1}$. The half-hourly values of GEE and TER between the 11:00 and 13:00 hours local standard time were subsequently averaged into one representative value for the day.

Results

Estimates of F_A , F_R , Δ_{canopy} , c_c , GEE, and TER were generated using each of the partitioning routines described in 'Theory.' Time series of *F*, F_A , F_R , GEE, and TER are shown in Fig. 2.

Fig. 2 Time series of isotope partitioned and statistical flux partitioned photosynthetic and respiratory fluxes. Values of F_A and F_R were generated from the solution of Eqns (11)–(14) (see 'Isotope flux partitioning'). Values of TER and GEE were produced from the statistical flux partitioning routine described in 'Temperature-based statistical flux partitioning.'

We compared the estimates of F_A and F_R and GEE and TER with expected physiological relationships, including light-response curves (F_A and GEE vs. photosynthetically active radiation, Q_P) and temperature-response curves (F_R and TER vs. air temperature). These results are shown in Fig. 3. To emphasize the underlying relationships, the fluxes are binned with respect to Q_P or air temperature (Greco & Baldocchi, 1996). In general, the sensitivity of F_A to Q_P was similar to the sensitivity of GEE to Q_P (Fig. 3a), whereas sensitivities of F_R to air temperature and TER and air temperature were not similar (Fig. 3b).

Shown in Fig. 4 are time series of Δ_{canopy} (Fig. 4a), δ_{R} , F_{A} -weighted δ_{A} (Fig. 4b), and F_{A} -weighted isotopic disequilibrium D (Fig. 4c). Values of δ_{A} are generally more enriched than δ_{R} , which leads to a positive D ($= \delta_{\text{A}} - \delta_{\text{R}}$).

Figure 5 shows the results of the sensitivity analyses of F_{A} , F_{R} , and D to either g_{m} , g_{cmax} , or c_Q . In this analysis, the fluxes were isotopically partitioned using incremental values of these parameters. For example, Fig. 5a and b show mean midday estimates of F_R and F_A for a given value of g_m . Figure 5c shows mean midday values of D weighted by F_A for a given value of g_m . The solid line in Fig. 5a represents a midday mean value of daytime TER. The dashed line in Fig. 5b represents a midday mean value of daytime GEE. Because mesophyll conductance is not a parameter used to derive statistical flux partitioning estimates, there is no sensitivity of GEE and TER to g_m . A sensitivity analysis of F_A , F_R , and D to α [see Eqn (8)] showed no sensitivity (results not shown).

Fig. 3 Binned comparison of air temperature and F_R (or TER), or photosynthetically active radiation (Q_P) and F_A (or GEE) relationships for each of the partitioning routines. Periods with Q_P less than 100 µmol m⁻² s⁻¹ were excluded from the averaging. Q_P was binned in 100 µmol m⁻² s⁻¹ increments, and air temperature was binned in 2 °C increments.

Discussion

Comparison of flux partitioning estimates at different time scales

Estimates of F_A and F_R were more variable than statistical flux partitioned estimates of GEE and TER (Fig. 2). These differences may arise from a variety of factors related to measurement errors. First, the turbulent flux $F_{\rm eddy}$ may not be measured correctly in times of strong atmospheric stability (Goulden et al., 1996). Recent work at Niwot Ridge has shown that both horizontal and vertical advection can be a significant flux at Niwot Ridge (Turnipseed et al., 2003, 2004; Yi et al., 2005). Studies of F via the eddy covariance technique (Baldocchi et al., 1988) generally do not consider vertical advection. Second, the isostorage has been estimated with standard numerical integration techniques; however, Finnigan (2006) has shown that such techniques may underestimate storage (and by extension isostorage) as much as 50%. A detailed analysis into the calculation of isostorage is beyond the scope of this study, but the focus on midday time periods should minimize problems with storage fluxes. Bowling et al. (2003c) compared different measurement-based techniques to estimate F_{δ} and found convergent results, yet there still is nonnegligible uncertainty in the measurements of F_{δ} . Direct measurements of the ¹²CO₂ and ¹³CO₂ fluxes (Saleska *et al.*, 2006) are needed to reduce the uncertainty associated with F_{δ} .

The failure to produce expected F_{R} -air temperature relationships (Fig. 3) has been observed in previous isotopic partitioning studies (Bowling *et al.*, 2001; Knohl & Buchmann, 2005; Zobitz *et al.*, 2007). The isotope partitioning method makes no assumption of the temperature influence of respiration. Ecosystem respiration is expected to vary with temperature, but also with other environmental factors such as moisture or substrate availability (Giardina & Ryan, 2000;

Reichstein et al., 2002, 2003, 2005a, b; Davidson et al., 2006). Studies at Niwot Ridge by Scott-Denton et al. (2003, 2006) from soil chambers reported that soil respiration is sensitive to these factors. Hence, the inability in this study to derive robust relationships of $F_{\rm R}$ with temperature may be the result of the assumption that the diurnal cycle of respiration is only sensitive to temperature. If this is true, a simple temperature dependence for diurnal respiration as in the statistical flux partitioning method may not be applicable for this site. Additional reasons for this failure to reproduce $F_{\rm R}$ -air temperature relationships include poor correlations between air and soil temperature and possibly limitations of the isotope partitioning method for reasons described in 'Comparison of Δ_{canopy} and D with other studies.'

Comparison of Δ_{canopy} and **D** with other studies

Estimates of *D* from modeling and measurement-based studies at different spatial scales sometimes conflict in their sign and magnitude. Estimates of Δ_{canopy} from carbon cycle modeling studies at ecosystem, regional, or global scales generally have found $\Delta_{canopy} = 17-19\%$ (Lloyd & Farquhar, 1994; Ciais et al., 1995b; Fung et al., 1997; Randerson et al., 2002; Baldocchi & Bowling, 2003; Miller et al., 2003; Scholze et al., 2003; Suits *et al.*, 2005), indicating that $\delta_A \approx \bar{\delta}_a - \Delta_{canopy} \approx -8 - 18\%$ \approx -25‰ to -27‰, or that $\delta_{\rm A} < \delta_{\rm R}$ (mean value of $\delta_{\rm R} \approx -25.1\%$ implies for this study D<0). Negative values of *D* are consistent with expectations of isotope disequilibrium between terrestrial photosynthesis and respiration based on the long-term change in δ^{13} C of atmospheric CO₂ associated with the ¹³C Suess effect. Other processes in addition to the ¹³C Suess effect lead to positive D. A recent study by Han et al. (2007) showed that methane oxidation produced more enriched $\delta_{\rm R}$ (2–5‰) relative leaf bulk isotopic composition in a Japanese rice paddy.

Fig. 4 (a) Time series of Δ_{canopy} from isotope flux partitioning. (b) Time series of F_A -weighted mean value of δ_A (circles) compared with δ_R from the previous night (squares). (c) Isotopic disequilibrium ($D = \delta_A - \delta_R$) calculated from panel (b).

Isotope flux partitioning studies (Fig. 4) frequently generate short-term (hours to days) estimates of $\delta_A > \delta_R$ (Bowling *et al.*, 2001, 2003c; Ogée *et al.*, 2003b; Knohl & Buchmann, 2005; Zhang *et al.*, 2006). Using the biophysical model ISOLSM to simulate carbon fluxes of CO₂ and ¹³CO₂, Aranibar *et al.* (2006) found $\delta_A > \delta_R$. Furthermore, Scartazza *et al.* (2004) measured phloem sugars over the course of the growing season and consistently found these were more enriched than δ_R ; however, no

significant difference between these two was found in a similar study by Barbour *et al.* (2005). As phloem sugars are thought to be representative of recent photosynthate, this suggests that possibly $\delta_A > \delta_R$. The sign of *D* is potentially very important for carbon cycle studies, and the lack of agreement between the studies needs to be resolved.

There are three potential complications that may require reevaluation of the hypothesis that δ_A is consistently more negative than δ_R . The first complication is that there is a growing body of evidence that suggests there is apparent fractionation associated with respiration (Ghashghaie et al., 2003; Bowling et al., 2008). It is well established that the difference between the isotopic composition of air and plant matter reflects photosynthetic discrimination, Δ_{canopy} (Farquhar *et al.*, 1989). Bulk leaf organic matter is more depleted in ¹³C than primary photosynthetic products such as sucrose or starch (Brugnoli & Farquhar, 2000; Scartazza et al., 2004; Xu et al., 2004; Barbour et al., 2005; Hymus et al., 2005; Prater et al., 2006; Bowling et al., 2008). Badeck et al. (2005) compiled data from published studies and showed a significant difference between sucrose and organic matter, with sucrose being more enriched than organic matter. A study by Hobbie & Werner (2004) found apparent fractionation of between leaf and phloem sucrose due to transport processes; however, studies by Gessler et al. (2004), Barbour et al. (2005), and Keitel et al. (2003) suggest that the differences may be due to variation in $Q_{\rm P}$ air temperature, moisture, and stomatal conductance.

A second complication is the variation in respiratory substrates and respiratory fractionations of ¹³C and may affect isotopic signatures of respiration, and hence, the value of *D*. The value of $\delta_{\rm R}$ represents the isotopic signature of the nonfoliar respiratory flux (F_R). In controlled studies, isotopic signatures of respiration have been shown to vary between different plant organs, with leaf respiration being more ¹³C-enriched than possible substrates (Brugnoli & Farquhar, 2000; Ghashghaie et al., 2003; Tcherkez et al., 2003; Scartazza et al., 2004; Xu et al., 2004; Badeck et al., 2005; Barbour et al., 2005; Hymus et al., 2005; Prater et al., 2006), root respiration more ¹³C-depleted than respiratory substrates, and whole-shoot respiration more enriched than respiratory substrates (Klumpp et al., 2005; Schnyder & Lattanzi, 2005). Diel variation in leaf δ_R has also been found in the field (Hymus et al., 2005; Knohl et al., 2005; Prater et al., 2006), with late afternoon values of leaf $\delta_{\rm R}$ tending to becoming more enriched in ¹³C. At Niwot Ridge, Bowling et al. (2005) found night-time canopy $\delta_{\rm R}$ to be more enriched than below-canopy $\delta_{\rm R}$, and Schaeffer et al. (2008) showed that this pattern of enrichment is consistent in summer at the Niwot Ridge

Fig. 5 Sensitivity of F_R , F_A , and D to mesophyll conductance $[g_{m\nu}$ panels (a)–(c)], maximum canopy conductance $[g_{cmax}$, panels (d)–(f)], and attenuation coefficient $[c_Q$, panels (g)–(i)]. The same legend applies across each row. The isotope flux partitioning equations [Eqns (11)–(15)] were applied for each value of $g_{m\nu}$, g_{cmax} , or c_Q . The mean midday values of TER (solid line) and GEE (dashed line) are shown for comparison. For panels (c), (f), and (i), the midday F_A -weighted mean value of D is shown. Note that the temperature-based partitioning method ('Temperature-based statistical flux partitioning') from which GEE and TER are calculated does not provide an estimate of D for comparison. Default values for the parameters were $0.125 \text{ mol m}^{-2} \text{ s}^{-1}$, for $g_{m\nu}$, $0.15 \text{ mol m}^{-2} \text{ s}^{-1}$ for g_{cmax} , and 0.6 for c_Q .

forest. Determining the apparent fractionation effects of leaf, root, shoot, and soil respiration is an active area of research; it is unknown how these different fractionation effects are manifested at the ecosystem scale. In practice, δ_R is derived from total night-time respiration. Correct determination of δ_R as the isotopic signature of nonfoliar respiration is considerably more complicated given these considerations (Bowling *et al.*, 2008; Cai *et al.*, 2008). By association, our understanding of *D* is weak at present.

The third complication is that *D* may vary on different spatial and time scales. Measurement-based studies and models of terrestrial discrimination estimate *D* ranging from 6-hourly to yearly values (Lloyd & Farquhar, 1994; Fung *et al.*, 1997; Randerson *et al.*, 2002; Miller *et al.*, 2003; Suits *et al.*, 2005). The present study estimates generate a single daily value of *D*. Patterns of carbon isotope disequilibrium could potentially be quite dynamic in time over a season. The present study found D > 0 during the late summer, but of course it is possible that the sign of *D* changes temporally throughout the season in response to moisture, light, temperature, plant phenology, or other factors. Monson *et al.* (2005) found the duration and timing of snow melt

strongly influenced the length of summer net carbon uptake. The largest periods of carbon uptake at Niwot Ridge occur in the early growing season; late in the growing season, carbon uptake is reduced due to moisture limitations (Monson et al., 2002). The 2003 snow melt period lasted 28 days, beginning around day 130 (Monson et al., 2005). The present study period was generally warm with dry soils; measurements began after the strongest carbon uptake and wettest soils [see Fig. 7 in Bowling et al. (2005)]. Hence, D could change from positive to negative on seasonal time scales in relationship to periods of stronger net carbon uptake. Negative values of D early in the growing season may transition to positive late in the growing season in response to moisture limitations. Annual mean *D* could be consistent in sign and magnitude with estimates of other studies [e.g. Fung et al. (1997)] if this is true.

Isotopic linkages between different carbon pools should be addressed in future applications of the isotope partitioning method. Correlative isotopic linkages between photosynthesis and respiration have been well established in previous studies (Ekblad & Hogberg, 2001; Hogberg *et al.*, 2001, 2008; Bowling *et al.*, 2003a, b; Ekblad *et al.*, 2005; Knohl *et al.*, 2005), and models of the isotopic content of respiration are now beginning to take them into account (Aranibar *et al.*, 2006; Cai *et al.*, 2008). Describing these linkages in the isotope flux partitioning equations may potentially improve our ability to predict half-hourly fluxes of F_A and F_R and perhaps lead to more robust relationships of isotope flux-partitioned estimates of F_R with temperature.

Sensitivity of isotope flux partitioning to g_m , g_{cmax} , and c_A

The value of g_m used in this study was 0.125 mol m⁻² s⁻¹ (William K. Smith, personal communication). There are relatively few published studies on g_m for a given species, much less diurnal measurements of g_m (Loreto *et al.*, 1992; Warren *et al.*, 2003; Manter & Kerrigan, 2004; Singsaas *et al.*, 2004; Grassi & Magnani, 2005; Tissue *et al.*, 2005). Furthermore, for use in partitioning of net ecosystem exchange, leaf-level estimates of g_m need to be scaled to the canopy as done in Ogée *et al.* (2003b) and Knohl *et al.* (2005).

The value of $g_{\rm m}$ directly influences \overline{g} [Eqn (5)], which in turn influences the estimates of F_R and F_A [Eqns (11)– (14)]. TER and GEE estimates (solid and dashed lines in Fig. 5a and b) provide a baseline to determine values of ecosystem-level estimates of g_m that would produce unreasonable estimates F_R and F_A relative to TER and GEE. The magnitude of F_A should be smaller than GEE, as F_A is GEE less foliar respiration. Similarly, F_R should be smaller in magnitude than TER because the daytime foliar respiration flux is in principle included in F_A . Mesophyll conductance is not a parameter used to derive statistical flux partitioning estimates; hence, there is no sensitivity of GEE and TER to $g_{\rm m}$. Over the range considered, there were no values of g_m that produced unrealistic estimates relative to the mean values of TER and GEE.

Determinations of *D* by previous studies vary in their consideration of mesophyll effects, which may account for their differences. Values of D decreased in our study with increasing values of $g_{\rm m}$ (Fig. 5c). Note, the sign of D was still positive over the range of all tested values of gm. Fung et al. (1997) did not consider mesophyll effects in the model-based formulation of Δ_{canopy} . Similar studies by Miller et al. (2003) and Suits et al. (2005) found more enriched values of $\delta_{\rm A} = (\bar{\delta}_{\rm a} - \Delta_{\rm canopy})$ in northern latitudes than Fung et al. (1997). Suits et al. (2005) included mesophyll effects in their model whereas Fung et al. (1997) did not; we hypothesize that these model differences led to more enriched δ_A (decreased Δ_{canopy}) in Suits *et al.* (2005). Baldocchi & Bowling (2003) did not include mesophyll fractionation effects in the model CANISOTOPE applied to a deciduous forest, which may account for the higher values of Δ_{canopy} than those found with isotope partitioning by Bowling *et al.* (2001). Because mesophyll conductance directly influences Δ_{canopy} [Eqns (9) and (10)], and not the calculation of δ_{R} , we can infer from Fig. 5c that increasing values of g_{m} increase Δ_{canopy} and subsequently make δ_{A} more depleted (decreasing the value of D), assuming that g_{c} and g_{m} do not covary.

The sensitivity analysis of F_{A} , F_{R} , Δ_{canopy} to g_{cmax} suggests values of $g_{\rm cmax}$ greatly above 0.15 mol air m⁻²s⁻¹ generate biologically higher values of $F_{\rm R}$ and $F_{\rm A}$ relative to TER and GEE (Fig. 5d and e). Kelliher et al. (1995) reported maximal stomatal conductances in coniferous forests to range from $5.7 \pm 2.4 \text{ mm s}^{-1}$ (0.24 \pm 0.10 mol $m^{-2}s^{-1}$). The g_{cmax} value of 0.15 mol air $m^{-2}s^{-1}$ is at the lower end of this range; however, a value of $0.15 \,\mathrm{mol}\,\mathrm{air}\,\mathrm{m}^{-2}\,\mathrm{s}^{-1}$ is reasonable based on previously published studies in coniferous forests (Ogée et al., 2003b) or by direct experimentation (Loreto et al., 1992). The sensitivity analyses suggest that the values of F_{A} , F_{R} , and Δ_{canopy} are more sensitive to the values of g_{cmax} than to g_m (Fig. 5d–f). While F_A , F_R , and Δ_{canopy} were strongly sensitive to lower values of the canopy attenuation coefficient $c_{\rm O}$ (Fig. 5g and h), $F_{\rm A}$, $F_{\rm R}$, and $\Delta_{\rm canopy}$ were not as sensitive at typically expected values of c_0 [0.5–0.7, Kelliher et al. (1995)]. Values of D generally decreased for increasing values of g_{cmax} and c_Q , but did not change sign (Fig. 5f and i). The stomatal conductance model presented here is a simplified version of the one presented in Kelliher et al. (1995), which also considered the parallel sum of stomatal conductances of individual leaves through the entire canopy.

Conclusions

In this study, we evaluated an improved isotope flux partitioning method using measurements of F, [CO₂], and δ^{13} C over a 3-month period at a high-elevation coniferous forest. Comparison of the independent statistical flux partitioning and isotope flux partitioning methods showed agreement. Variation in measured and derived quantities strongly influences estimates of net photosynthesis (F_A) and nonfoliar respiration (F_R) in the isotope partitioning method. Additionally, this variability complicates correlative relationships with environmental variables and the partitioned fluxes (especially between F_R and air temperature).

During the late summer period of this study, we found a consistent positive isotopic disequilibrium (D) ranging from 1‰ to 2‰. Positive values of D may reflect postphotosynthetic fractionation of ecosystem carbon pools or ecosystem-scale responses due to seasonal environmental variation and moisture stresses.

Future success of the isotope partitioning method requires further investigation of (a) the linkages between estimates of F_A , F_R , and D at a variety of spatial and temporal scales, (b) better characterization of mesophyll and stomatal conductances at the ecosystem scale, and (c) accurate determination of the isotopic signature of the components of ecosystem respiration, particularly their temporal and spatial variability.

Acknowledgements

The authors would like to thank three anonymous reviewers whose suggestions greatly improved this manuscript. J. M. Z. would like to thank Frederick Adler, James Keener, David Dobson, Sean Schaeffer, Jerome Ogée, and Andrew Moyes for helpful discussions. The authors gratefully acknowledge Bill Smith for discussions on mesophyll conductance, John Sperry for insights on the Penman-Monteith equation and soil water, and Russ Monson for providing data from the Niwot Ridge AmeriFlux tower. This work was funded by the University of Utah and a grant to D. R. B. from the Office of Science (BER), US Department of Energy, Grant no. DE-FG02-04ER63904, as part of the North American Carbon Program. J. M. Z. was funded through NSF grant DGE-0217424 and as a fellow in the US Department of Energy, Global Change Education Program, administered by the Oak Ridge Institute for Science and Education. An online version of the temperature-based statistical flux partitioning algorithm used in this study is available at http:// gaia.agraria.unitus.it/database/eddyproc/, and the isotope data are freely available for use by anyone by contacting D. R. B.

References

- Aber JD, Reich PB, Goulden ML (1996) Extrapolating leaf CO_2 exchange to the canopy a generalized model of forest photosynthesis compared with measurements by eddy correlation. *Oecologia*, **106**, 257–265.
- Aranibar JN, Berry JA, Riley WJ, Pataki DE, Law BE, Ehleringer JR (2006) Combining meteorology, eddy fluxes, isotope measurements, and modeling to understand environmental controls of carbon isotope discrimination at the canopy scale. *Global Change Biology*, **12**, 710–730.
- Badeck FW, Tcherkez G, Nogues S, Piel C, Ghashghaie J (2005) Post-photosynthetic fractionation of stable carbon isotopes between plant organs – a widespread phenomenon. *Rapid Communications in Mass Spectrometry*, **19**, 1381–1391.
- Baldocchi D (1997) Measuring and modelling carbon dioxide and water vapour exchange over a temperate broad-leaved forest during the 1995 summer drought. *Plant, Cell and Environment*, **20**, 1108–1122.
- Baldocchi D, Falge E, Gu LH *et al.* (2001) FLUXNET: a new tool to study the temporal and spatial variability of ecosystem-scale carbon dioxide, water vapor, and energy flux densities. *Bulletin of the American Meteorological Society*, **82**, 2415–2434.
- Baldocchi DD, Bowling DR (2003) Modelling the discrimination of ¹³CO₂ above and within a temperate broad-leaved forest canopy on hourly to seasonal time scales. *Plant, Cell and Environment*, **26**, 231–244.

- Baldocchi DD, Hicks BB, Meyers TP (1988) Measuring biosphere atmosphere exchanges of biologically related gases with micrometerological methods. *Ecology*, 69, 1331–1340.
- Barbour MM, Hunt JE, Dungan RJ, Turnbull MH, Brailsford GW, Farquhar GD, Whitehead D (2005) Variation in the degree of coupling between δ^{13} C of phloem sap and ecosystem respiration in two mature *Nothofagus* forests. *New Phytologist*, **166**, 497–512.
- Betson NR, Gottlicher SG, Hall M, Wallin G, Richter A, Hogberg P (2007) No diurnal variation in rate or carbon isotope composition of soil respiration in a boreal forest. *Tree Physiology*, 27, 749–756.
- Bowling DR, Burns SP, Conway TJ, Monson RK, White JWC (2005) Extensive observations of CO₂ carbon isotope content in and above a high-elevation subalpine forest. *Global Biogeochemical Cycles*, **19**, GB3023, doi: 10.1029/2004GB002394.
- Bowling DR, McDowell NG, Welker JM, Bond BJ, Law BE, Ehleringer JR (2003a) Oxygen isotope content of CO₂ in nocturnal ecosystem respiration: 1. Observations in forests along a precipitation transect in Oregon, USA. *Global Biogeochemical Cycles*, **17**, 1120, doi: 10.1029/2003GB00281.
- Bowling DR, McDowell NG, Welker JM, Bond BJ, Law BE, Ehleringer JR (2003b) Oxygen isotope content of CO₂ in nocturnal ecosystem respiration: 2. Short-term dynamics of foliar and soil component fluxes in an old-growth ponderosa pine forest. *Global Biogeochemical Cycles*, **17**, 1124, doi: 10.1029/ 2003GB00282.
- Bowling DR, Pataki DE, Ehleringer JR (2003c) Critical evaluation of micrometeorological methods for measuring ecosystematmosphere isotopic exchange of CO₂. Agricultural and Forest Meteorology, **116**, 159–179.
- Bowling DR, Pataki DE, Randerson JT (2008) Carbon isotopes in terrestrial ecosystem pools and CO₂ fluxes. *New Phytologist*, **178**, 24–40.
- Bowling DR, Tans PP, Monson RK (2001) Partitioning net ecosystem carbon exchange with isotopic fluxes of CO₂. *Global Change Biology*, 7, 127–145.
- Braswell BH, Sacks WJ, Linder E, Schimel DS (2005) Estimating diurnal to annual ecosystem parameters by synthesis of a carbon flux model with eddy covariance net ecosystem exchange observations. *Global Change Biology*, **11**, 335– 355.
- Brugnoli E, Farquhar GD (2000) Photosynthetic fractionation of carbon isotopes. In: *Photosynthesis: Physiology and Metabolism* (eds Leegood RC, Sharkey TD, von Caemmerer S), pp. 399–434. Kluwer, Dordrecht, the Netherlands.
- Cai T, Flanagan LB, Jassal RS, Black TA (2008) Modeling environmental controls on ecosystem photosynthesis and the carbon isotope composition of ecosystem respired CO_2 in a coastal Douglas-fir forest. *Plant, Cell and Environment*, **31**, 435–453.
- Ciais P, Reichstein M, Viovy N *et al.* (2005) Europe-wide reduction in primary productivity caused by the heat and drought in 2003. *Nature*, **437**, 529–533.
- Ciais P, Tans PP, Trolier M, White JWC, Francey RJ (1995a) A large Northern Hemisphere terrestrial CO_2 sink indicated by the ${}^{13}C/{}^{12}C$ ratio of atmospheric CO_2 . *Science*, **269**, 1098–1102.

© 2008 The Authors

- Ciais P, Tans PP, White JWC *et al.* (1995b) Partitioning of ocean and land uptake of CO₂ as inferred by δ^{13} C measurements from the NOAA climate monitoring and diagnostics laboratory global air sampling network. *Journal of Geophysical Research*, **100**, 5051–5070.
- Davidson EA, Janssens IA, Luo YQ (2006) On the variability of respiration in terrestrial ecosystems: moving beyond Q(10). *Global Change Biology*, **12**, 154–164.
- Ekblad A, Bostrom B, Holm A, Comstedt D (2005) Forest soil respiration rate and δ^{13} C is regulated by recent above ground weather conditions. *Oecologia*, **143**, 136–142.
- Ekblad A, Hogberg P (2001) Natural abundance of ¹³C in CO₂ respired from forest soils reveals speed of link between tree photosynthesis and root respiration. *Oecologia*, **127**, 305–308.
- Farquhar GD, Ehleringer JR, Hubic KT (1989) Carbon isotope discrimination and photosynthesis. Annual Review of Plant Physiology and Plant Molecular Biology, 40, 503–537.
- Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: *Stable Isotopes and Plant Carbon Water Relations* (eds Ehleringer JR, Hall AE, Farquhar GD), pp. 47–70. Academic Press, San Diego, CA, USA.
- Farquhar GD, O'Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. *Australian Journal of Plant Physiology*, **9**, 121–137.
- Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annual Review of Plant Physiology, 33, 317–345.
- Finnigan J (2006) The storage term in eddy flux calculations. *Agricultural and Forest Meteorology*, **136**, 108–113.
- Foken T, Wichura B (1996) Tools for quality assessment of surface-based flux measurements. *Agricultural and Forest Meteorology*, **78**, 83–105.
- Francey RJ, Allison CE, Etheridge DM *et al.* (1999) A 1000-year high precision record of δ^{13} C in atmospheric CO₂. *Tellus*, **51B**, 170–193.
- Fung I, Field CB, Berry JA *et al.* (1997) Carbon 13 exchanges between the atmosphere and biosphere. *Global Biogeochemical Cycles*, **11**, 507–533.
- Gessler A, Rennenberg H, Keitel C (2004) Stable isotope composition of organic compounds transported in the phloem of European beech – evaluation of different methods of phloem sap collection and assessment of gradients in carbon isotope composition during leaf-to-stem transport. *Plant Biology*, **6**, 721–729.
- Ghashghaie J, Badeck FW, Lanigan G *et al.* (2003) Carbon isotope fractionation during dark respiration and photorespiration in C₃ plants. *Phytochemistry Reviews*, **2**, 145–161.
- Giardina CP, Ryan MG (2000) Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. *Nature*, **404**, 858–861.
- Goulden ML, Munger JW, Fan SM, Daube BC, Wofsy SC (1996) Measurements of carbon sequestration by long-term eddy covariance: methods and a critical evaluation of accuracy. *Global Change Biology*, **2**, 169–182.
- Grace J, Lloyd J, Mcintyre JA *et al.* (1995) Fluxes of carbon dioxide and water vapour over an undisturbed tropical forest in south-west Amazonia. *Global Change Biology*, **1**, 1–12.

- Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. *Plant, Cell and Environment*, **28**, 834–849.
- Greco S, Baldocchi DD (1996) Seasonal variations of CO₂ and water vapour exchange rates over a temperate deciduous forest. *Global Change Biology*, **2**, 183–197.
- Griffis TJ, Baker JM, Zhang J (2005) Seasonal dynamics and partitioning of isotopic CO₂ exchange in C₃/C₄ managed ecosystem. *Agricultural and Forest Meteorology*, **132**, 1–19.
- Han GH, Yoshikoshi H, Nagai H, Yamada T, Ono K, Mano M, Miyata A (2007) Isotopic disequilibrium between carbon assimilated and respired in a rice paddy as influenced by methanogenesis from CO₂. *Journal of Geophysical Research*, **112**, G02016, doi: 10.1029/2006JG000219.
- Hobbie EA, Werner RA (2004) Intramolecular, compound-specific, and bulk carbon isotope patterns in C_3 and C_4 plants: a review and synthesis. *New Phytologist*, **161**, 371–385.
- Hogberg P, Hogberg MN, Gottlicher SG *et al.* (2008) High temporal resolution tracing of photosynthate carbon from the tree canopy to forest soil microorganisms. *New Phytologist*, **177**, 220–228.
- Hogberg P, Nordgren A, Buchmann N et al. (2001) Large-scale forest girdling shows that current photosynthesis drives soil respiration. *Nature*, **411**, 789–792.
- Huxman TE, Turnipseed AA, Sparks JP, Harley PC, Monson RK (2003) Temperature as a control over ecosystem CO₂ fluxes in a high-elevation, subalpine forest. *Oecologia*, **134**, 537–546.
- Hymus GJ, Maseyk K, Valentini R, Yakir D (2005) Large daily variation in ¹³C-enrichment of leaf-respired CO₂ in two *Quercus* forest canopies. *New Phytologist*, **167**, 377–384.
- Jarvis PG (1976) Interpretation of variations in leaf water potential and stomatal conductance found in canopies in field. *Philosophical Transactions of the Royal Society of London, Series B*, **273**, 593–610.
- Keeling CD (1958) The concentration and isotopic abundances of atmospheric carbon dioxide in rural areas. *Geochimica et Cosmochimica Acta*, **13**, 322–334.
- Keitel C, Adams MA, Holst T, Matzarakis A, Mayer H, Rennenberg H, Geβler A (2003) Carbon and oxygen isotope composition of organic compounds in the phloem sap provides short-term measure for stomatal conductance of European beech (*Fagus sylvatica* L.). *Plant, Cell and Environment*, **26**, 1157–1168.
- Kelliher FM, Leuning R, Raupach MR, Schulze ED (1995) Maximum conductances for evaporation from global vegetation types. *Agricultural and Forest Meteorology*, **73**, 1–16.
- Klumpp K, Schäufele R, Lötscher M, Lattanzi FA, Feneis W, Schnyder H (2005) C-isotope composition of CO₂ respired by shoots and roots: fractionation during dark respiration? *Plant*, *Cell and Environment*, **28**, 241–250.
- Knohl A, Buchmann N (2005) Partitioning the net CO₂ flux of a deciduous forest into respiration and assimilation using stable carbon isotopes. *Global Biogeochemical Cycles*, **19**, GB4008, doi: 10.1029/2004GB002301.
- Knohl A, Werner RA, Brand WA, Buchmann N (2005) Short-term variations in δ^{13} C of ecosystem respiration reveals link between assimilation and respiration in a deciduous forest. *Oecologia*, **142**, 70–82.

- Lai CT, Ehleringer JR, Tans P, Wofsy SC, Urbanski SP, Hollinger DY (2004) Estimating photosynthetic ¹³C discrimination in terrestrial CO₂ exchange from canopy to regional scales. *Global Biogeochemical Cycles*, **18**, GB1041, doi: 10.1029/2003GB002148.
- Lai CT, Schauer AJ, Owensby C, Ham JM, Ehleringer JR (2003) Isotopic air sampling in a tallgrass prairie to partition net ecosystem CO₂ exchange. *Journal of Geophysical Research – Atmospheres*, **108**, 4566, doi: 10.1029/2002JD003369.
- Lavigne MB, Ryan MG, Anderson DE *et al.* (1997) Comparing nocturnal eddy covariance measurements to estimates of ecosystem respiration made by scaling chamber measurements at six coniferous boreal sites. *Journal of Geophysical Research – Atmospheres*, **102**, 28977–28985.
- Law BE, Ryan MG, Anthoni PM (1999) Seasonal and annual respiration of a ponderosa pine ecosystem. *Global Change Biology*, **5**, 169–182.
- Lloyd J, Farquhar GD (1994) ¹³C discrimination during CO₂ assimilation by the terrestrial biosphere. *Oecologia*, **99**, 201–215.
- Lloyd J, Kruijt B, Hollinger DY *et al.* (1996) Vegetation effects on the isotopic composition of atmospheric CO_2 at local and regional scales: theoretical aspects and a comparison between rain forest in Amazonia and a boreal forest in Siberia. *Australian Journal of Plant Physiology*, **23**, 371–399.
- Lloyd J, Taylor JA (1994) On the temperature dependence of soil respiration. *Functional Ecology*, **8**, 315–323.
- Loreto F, Harley PC, Di Marco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO₂ flux by three different methods. *Plant Physiology*, **98**, 1437–1443.
- Manter DK, Kerrigan J (2004) A/Ci curve analysis across a range of woody plant species: influence of regression analysis parameters and mesophyll conductance. *Journal of Experimental Botany*, 55, 2581–2588.
- Miller JB, Tans PP, White JWC, Conway TJ, Vaughn BW (2003) The atmospheric signal of terrestrial carbon isotopic discrimination and its implication for partitioning carbon fluxes. *Tellus*, **55B**, 197–206.
- Monson RK, Burns SP, Williams MW, Delany AC, Weintraub M, Lipson DA (2006a) The contribution of beneath-snow soil respiration to total ecosystem respiration in a high-elevation, subalpine forest. *Global Biogeochemical Cycles*, **20**, GB3030, doi: 10.1029/2005GB002684.
- Monson RK, Lipson DL, Burns SP, Turnipseed AA, Delany AC, Williams MW, Schmidt SK (2006b) Winter forest soil respiration controlled by climate and microbial community composition. *Nature*, **439**, 711–714.
- Monson RK, Sparks JP, Rosenstiel TN *et al.* (2005) Climatic influences on net ecosystem CO₂ exchange during the transition from wintertime carbon source to springtime carbon sink in a high-elevation, subalpine forest. *Oecologia*, **146**, 130–147.
- Monson RK, Turnipseed AA, Sparks JP, Harley PC, Scott-Denton LE, Sparks K, Huxman TE (2002) Carbon sequestration in a high-elevation, subalpine forest. *Global Change Biology*, **8**, 459–478.
- Ogée J, Brunet Y, Loustau D, Berbigier P, Delzon S (2003a) MuSICA, a CO₂, water and energy multilayer, multileaf pine forest model: evaluation from hourly to yearly time scales and sensitivity analysis. *Global Change Biology*, **9**, 697–717.

- Ogée J, Peylin P, Ciais P *et al.* (2003b) Partitioning net ecosystem carbon exchange into net assimilation and respiration using ¹³CO₂ measurements: a cost-effective sampling strategy. *Global Biogeochemical Cycles*, **17**, 1070, doi: 10.1029/2002GB001995.
- Prater JL, Mortazavi B, Chanton JP (2006) Diurnal variation of the d¹³C of pine needle respired CO₂ evolved in darkness. *Plant Cell and Environment*, **29**, 202–211.
- Prentice IC, Farquhar GD, Fasham MJR et al. (2001) The carbon cycle and atmospheric carbon dioxide. In: Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change (eds Houghton JT, Ding Y, Griggs DJ, Noguer M, van der Linden PJ, Dai X, Maskell K, Johnson CA), pp. 183–237. Cambridge University Press, Cambridge, UK.
- Priestley CHB, Taylor RJ (1972) On the assessment of surface heat flux and evaporation using large-scale parameters. *Monthly Weather Review*, **100**, 81–92.
- Randerson JT, Collatz GJ, Fessenden JE *et al.* (2002) A possible global covariance between terrestrial gross primary production and ¹³C discrimination: consequences for the atmospheric ¹³C budget and its response to ENSO. *Global Biogeochemical Cycles*, **16**, 1136, doi: 10.1029/2001GB001845.
- Reichstein M, Falge E, Baldocchi D *et al.* (2005a) On the separation of net ecosystem exchange into assimilation and ecosystem respiration: review and improved algorithm. *Global Change Biology*, **11**, 1424–1439.
- Reichstein M, Rey A, Freibauer A *et al.* (2003) Modeling temporal and large-scale spatial variability of soil respiration from soil water availability, temperature and vegetation productivity indices. *Global Biogeochemical Cycles*, **17**, 1104, doi: 10.1029/ 2003GB002035.
- Reichstein M, Subke JA, Angeli AC, Tenhunen JD (2005b) Does the temperature sensitivity of decomposition of soil organic matter depend upon water content, soil horizon, or incubation time? *Global Change Biology*, **11**, 1754–1767.
- Reichstein M, Tenhunen JD, Roupsard O, Ourcival JM, Rambal S, Dore S, Valentini R (2002) Ecosystem respiration in two Mediterranean evergreen Holm Oak forests: drought effects and decomposition dynamics. *Functional Ecology*, 16, 27–39.
- Sacks WJ, Schimel DS, Monson RK (2007) Coupling between carbon cycling and climate in a high-elevation, subalpine forest: a model-data fusion analysis. *Oecologia*, **151**, 54–68.
- Sacks WJ, Schimel DS, Monson RK, Braswell BH (2006) Modeldata synthesis of diurnal and seasonal CO₂ fluxes at Niwot Ridge, Colorado. *Global Change Biology*, **12**, 240–259.
- Saleska SR, Shorter JH, Herndon S *et al.* (2006) What are the instrumentation requirements for measuring the isotopic composition of net ecosystem exchange of CO₂ using eddy covariance methods? *Isotopes in Environmental and Health Studies*, **42**, 115–133.
- Scartazza A, Mata C, Matteucci G, Yakir D, Moscatello S, Brugnoli E (2004) Comparisons of δ^{13} C of photosynthetic products and ecosystem respiratory CO₂ and their response to seasonal climate variability. *Oecologia*, **140**, 340–351.
- Schaeffer SS, Anderson DE, Burns SP, Monson RK, Sun J, Bowling DR (2008) Canopy structure and atmospheric flows in relation to the δ^{13} C of respired CO₂ in a subalpine coniferous forest. *Agricultural and Forest Meteorology*, **148**, 592–605.

- © 2008 The Authors
- Journal compilation © 2008 Blackwell Publishing Ltd, Global Change Biology, 14, 1785–1800

- Schimel DS, House JI, Hibbard KA *et al.* (2001) Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. *Nature*, **414**, 169–172.
- Schnyder H., Lattanzi FA (2005) Partitioning respiration of C_3 - C_4 mixed communities using the natural abundance ¹³C approach testing assumptions on a controlled environment. *Plant Biology*, 7, 592–600.
- Scholze M, Kaplan JO, Knorr W, Heimann M (2003) Climate and interannual variability of the atmosphere-biosphere ¹³CO₂ flux. *Geophysical Research Letters*, **30**, 1097, doi: 1010.1029/ 2002GL015631.
- Scott-Denton LE, Rosenstiel TN, Monson RK (2006) Differential controls by climate and substrate over the heterotrophic and rhizospheric components of soil respiration. *Global Change Biology*, **12**, 205–216.
- Scott-Denton LE, Sparks KL, Monson RK (2003) Spatial and temporal controls of soil respiration rate in a high-elevation, subalpine forest. *Soil Biology & Biochemistry*, **35**, 525–534.
- Singsaas EL, Ort DR, Delucia EH (2004) Elevated CO2 effects on mesophyll conductance and its consequences for interpreting photosynthetic physiology. *Plant, Cell and Environment*, **27**, 41–50.
- Stoy PC, Katul GG, Siqueira MBS, Juang JY, Novick KA, Uebelherr JM, Oren R (2006) An evaluation of models for partitioning eddy covariance-measured net ecosystem exchange into photosynthesis and respiration. *Agricultural and Forest Meteorology*, **141**, 2–18.
- Suits NS, Denning AS, Berry JA, Still CJ, Kaduk J, Miller JB, Baker IT (2005) Simulation of carbon isotope discrimination of the terrestrial biosphere. *Global Biogeochemical Cycles*, **19**, GB1017, doi: 1010.1029/2003GB002141.
- Tcherkez G, Nogues S, Bleton J, Cornic G, Badeck F, Ghashghaie J (2003) Metabolic origin of carbon isotope composition of leaf dark-respired CO₂ in French bean. *Plant Physiology*, **131**, 237–244.
- Tissue DT, Griffin KL, Turnbull MH, Whitehead D (2005) Stomatal and non-stomatal limitations to photosynthesis in four tree species in a temperate rainforest dominated by *Dacrydium cupressinum* in New Zealand. *Tree Physiology*, **25**, 447–456.
- Trumbore S (2000) Age of soil organic matter and soil respiration: radiocarbon constraints on belowground C dynamics. *Ecological Applications*, **10**, 399–411.
- Turnipseed AA, Anderson DE, Blanken PD, Baugh WM, Monson RK (2003) Airflows and turbulent flux measurements in mountainous terrain Part 1. Canopy and local effects. *Agricultural and Forest Meteorology*, **119**, 1–21.
- Turnipseed AA, Anderson DE, Burns S, Blanken PD, Monson RK (2004) Airflows and turbulent flux measurements in mountainous terrain Part. 2. Mesoscale effects. *Agricultural and Forest Meteorology*, **125**, 187–205.
- Vogel JS (1980) Fractionation of Carbon Isotopes During Photosynthesis. Springer Verlag, Heidelberg.
- Warren CR (2006) Estimating the internal conductance to CO₂ movement. *Functional Plant Biology*, **33**, 431–442.
- Warren CR, Adams MA (2006) Internal conductance does not scale with photosynthetic capacity: implications for carbon isotope discrimination and the economics of water and

nitrogen use in photosynthesis. *Plant, Cell and Environment*, **29**, 192–201.

- Warren CR, Ethier GJ, Livingston NJ, Grant NJ, Turpin DH, Harrison DL, Black TA (2003) Transfer conductance in second growth Douglas-fir (*Pseudotsuga menziesii* (Mirb.) Franco) canopies. *Plant, Cell and Environment*, 26, 1215–1227.
- Wofsy SC, Goulden ML, Munger JW *et al.* (1993) Net exchange of CO₂ in a mid-latitude forest. *Science*, 260, 1314–1317.
- Xu CY, Lin GH, Griffin KL, Sambrotto RN (2004) Leaf respiratory CO₂ is ¹³C-enriched relative to leaf organic components in five species of C₃ plants. *New Phytologist*, **163**, 499–505.
- Yakir D (2004) The stable isotopic composition of atmospheric CO2. In: *Treatise on Geochemistry, Volume 4: The Atmosphere* (ed. Keeling RF), pp. 175–212. Elsevier, Amsterdam.
- Yakir D, Wang XF (1996) Fluxes of CO₂ and water between terrestrial vegetation and the atmosphere estimated from isotope measurements. *Nature*, **380**, 515–517.
- Yi C, Monson RK, Zhai Z *et al.* (2005) Modeling and measuring the nighttime drainage flow in a high elevation subalpine forest ecosystem with complex terrain implications for advective CO₂ fluxes. *Journal of Geophysical Research*, **110**, D22303, doi: 10.1029/2005JD006282.
- Yi CX, Li RZ, Bakwin PS *et al.* (2004) A nonparametric method for separating photosynthesis and respiration components in CO₂ flux measurements. *Geophysical Research Letters*, **31**, L17107, doi: 10.1029/2004GL020490.
- Zhang J, Griffis TJ, Baker JM (2006) Using continuous stable isotope measurements to partition net ecosystem CO₂ exchange. *Plant, Cell and Environment*, **29**, 483–496.
- Zobitz JM, Burns SP, Ogée J, Reichstein M, Bowling DR (2007) Partitioning net ecosystem exchange of CO₂ in a high-elevation subalpine forest: comparison of a Bayesian/isotope approach to environmental regression methods. *Journal of Geophysical Research – Biogeosciences*, **112**, G03013, doi: 10.1029/ 2006JG000282.
- Zobitz JM, Keener JP, Schnyder H, Bowling DR (2006) Sensitivity analysis and quantification of uncertainty for isotopic mixing relationships in carbon cycle research. *Agricultural and Forest Meteorology*, **136**, 56–75.

Supplementary material

The following material is available for this article online: **Appendix S1**. Appendix: solution of flux equations.

- This material is available as part of the online article from http://www.blackwell-synergy.com/doi/abs/10.1111/j.1365-2486.2008.01609.x
- Please note: Blackwell Publishing are not responsible for the content or functionality of any supplementary materials supplied by the authors. Any queries (other than missing material) should be directed to the corresponding author for the article.