
1. Introduction
Land surface models (LSMs) simulate terrestrial water and surface energy budgets as a key component of 
drought and flood predictions (Peters-Lidard et al., 2021; Sheffield et al., 2012; Viterbo et al., 2020), climate 
projections (Chotamonsak et al., 2011; Kurkute et al., 2020), weather predictions (Xia et al., 2015), and cli-
mate data records (Livneh et al., 2013; Maurer et al., 2002; Xia, Ek, et al., 2012; Xia, Mitchell, et al., 2012; Y. 
Zhang et al., 2018). Predicting terrestrial water and surface energy budgets requires accurate representation 
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in aerodynamic conductance for heat underneath the canopy top, which modulates sensible heat flux. 
Differences between M-O and M-O-RSL within-canopy and below-canopy sensible heat fluxes affect the 
amount of heat transported into snowpack and hence change snowmelt when temperatures are close to 
or above the melting point. The surface energy budget analysis over two AmeriFlux stations shows that 
differences between M-O and M-O-RSL simulations can be smaller than other model biases (e.g., surface 
albedo). We intend for the M-O-RSL physics scheme to improve performance and uncertainty estimates in 
weather and hydrological applications that rely on Noah-MP.

Plain Language Summary Most widely used computer models of the land surface neglect 
canopy-induced turbulence in calculations of heat, water, and momentum exchanges. Accounting for 
canopy-induced turbulence is important because coherent eddies that form near the canopy top are 
responsible for generating most of the transportation of heat, water, and momentum, in and directly above 
the canopy. In 2007, 2008 scientists Ian N. Harman and John J. Finnigan developed a methodology that 
adapts contemporarily used equations in operational LSMs to account for canopy-induced turbulence. In 
this study, we create a new physics option for the Noah with Multi-Parameterization (Noah-MP) LSM that 
accounts for canopy-induced turbulence based on the Harman and Finnigan, 2007–2008 methodology. 
The primary focus of this study is to quantify differences between Noah-MP snowpack simulations using 
the classical physics option that neglects canopy-induced turbulence with the new physics option that 
accounts for canopy-induced turbulence. Overall, simulations using the new physics option tend to have 
better agreement with ground-based SWE observations across 647 validation sites within the western 
United States. We intend for the new physics scheme to improve weather and hydrological applications for 
operational modeling systems that rely on the Noah-MP LSM.
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of water, energy and momentum exchanges between the land surface and the atmosphere (Goudriaan, 1977; 
Harman, 2012; Raupach et al., 1996; Raupach & Thom, 1981; Yi, 2008). LSMs often rely on a form of the 
Monin-Obukhov similarity theory (MOST) to calculate these exchanges (Bonan, 1996; Bonan et al., 2018; 
Niu et al., 2011; Niu & Yang, 2004). However, the MOST flux-profile relationships are known to fail within 
and above rough surfaces because these relationships make incorrect assumptions concerning the structure 
of turbulence in the roughness sublayer (RSL; Finnigan et al., 2009; Harman, 2012). This study is motivated 
by the idea that uncertainty in LSM simulations over vegetated areas is at least partially attributable to the 
neglect of RSL turbulence physics. In this study, we integrate a RSL turbulence parameterization with the 
Noah with Multi-Parameterization (Noah-MP, Niu et al., 2011) LSM and evaluate its impact on simulated 
seasonal evolution of snowpack over the western contiguous United States (CONUS).

Standard forms of the MOST provide a consistent set of flux-profile relationships for the atmospheric sur-
face layer above smooth surfaces and well above rough surfaces (Högström, 1996; Monin & Obukhov, 1954). 
However, it has long been known that these relationships fail within canopies and in the RSL that extends to 
twice the canopy height or more (Bonan et al., 2018; Fazu & Schwerdtfeger, 1989; Garratt, 1978, 1994; Har-
man & Finnigan, 2007, 2008; Thom et al., 1975) (Figure 1). Specifically, the MOST does not consider large 
coherent eddies that form near the canopy top that are responsible for generating most of the turbulent 
kinetic energy and transport in the RSL (Finnigan et al., 2009). These turbulent structures are responsible 
for the majority of turbulent exchange of momentum and turbulent kinetic energy in the canopy/RSL (Fin-
nigan et al., 2009; Finnigan & Shaw, 2000; Harman, 2012). This critical remark is not meant to detract from 
the value of results obtained using MOST calculations; however, the discrepancies between MOST-pre-
dicted profiles and observations within and above rough surfaces indicate the necessity of developing the 
theory further to establish a more generalized system of predicting flux-profiles. Consequentially, in the 
past 15 years, studies have focused on modifying the MOST to a more generalized form that accounts for 
canopy-induced turbulence in the RSL (Bonan et al., 2018; Harman, 2012; Harman & Finnigan, 2007, 2008; 
Novick & Katul, 2020).

Harman and Finnigan (2007, 2008) derived a formulation that modified the traditional MOST to account for 
the RSL turbulence; hereon termed HF08. Their theoretical formulation solves turbulent fluxes above and 
within the vegetation, coupling the system of equations at the canopy top to force continuity. This theory 
has been validated over a variety of vegetation types and densities against observed profiles of wind speed, 
friction velocity, surface energy budget radiation and turbulent fluxes, and turbulent exchange coefficients 
for momentum, moisture, and heat (Bonan et al., 2018; Harman & Finnigan, 2007, 2008; Shapkalijevski 
et al., 2016). These efforts showed that HF08 typically outperforms standard MOST predictions; however, 
HF08 has difficulty modeling scalar profiles in highly stable conditions and within the canopy (Bonan 
et al., 2018; Harman & Finnigan, 2007, 2008). Harman (2012) compared the standard MOST with HF08 
within a simple model in a proof-of-concept study that emphasized that HF08 calculates flux-profiles with-
in and above rough surfaces that are substantially different from MOST calculations, thus highlighting the 
importance of parameterizing canopy-induced turbulence in physical models. Bonan et al. (2018) was the 
first to apply the HF08 formulation within a sophisticated LSM, the Community Land Model-multilayer 
canopy model (CLM-ml v0; https://github.com/gbonan/CLM-ml_v0). Bonan et  al.  (2018) supports Har-
man's (2012) argument to parameterize canopy-induced turbulence within LSM flux-profile formulations, 
by finding that CLM-ml v0 had better agreement with observed energy, water and momentum flux-profiles 
over 12 AmeriFlux sites, relative to CLM4.5 simulations that applied the standard MOST.

These recent efforts to parameterize the RSL turbulence were motivated to improve the representation 
of lower atmospheric boundary conditions (Bonan et al., 2018; Harman, 2012). However, parameterizing 
the RSL turbulence is also expected to alter simulations of the terrestrial water budget. For example, Har-
man (2012) and Bonan et al. (2018) each reported that latent and sensible heat flux are sensitive to cano-
py-induced turbulence in the RSL. Therefore, we hypothesize that parameterizing the RSL turbulence will 
alter representations of terrestrial hydrologic processes that are sensitive to these turbulent heat fluxes. For 
example, previous work concluded that simulated snow water equivalent (SWE) is sensitive to different 
forms of the MOST—that is, integrating the MOST between a reference height (upper boundary) within the 
surface layer and the roughness length (lower boundary) versus the more general MOST (Brutsaert, 1982; 
Chen et al., 1997, 2014; Jiang et al., 2020; You et al., 2020; Zhang et al., 2016). However, effects of the RSL 
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turbulence representation on snowpack evolution and related hydrological processes have not been system-
atically investigated.

The importance of snow in climate systems cannot be overstated. Snow cover fundamentally changes 
land-surface water and energy budgets due to high albedo, low thermal conductivity, and its control on 
energy and water exchange with the soil and atmosphere (Chen et al., 2014; Cohen, 1994; Dong, 2018; Ikeda 
et al., 2021; Rasmussen et al., 2011). Additionally, over one-sixth of the world's population rely on snowmelt 
as a fresh water supply (Dong, 2018; Huning & AghaKouchak, 2020). Due to the importance of predicting 
snowpack, the National Weather Service has a critical interest in improving snow modeling in the western 
CONUS (Franz et al., 2008; Mote, 2003). Previous studies have attributed errors in simulated snow states 
partially to the limitations of standard MOST applications in LSMs (Chen et  al.,  2014; You et  al.,  2020; 
Zhang et al., 2016). Given the wide use of the Noah-MP LSM within both research and operational sys-
tems, such as the Weather Research and Forecasting (WRF) model and the National Water Model (Gochis 
et al., 2015), it is critical to understand how Noah-MP predicted snowpack will respond to parameterizing 
the RSL turbulence. Therefore, the overarching goal of this study is to address the following questions: (1) 
are snowpack simulations from Noah-MP sensitive to the parameterization of the RSL turbulence? and (2) 
does parameterizing the RSL turbulence improve agreement between snowpack simulations and observations?

Our study evaluates Noah-MP simulated snowpack through implementing a new parameterization scheme 
of canopy-induced turbulence in the RSL based on HF08. This study is unique from previous studies 
that were motivated to explore RSL effects on the lower boundary layer of atmospheric models (Bonan 
et  al.,  2018; Finnigan et  al.,  2009; Harman,  2012). Additionally, this study is unique in scale, using 649 

Figure 1. Conceptual example of the extrapolated Monin-Obukhov similarity theory (MOST) wind profile (dashed 
line) and an “observed” wind profile (solid line). The extrapolated MOST profile becomes zero at the zero-plane 
displacement (d) plus roughness length for momentum (Z0m) height. Note the deviation between the MOST profile and 
the observed profile in the RSL. The observed profile is characterized as a logarithmic profile in the RSL, an exponential 
profile within the canopy and again a logarithmic profile below the canopy (<z1) (Harman & Finnigan, 2007; Mahat 
et al., 2013). Within-canopy and below-canopy aerodynamic resistances for heat and water vapor (rahg and rawg) 
and above-canopy aerodynamic resistances for heat, water vapor, and momentum (rahc, rawc, and ramc) regulate the 
turbulent fluxes below and above the canopy top, respectively. The canopy top is denoted by HCAN.
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validation sites. The new scheme is evaluated during the 2009–2018 water years (WYs) using observations 
from 647 snowpack telemetry (SNOTEL) sites and two AmeriFlux sites. This study's description on the im-
plementation of the new turbulence scheme and the corresponding evaluations provides necessary insights 
on future model development and improvement. The model code is publicly available (https://github.com/
RAbolafiaRosenzweig/NoahMP_CanopyTurbulence) and will be included in the future Noah-MP model 
release.

2. Materials and Methodology
2.1. Noah-MP Land Surface Model Simulations

Noah-MP, developed based on Noah-v3.0 (Chen et al., 1996, 1997; Chen & Dudhia, 2001; Ek et al., 2003), 
contains multiple physics options to calculate water and energy processes (Niu et al., 2011; Yang et al., 2011). 
Noah-MP considers a three-layer snowpack depending on snow depth, which allows it to simulate snow 
variables more accurately than Noah. Further details of Noah-MP snowpack treatment can be found in Niu 
et al. (2011) and Chen et al. (2014). Multiple physics options within Noah-MP provide the unique ability to 
run a multi-model ensemble using a single LSM (Hong et al., 2014; Li et al., 2019, 2020; Yang et al., 2011; 
You et al., 2020; Zhang et al., 2016). In experiments conducted herein, model-physics options are selected 
to match the WRF/Noah-MP options used in the continental-scale convection-permitting regional climate 
simulations (He et al., 2019; Liu et al., 2017). Noah-MP snow-related parameters follow the values used 
in the latest release of WRF version 4.3 (https://github.com/wrf-model/WRF/tree/release-v4.3), where the 
snow cover parameter has been updated, using the default physics options, to improve simulated surface 
albedo and temperature. Leaf and stem area indices (LAI and SAI) are classified by vegetation type based 
on the Moderate Resolution Imaging Spectroradiometer (MODIS) monthly climatology from 2000 to 2008 
(Yang et al., 2011). Quantitative results presented in this manuscript may change depending on different 
model-physics options and parameters; however, comprehensively assessing model sensitivity to various 
combinations of physics options available within Noah-MP such as in Zhang et al. (2016), Li et al. (2019) 
and Zhang et al. (2020) is beyond the scope of this study.

The focus of this study is to analyze a new physics option in Noah-MP for surface exchange coefficient 
for heat (SFC) and aerodynamic resistance (RAGRB) calculations in comparison to the existing phys-
ics option used in continental-scale convection-permitting regional climate simulations (He et al., 2019; 
Liu et  al.,  2017). The existing physics option, used for benchmarking, is based on the general MOST 
(Brutsaert,  1982), hereinafter, M-O. The new Noah-MP physics option that we introduce is based on 
HF08, hereon-after, M-O-RSL. M-O-RSL is an adaptation of the canopy turbulence scheme integrated 
into CLM-ml (Bonan et  al.,  2018; https://github.com/gbonan/CLM-ml_v0). A fundamental difference 
in the structure of Noah-MP relative to CLM-ml is that Noah-MP uses a one-layer bulk canopy model 
whereas CLM-ml models a multilayer plant canopy accounting for heterogeneity in the vertical structure 
of the foliage (Bonan et al., 2018, 2021). This governs differences in implementation and results between 
this study and Bonan et al. (2018, 2021).

Section 2.2 details M-O-RSL mathematically and highlights key differences between M-O-RSL and M-O. 
Experiments conducted in this study compare Noah-MP offline simulations using the default M-O scheme, 
hereinafter M-O simulations, with those using the new M-O-RSL scheme that accounts for canopy-induced 
turbulence in the RSL, hereinafter M-O-RSL simulations. In all simulations, land surface states are initial-
ized using a 10-year spin-up (October 1, 2008 to September 30, 2009; 10 times in series). M-O and M-O-RSL 
simulations are then run for 10-years (October 1, 2008 to September 30, 2018) driven by hourly atmospheric 
forcing over 647 SNOTEL locations and two AmeriFlux locations: Niwot Ridge (NR) and The Glacier Lakes 
Ecosystem Experiments Site (GLEES) (Figure 2). For simulations at SNOTEL sites, precipitation and sur-
face temperature forcings are scaled to match daily SNOTEL observations. All the other forcing variables—
humidity, wind velocity, pressure, downward solar, and longwave radiation—are downscaled from hourly 
0.125° North American Land Data Assimilation system version 2 (NLDAS-2) (Xia et al., 2009; Xia, Mitchell, 
et al., 2012) data to 90-m resolution with topographic adjustment following Liston and Elder (2006) and 
Sen Gupta and Tarboton (2016). The model vegetation cover and elevation are based on 30-m data from the 
National Land Cover Database (NLCD) (Wickham et al., 2021) and the Shuttle Radar Topography Mission 
(DOI:/10.5066/F7K072R7), respectively. Simulations at the two AmeriFlux sites use in situ observed mete-

https://github.com/RAbolafiaRosenzweig/NoahMP_CanopyTurbulence
https://github.com/RAbolafiaRosenzweig/NoahMP_CanopyTurbulence
https://github.com/wrf-model/WRF/tree/release-v4.3
https://github.com/gbonan/CLM-ml_v0
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orology for all forcing fields. In the case of GLEES, observed precipitation at this site is unrealistically large, 
so precipitation observed at the nearest SNOTEL location (∼900 m away) is used in simulations instead. For 
NR, observed precipitation at both this site and the nearest SNOTEL site (∼350 m away) is lower than accu-
mulated SWE during multiple water years. The exact cause of these observational errors is unknown. It may 
be reasonable to attribute it to snow drifting, snow density uncertainty, or undercatch (Chen et al., 2014; 
Serreze et al., 2001). Therefore, the NR AmeriFlux precipitation is adjusted in cases where daily SWE accu-
mulation exceeds observed precipitation accumulation, and total precipitation is back-calculated assuming 
the SWE increase is equal to snowfall with rain-snowfall partitioning fractions derived from the widely used 
Jordan (1991) parameterization.

2.2. Parameterizing the Roughness Sublayer: Comparing M-O-RSL With M-O

Here, we compare key components of the M-O-RSL scheme with the M-O scheme. We refer readers to 
Bonan et al. (2018) for a comprehensive and general presentation of the M-O-RSL scheme. We follow the 
coordinate system presented in Bonan et al. (2018) where z is the physical height above the ground rather 
than the Harman and Finnigan (2007, 2008) presentation where the origin is set at the top of the canopy. 
The M-O-RSL scheme assumes a dense and horizontally homogenous canopy, where dense means that 
most of the momentum is absorbed by plant elements. Harman and Finnigan (2007, 2008) found that the 
HF08 methodology in which M-O-RSL is based on tends to be less accurate in the lower canopy where the 
vegetation density is more complex. This is important in the context of snow modeling, where within-can-
opy and below-canopy turbulent heat flux often modulates snowpack evolution (Burns et al., 2014; Mahat 
et al., 2013). Notwithstanding, the M-O-RSL formulation is considered a computationally efficient and val-
uable update to M-O that can be implemented within sophisticated LSMs (Bonan et al., 2021). Although the 
M-O scheme is based on the MOST, there are discrepancies between the M-O formulation and the standard 
MOST in which M-O-RSL was adapted from (Bonan et al. [2018] and Harman and Finnigan [2007, 2008]). 

Figure 2. SNOTEL (black dots) and AMERIFLUX (red dots) site locations overlain on elevation map. Purple- and 
yellow-colored dots show locations of the representative closed shrubland site in Utah and deciduous broadleaf forest 
site in Colorado, respectively (Section 4.1.1).
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Hence, discrepancies between M-O and M-O-RSL are not solely attributable to parameterizing the RSL in 
M-O-RSL (see Sections 2.2.1 and 2.2.2 for details). Table S1 presents the symbols used in Equations 1–24 
that describe M-O and M-O-RSL formulations.

2.2.1. Wind Speed at Canopy Top

Neglecting the RSL, M-O describes wind speed at the canopy top (UC) based on the logarithmic decay of the 
wind profile above the canopy predicted from MOST (Figure 1):

  
    

 0
ln CAN

C
M

u H dU
k Z (1)

where E u  is the friction velocity, k is the von Kármán constant (k = 0.4), HCAN is canopy height, Z0M is the 
vegetation roughness length for momentum, and d is zero-plane displacement. In M-O, d is calculated using 
Equation 2,

 0.65 CANd H (2)

whereas M-O-RSL computes d using Equation 3,


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M-O-RSL solves for UC based on the Harman and Finnigan (2007, 2008) formulation:
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and in M-O-RSL, E u  is solved as:
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where UR is the observed wind speed at the reference height (Zref), mE  adjusts the log profile in relation to the 
Obukhov length (LMO), and ̂mE  adjusts the profile to account for canopy-induced turbulence in the RSL. β is 
calculated based on Equations 7 and 8. For stable conditions, when LMO exceeds 0, β is derived as:
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For unstable conditions (LMO < 0), β is derived as:
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 (8)

where βN is the value for β at neutral conditions (βN = 0.35; Bonan et al., 2018). The solution for β is con-
strained between 0.2 and 0.5 (Bonan et al., 2018). LMO is solved for in both M-O and M-O-RSL as:









2
vref

MO
v

u
L

kg
 (9)

where vrefE  is the virtual potential temperature at the reference height,  vE  is the virtual potential tempera-
ture scale, g is the acceleration due to gravity, and Lc is the canopy length scale:


VAI
CAN

c
d

HL
c (10)

cd is the dimensionless leaf aerodynamic drag coefficient (cd = 0.25; Bonan et al., 2018) and VAI is the sum 
of LAI and SAI.

2.2.2. Aerodynamic Resistances for Momentum, Heat, and Water Vapor

Noah-MP requires solving for aerodynamic resistances for momentum (ramc), sensible heat (rahc), and water 
vapor (rawc) above the canopy (Zref > z E  HCAN). We note that Noah-MP assumes rawc to be the same as rahc. 
M-O and M-O-RSL solve for ramc using:



 2
R

mc
Ura
u (11)

where differences between M-O and M-O-RSL ramc solutions are based on differences in E u  (i.e., Equations 5 
and 6, respectively). M-O solves for rahc following Bonan (1996):
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whereas M-O-RSL amends Equation 12 to account for the RSL using Equation 13.

      

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ˆ ˆ1 ln ref ref CAN
hc h h h ref h CAN

CAN MO MO

Z d Z d H dra Z H
ku H d L L (13)

Z0H is the vegetation roughness length for sensible heat, and the stability functions for heat and momentum, 
hE  and mE  , adjusts the log profile in relation to the Obukhov length. Equation 13 also introduces the RSL 
function, ̂hE  , which adjusts the profile to account for canopy-induced physics in the RSL. ̂hE  and ̂mE  must be 
integrated using numerical methods; however, in practice, the values are obtained from a lookup table pro-
vided by Bonan et al. (2018). In M-O and M-O-RSL, the surface exchange coefficient/conductance for heat 
from the HCAN to Zref over the vegetated fraction of the pixel, CHV, is equated to the inverse of rahc:


1

HV
hc

C
ra (14)

Noah-MP solves for the aerodynamic resistance for sensible heat (rahg) within and below the canopy (z E  
HCAN) in M-O using Equations 15 and 16 (Brutsaert, 1982; Niu & Yang, 2004):
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where E  is the canopy wind absorption parameter based on vegetation classification (Goudriaan, 1977), ΦmE  
is the stability correction factor for momentum, and Z0HG is the ground roughness length for sensible heat. 
Kc(HCAN) is the turbulent transfer coefficient for sensible heat at HCAN. M-O solves for Kc(HCAN) as:

      c CAN CANK H k u H d (17)

whereas M-O-RSL solves for Kc(HCAN) as:

   c CAN
uK H lm
Sc (18)

where Sc is the Schmidt number and lm is the mixing length computed as:


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32
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CAN

d

Hlm
c (19)

M-O-RSL solves for rahg as the summation of the resistance immediately above the ground (rahg-0) and the 
rahg profile within the canopy (rahg-v). rahg-0 is calculated as:
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where Z0MG is the ground roughness length for momentum, z1 is a defined height directly above the ground, 
and u1 is the wind speed at z1. z1 is also considered the height where flux profiles transition from exponential 
to logarithmic (Figure 1). z1 is defined in this study as 5 cm to match the definition from Bonan et al. (2018). 
However, M-O-RSL simulations can be sensitive to the definition of z1, as discussed in Section S1. Thus, z1 
should be considered an optimizable parameter. u1 is derived following the HF08 methodology:
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Cu U e
 (21)

The cumulative resistance profile within the canopy is solved for as:
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where the M-O-RSL physics option discretizes the profile ranging from z1 to Z0H + d into 20 homogeneous 
segments. Finally, rahg in M-O-RSL is computed as the summation of within-canopy and below-canopy 
aerodynamic resistance for sensible heat:

   0hg hg v hgra ra ra (23)

Noah-MP also assumes rawg (resistance for water vapor within and below the canopy) to be the same as rahg. 
In both M-O and M-O-RSL, the surface exchange coefficient/conductance for heat under the canopy top, 
CH-UC, is equated to the inverse of rahg:

 
1

H UC
hg

C
ra (24)
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Note, that the M-O-RSL scheme assumes the wind profile shape of the theoretical observed profile shown 
in Figure 1: logarithmic above the canopy top (Equation 13), exponential from the canopy top to z1 (Equa-
tion 22), and logarithmic below z1 (Equation 20). rahg-v does not include information from Z0H + d to HCAN to 
remain consistent with the profile coverage represented in the existing M-O physics option.

2.3. Snow Evaluation

We evaluate Noah-MP simulations against SWE observations over 647 SNOTEL sites that have at least one 
complete year of observations (Section 3.1 and Figure 2), which are commonly used to validate LSM snow 
simulations (Barlage et al., 2010; Chen et al., 2014; He et al., 2019; Livneh et al., 2010; Pan et al., 2003). We 
run all Noah-MP simulations at a 90-m spatial resolution, limited by meteorological forcing downscaling 
(Section 2.1), to minimize differences between simulated and observed SWE based on representativeness 
of the point-based observation for the bounding model grid cell. Although SNOTEL gauges are typically 
located in small forest clearings, Pan et al. (2003) determined that SNOTEL observed SWE is spatially cor-
related up to 0.25° lag distance. Thus, point-based SNOTEL measurements contain sufficient information 
about the surrounding area to be considered representative of the 90-m grid mean. Notwithstanding, differ-
ences between simulated and observed SWE may be partially attributable to the spatial representativeness 
of point-based observations, but these differences are likely small relative to differences induced by uncer-
tainty in model physics evaluated herein, considering the very high spatial resolution of our simulations 
based on the accurate NLCD vegetation cover map.

In our evaluation, we first quantify the performance of M-O and M-O-RSL simulations using the mean and 
spatial variability of snow states across all validation SNOTEL sites. Next, we quantify the accuracy of simu-
lated SWE on a site-by-site basis using the Pearson correlation coefficient (R) and RMSE. Subsequently, we 
present the importance of capturing peak SWE by correlating simulated peak SWE biases with root-mean-
square-error (RMSE) calculated over the 10-year simulations. Peak SWE is then compared with ablation 
rates to support the idea that errors during the accumulation period propagate to the ablation period.

Skill scores are assessed in the context of climate conditions to understand if differences in model perfor-
mance between M-O and M-O-RSL simulations are sensitive to local precipitation or temperature. Skill 
scores are then assessed in the context of vegetation classification to understand which vegetation types 
are most sensitive to switching from M-O to the M-O-RSL physics option. Vegetation classifications with 
less than 10 validation sites are not considered in this analysis. In-depth analyses are performed over vege-
tation types that experience the largest degradation (deciduous broadleaf forest) and improvement (closed 
shrubland) in skill scores. Specifically, we explore if changes in peak SWE between M-O and M-O-RSL sim-
ulations are attributable to changes in sublimation or snow melt while providing insights on how changes 
in peak SWE relate to surface exchange coefficients. We briefly test the sensitivity of M-O and M-O-RSL 
snow simulations to VAI climatology over deciduous broadleaf forest sites by using another VAI climatology 
from the Livneh et al. (2013) data set instead of MODIS (Section 2.1) to assess if different, but widely used, 
vegetation parameters substantially alter performance (Livneh et  al.,  2013; Maurer et  al.,  2002; https://
ciresgroups.colorado.edu/livneh/data).

Next, we isolate differences in ablation between M-O and M-O-RSL simulations following methodology 
presented in Xiao et al. (2021) over two representative sites: a deciduous broadleaf forest and closed shrub-
land site, respectively. Representative sites are those that record the median difference in performance (i.e., 
RMSE of daily SWE) between M-O and M-O-RSL simulations for respective vegetation classifications. Over 
these sites, we adjust simulated snow predictions to match observed peak SWE magnitude, timing, and 
snow depth. These simulations follow the direct-insertion data assimilation technique (Robinson & Lermu-
siaux, 2000) by replacing simulated SWE and snow depth with observations on the date that observations 
record peak SWE for each water year. These simulations allow for a clear diagnosis of differences between 
M-O and M-O-RSL ablation that are not biased by discrepancies during the accumulation period. We only 
analyze years when observed peak SWE falls between the time that 80% of peak SWE is reached in the ac-
cumulation period to the time that 80% of peak SWE is reached in the ablation period from respective open 
loop simulations because it would be inappropriate to force peak SWE conditions in the midst of simulated 

https://ciresgroups.colorado.edu/livneh/data
https://ciresgroups.colorado.edu/livneh/data
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rising or falling limbs. This screening removes five out of 10 analysis years for both the representative de-
ciduous broadleaf forest and closed shrubland site.

In analyses where accumulation or ablation periods are considered, we use the methodology from Xiao 
et al. (2021) to define season bounds. Specifically, accumulation periods span dates corresponding to 20% 
and 80% of peak SWE during the rising limb of the annual SWE cycle. Similarly, ablation periods span dates 
corresponding to 20% and 80% of peak SWE during the falling limb of the annual SWE cycle. Focusing on 
the central portion of accumulation and ablation periods provides a representation of processes that mini-
mizes unusual conditions near the bounds of respective seasons.

2.4. AmeriFlux Surface Energy Budget and Snow Evaluation

Following Chen et al.'s (2014) methodology, we examine the relationship of the surface energy budget to 
SWE evolution over two AmeriFlux sites: NR in Colorado and GLEES in Wyoming. NR and GLEES are both 
characterized as evergreen needleleaf forests that experience severe winters and cool summers with no dry 
season. NR is densely vegetated, whereas GLEES has openings between large trees (Blanken et al., 2020; 
Massman, 2021; Frank et al., 2014; https://ameriflux.lbl.gov/sites/siteinfo/US-NR1; https://ameriflux.lbl.
gov/sites/siteinfo/US-GLE). Simulations were evaluated with radiative and heat fluxes observed above the 
vegetation canopy, and observed SWE from nearby (<1 km) SNOTEL stations. Discrepancies between ob-
served and simulated SWE are examined in the context of the surface energy budget:

         H HS S L L Q L G (25)

E S  and E S  are the downward and upward shortwave radiation, respectively. E L  and E L  are the downward 
and upward longwave radiation, respectively. QH is the sensible heat flux from the surface to the atmosphere; 
LH is the latent heat flux from the surface to the atmosphere; G is the ground heat flux at the air-snowpack/
soil interface. E S  and E L  are observed, and computations of other terms in Equation 25 are described in 
Niu et al. (2011). We note that Equation 25 does not include heat transferred to the surface by precipitation 
and net heat storage change in the vegetation and snow layers because these terms are relatively small 
compared to terms included in Equation 25 (Chen et al., 2014). The omission of these terms results in small 
surface energy budget closure errors, ranging from 0.01% to 0.05% of E S  varying by simulation.

2.5. AmeriFlux Within-Canopy Wind Speed and Turbulent Heat Flux Analysis

Within-canopy wind speed and turbulent fluxes of sensible and latent heat are important processes that 
govern ablation (Mahat et al., 2013). M-O and M-O-RSL have difficulties modeling these fluxes within a 
single-layer canopy model (i.e., Noah-MP) because of the complex canopy effects on the wind field (Bonan 
et al., 2021; Harman & Finnigan, 2007, 2008; Mahat et al., 2013). The Noah-MP LSM does not explicitly cal-
culate a vertical profile for wind speed within the canopy; however, the current form of Noah-MP assumes 
a continuous exponential decay based on Equation 26 (e.g., Figure 1) (Brutsaert, 1982); whereas M-O-RSL 
assumes an exponential profile based on Equation 21.

 
  
       

1 za
HCAN

Cu z U e (26)

We compare simulated within-canopy wind speed based on these assumed exponential profiles from M-O 
and M-O-RSL with wind speed observations from GLEES at 6.5 m and NR at 5.7 m. Next, to further under-
stand the relationship between the surface energy budget and snowpack, simulated within-canopy latent 
and sensible heat flux are compared with 6.5 m observations from GLEES and 5.7 m observations from NR. 
Burns et al. (2018) provide a critique of big-leaf type models that assume above-canopy friction velocity is 
linearly related with wind speed in the subcanopy by showing that these observed variables are not linearly 
related at Niwot Ridge. We test this assumed linear relationship further by comparing observed friction 
velocity at 22.5 m with wind speed observed at 5.7 m over the GLEES AmeriFlux site.

https://ameriflux.lbl.gov/sites/siteinfo/US-NR1
https://ameriflux.lbl.gov/sites/siteinfo/US-GLE
https://ameriflux.lbl.gov/sites/siteinfo/US-GLE
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3. Data
3.1. SNOTEL Observations

The United States Department of Agriculture (USDA) Natural Resources 
Conservations Service (NRCS) SNOTEL sites were designed to provide 
cost-effective data from high snow accumulation regions throughout the 
west (Serreze et al.,  1999). This analysis uses bias-corrected and quali-
ty-controlled daily SNOTEL observations from the Pacific Northwest 
National Laboratory (PNNL) (Sun et al., 2019; Yan et al., 2018; https://
www.pnnl.gov/data-products). We evaluate differences in performance 
between M-O and M-O-RSL simulations relative to daily SWE observa-
tions over 647 SNOTEL sites. Daily SWE is measured using snow pillows 
with an antifreeze solution at each SNOTEL site. As the snow accumu-
lates, the weight of the snowpack forces the solution into a manometer 
column, and the corresponding increase/decrease in manometer height 
is equal to the increase/decrease in SWE (Serreze et al., 1999, 2001).

3.2. AmeriFlux Observations

In the surface energy budget analysis (Sections  2.4 and  4.2), 30-min 
AmeriFlux observations (https://ameriflux.lbl.gov/) of upward short-

wave and longwave radiation and turbulent sensible and latent heat flux are aggregated to daily time series 
for comparison with Noah-MP simulations. The primary focus of the analysis only considers above-canopy 
observations: 22.65–25.8 m for GLEES and 21.5–25.5 m for NR. This allows a fair comparison with No-
ah-MP outputs that are a conglomerate of vegetated and non-vegetated surfaces within model grid cells. 
Note that simulated G from Equation 25 is not compared with Ameriflux observations because during times 
when soil is covered with snow, observed soil heat flux is near zero at all times due to snow-insulation. 
However, simulated G from Noah-MP represents the heat flux into the snow surface for snow-covered soil. 
A supplementary analysis is presented that compares simulated within-canopy wind speed, sensible heat 
flux and latent heat flux with 6.5 m observations from GLEES and 5.7 m observations from NR (Sections 2.5 
and 4.3). Within-canopy observations from NR are described in Burns et al. (2014).

4. Results and Discussions
4.1. Evaluation of SWE at SNOTEL Sites

SWE from M-O and M-O-RSL simulations strongly agree with observations averaged across all validation 
SNOTEL sites (R for M-O and M-O-RSL = 1.0; percent bias for M-O = 1.8%; percent bias for M-O-RSL = 0.1%; 
solid lines in Figure 3). M-O and M-O-RSL simulations tend to predict slower ablation than observations, 
but this bias is partially compensated by underestimates in peak SWE. M-O and M-O-RSL simulations 
agree on spatial (cross-site) variability in daily SWE across validation sites, each showing similar mean and 
interquartile ranges (IQRs) of daily standard deviation (mean for M-O and M-O-RSL = 147 mm; IQR for 
M-O = 25–254 mm; IQR for M-O-RSL = 22–256 mm). However, this is an overestimate of the observed var-
iability with a mean standard deviation of 124 mm (IQR = 13–224 mm) (shaded areas in Figure 3). In other 
words, this means that observations record greater similarities in snowpack across the western CONUS 
than Noah-MP simulates. Figure 4 presents differences between evaluation metrics (RMSE and R) from 
M-O-RSL and M-O simulations across each validation site. At the majority of sites, the M-O-RSL simulation 
corresponds with lower RMSE (65% of sites; warmer colors in Figure 4a) and higher R (69% of sites; cooler 
colors in Figure 4b) than the M-O simulation. The tendency for M-O-RSL simulations to outperform M-O 
simulations is insensitive to site mean annual precipitation or temperature (Figure S2).

Errors calculated throughout the entirety of simulations are predominately explained by errors that occur 
over accumulation periods. This is supported by Figure 5a that shows biases in peak SWE strongly corre-
late with RMSE of daily SWE calculated throughout 10-year simulations (R for M-O simulations = 0.77; 
R for M-O-RSL simulations = 0.82). This relationship is stronger for M-O-RSL simulations because cases 

Figure 3. (a) Mean multiyear (2009–2018 WYs) time series for SWE across 
all SNOTEL locations (Figure 2) for M-O simulations (red), M-O-RSL 
simulations (blue), and SNOTEL observations (black). Shading represents 
one standard deviation, calculated from the spread in daily SWE across 
SNOTEL sites.

https://www.pnnl.gov/data-products
https://www.pnnl.gov/data-products
https://ameriflux.lbl.gov/
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with anomalously large underestimates in peak SWE tend to be more extreme in M-O-RSL simulations. 
The strong correlation between peak SWE and ablation rates (Figure 5b; R > 0.77) further emphasizes the 
importance of accurately representing peak SWE. Xiao et al. (2021) suggests this strong correlation may be 
attributable to low SWE stations experiencing the bulk of snowmelt before the period of highest available 
energy. Given the importance of simulating SWE accumulation accurately, differences in peak SWE biases 
from M-O-RSL and M-O simulations relative to SNOTEL observations explain the majority of the difference 
in simulated evaluation metrics calculated throughout the entire 10-year simulation (Figure 4). Specifically, 
differences in peak SWE biases between M-O-RSL and M-O simulations strongly correlate with differences 
in overall model RMSE (R = 0.86) and correlation (R = −0.67) calculated throughout the entire 10-year 
duration of the study. We note that in aforementioned assessments (Figures 3–5), aggregating results across 
all sites mask out many details in the performance differences between M-O and M-O-RSL simulations. Ad-
ditionally, this type of aggregation makes it difficult to identify mechanistic causes for differences between 

Figure 4. Difference in evaluation metrics (RMSE and R), calculated as M-O-RSL minus M-O, across each validation site. Warmer colors (yellow-red) indicate 
sites where M-O-RSL has a lower evaluation metric, and cooler colors (shades of blue) indicate sites where M-O-RSL has a higher evaluation metric. (a) 
Difference in RMSE for daily SWE over 647 SNOTEL locations. (b) Difference in R for daily SWE over 647 SNOTEL locations. Original skill scores for M-O and 
M-O-RSL simulations across all SNOTEL stations are reported in Table S2.

Figure 5. (a) Scatter plot comparing average biases in peak SWE (horizontal axis) with RMSE (vertical axis) for M-O 
and M-O-RSL simulations, relative to observed SWE, for each SNOTEL site. The solid black line represents a 1:1 
reference line. (b) Scatter plot comparing average Peak SWE (horizontal axis) with ablation rates for each SNOTEL site. 
Respectively colored dashed lines represent best fit lines.
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M-O-RSL and M-O simulations. Thus, we conduct process-level analyses at selected sites in the following 
sections.

4.1.1. Snow Evaluation Classified by Vegetation Type

The largest improvements in M-O-RSL simulations compared with M-O simulations occur over closed 
shrubland (CS) sites (84 sites) where M-O-RSL has less extreme underestimates of peak SWE (Figures 6a 
and S3), and the largest degradation in M-O-RSL simulations compared with M-O simulations occur over 
deciduous broadleaf forest (DBF) sites (53 sites) where M-O-RSL has more extreme underestimates of peak 
SWE (Figures 6c and S3). We note that degradation in skill over DBF sites is expected because the M-O-RSL 
methodology assumes a dense canopy (Harman & Finnigan, 2007, 2008); an assumption violated over DBF 
sites in the winter. Although this assumption is also violated over CS sites, errors in the assumed exponen-
tial decay of the wind profile throughout the vegetated column play a relatively small role over CS sites 
where HCAN is assumed to be 1.1 m, much smaller than 16 m over DBF sites. Figure 7 shows that differences 
in within- and below-canopy conductance for sensible heat (CH-UC) between M-O and M-O-RSL simulations 
explains qualitative differences in peak SWE. Specifically, across all sites, 93% of the time M-O-RSL predicts 
higher CH-UC than M-O, M-O-RSL predicts lower peak SWE (bottom right quadrant of Figure 7a). Converse-
ly, 74% of the time M-O-RSL predicts lower CH-UC than M-O, M-O-RSL predicts higher peak SWE (top left 
quadrant of Figure 7a). Exceptions to this trend tend to correspond with very small changes in CH-UC: the 
mean difference for exceptions is 0.002 m/s which is 2.7 times smaller than the mean difference in CH-UC 
averaged across all data points. Figure 7b shows that the aforementioned relationship between differences 
in M-O-RSL and M-O predicted CH-UC and peak SWE are not robust when CHV is considered instead of CH-UC. 
Namely, 97% of the water years at each site M-O-RSL predicts higher CHV, but M-O-RSL predicts lower peak 
SWE than M-O only 45% of the time.

Figure 6. (a) Mean multiyear (2009–2018 WYs) time series for SWE across 84 SNOTEL sites classified as closed shrubland for M-O simulations (red), M-O-RSL 
simulations (blue) and SNOTEL observations (black). Shading represents one standard deviation, calculated from the spread in daily SWE across all SNOTEL 
sites. (b) Kernel density estimators for CH-UC (Equation 24) for M-O-RSL (blue) and M-O (red) simulations over 84 closed shrubland SNOTEL sites. (c) same as 
(a), but for 53 deciduous broadleaf forest sites. (d) same as (b), but for 53 deciduous broadleaf forest sites.
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For CS sites, M-O-RSL predicts 2.4 times lower CH-UC (Figure 6b) and thus higher peak SWE (i.e., better 
agreement with observations) 88% of the time (red x's in the top left quadrant of Figure 7a) relative to M-O. 
Lower CH-UC from M-O-RSL corresponds with less downwards sensible heat flux, and thus less heat flux into 
the snowpack that drives snow melt. Note that differences in peak SWE between M-O and M-O-RSL have 
a high correlation with differences in snowmelt during SWE accumulation (R = −0.84). We identify two 
factors that contribute toward M-O-RSL predicting higher rahg (i.e., lower CH-UC) than M-O over CS sites. 
First, M-O-RSL explicitly accounts for rahg-0 (i.e., Equation 20) and M-O does not. Note that rahg-0 accounts 
for 64% of total rahg over closed shrubland sites. Second, M-O predicts higher UC than M-O-RSL over closed 
shrubland sites, favoring larger within- and below-canopy aerodynamic conductance in M-O.

For DBF sites, M-O-RSL predicts three times higher CH-UC (Figure 6d) and thus lower peak SWE 99% of the 
time (blue x's in the bottom right quadrant of Figure 7a), relative to M-O. Higher CH-UC from M-O-RSL cor-
responds with greater downwards sensible heat flux, and thus more heat flux into the snowpack that drives 
snow melt. Note that differences in peak SWE between M-O and M-O-RSL have a high correlation with dif-
ferences in snowmelt during SWE accumulation (R = −0.86). M-O-RSL predicts relatively high CH-UC over 
DBF sites partially due to calculating high wind speed directly above the ground (i.e., u1 from Equations 20 
and 21; Figure S4a). This occurs because M-O-RSL predicts relatively high Uc and weak wind speed decay 
throughout the vegetated profile (Figure S4a), both of which are attributable to low VAI during winter. 
Therefore, we test the sensitivity to VAI over DBF sites by running new M-O and M-O-RSL simulations that 
use Livneh et al. (2013) VAI climatology, which increases the VAI climatology at DBF sites relative to our 
standard simulations using the MODIS product. This change in VAI results in reduced M-O and M-O-RSL 
peak SWE biases by 14% and 23%, respectively (Figure S5). Bias reductions in M-O-RSL occur because high-
er VAI causes M-O-RSL to predict lower Uc and greater wind speed decay throughout the vegetated profile 
(Figure S4) which yields a CH-UC estimate that is three times smaller than the original. Bias reductions in 
M-O occur, because increased VAI increases the wind absorption parameter, a from Equations 15 and 16, 
which results in higher rahg (i.e., lower CH-UC). These results indicate that simulations presented in this study 
can be substantially improved with optimized parameters, and are subject to change for simulations that 
use the dynamic vegetation physics option instead of VAI climatology.

Differences between M-O and M-O-RSL ablation are examined over a representative DBF and CS site with 
simulations that directly insert peak SWE and corresponding snow depth observations (Figures 2 and 8). 
Differences in ablation rates are qualitatively consistent from year to year (Figures 9d and 9h) so we choose 
to show results in Figure 8 from years that highlight the largest discrepancies between M-O-RSL and M-O 
simulations for illustrative purposes. Over the DBF site, the M-O-RSL simulation predicts faster ablation 
than the M-O simulation (Figures 8a, 8b, and 9d) because the M-O-RSL scheme calculates larger CH-UC 

Figure 7. Differences in CH-UC between M-O-RSL and M-O simulations control differences in peak SWE. (a) M-O-RSL 
minus M-O CH-UC (horizontal axis) and M-O-RSL minus M-O peak SWE (vertical axis) for deciduous broadleaf forest 
SNOTEL sites (blue x's), closed shrubland sites (red x's) and all other sites (black x's). Differences in daily CH-UC are 
averaged from October 1 to the date of peak SWE for each water year at each of the 647 SNOTEL sites. (b) same as (a), 
but showing the above-canopy surface heat exchange coefficient (CHV; Equation 14) on the vertical axis instead of CH-UC.
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(Figure 9a) causing larger downward sensible heat flux by 25 W/m2 (median) and hence larger heat flux 
into snowpack by 26 W/m2 (median) (Figure 9b), which increases both ground and snow temperatures, on 
average by 1.5 and 0.99K, respectively (Figure 9c). Increased CHV from M-O-RSL further favors ablation by 
increasing the canopy air temperature (Figure 9c), which enhances the canopy air-to-ground temperature 
gradient that drives the sensible heat flux downward to the ground.

Conversely, over the CS site, the M-O-RSL scheme simulates slower ablation (Figures 8c, 8d, and 9h). This 
occurs because the M-O-RSL scheme results in smaller CH-UC (Figure 9e) that causes less downward sensi-
ble heat flux by 13 W/m2 (median) and hence less heat flux into snowpack by 13 W/m2 (median) (Figure 9f). 
This decreases snow temperatures causing slower snowmelt (Figures 9g and 9h). We note that decreases 
in LH (Figure 9f) have a much smaller effect on snow ablation (Figure 8d). M-O-RSL predicts higher CHV 
which increases the canopy air temperature and thus the canopy air-to-ground temperature gradient. How-
ever, this only partially offsets the ablation slow-down imposed by decreases in CH-UC.

4.2. AmeriFlux Surface Energy Budget and Snow Evaluation

To evaluate the factors controlling seasonal snowpack evolution, we examine the relationship between 
modeled and observed SWE and surface energy budgets over two AmeriFlux sites: GLEES in Wyoming and 
NR in Colorado (Figures 10–12). At each site, we evaluate the surface energy budget (Equation 25) during 
the water year that M-O and M-O-RSL SWE are the most different: 2014 for GLEES and 2017 for NR (Fig-
ures S6 and S7).

At GLEES, M-O and M-O-RSL simulations overestimate surface albedo during the 2014 accumulation peri-
od, resulting in underestimates of absorbed shortwave radiation relative to observations during snow accu-
mulation (Figure 10a and Table 1). This translates to underestimates in upward latent heat (LH) and down-
ward sensible heat (QH) flux which both contribute to overestimates in simulated peak SWE (Figures 10a 
and 11a and Table 1). The LH bias alone accounts for a 79 mm low bias in sublimation for M-O and 83 mm 
for M-O-RSL over the 85-day accumulation period. This exceeds the 41 mm overestimate in peak SWE from 
M-O (Figures 11a). This inconsistency may be attributable to compensatory errors in models and observa-
tions (Chen et al., 2014). For example, undercatch with weighing-type gauges at SNOTEL sites have been 
found to contribute toward precipitation being underestimated by 10%–20% during winter months (Serreze 
et al., 2001; Yang et al., 1998) which would directly counteract the effects of overestimated albedo. It is also 
reasonable to assume that inconsistencies between surface energy budget and snowpack comparisons are  

Figure 8. (a) SWE time series from simulations that directly insert observed peak SWE (black dot) from the representative deciduous broadleaf forest site. 
Vertical dashed lines represent the day of snow disappearance for the M-O simulation (red), the M-O-RSL simulation (blue) and observations (black). (b) 
Change in snow melt (green) and evaporation (maroon) for the M-O-RSL minus M-O simulation from the representative deciduous broadleaf forest site. (c, d) 
same as (a, b) but for the representative closed shrubland site.
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at least partially attributable to SWE observations being measured approximately 900 m from the Ameri-
Flux site where vegetation density can differ. M-O-RSL predicts peak SWE to be 47 mm higher than M-O 
(Figures 11a) because M-O predicts faster snowmelt when temperatures are above freezing. For instance, 
M-O predicts 42 mm more snowmelt between April 8 and the day of peak SWE (May 15) than M-O-RSL 
because higher CH-UC from M-O (Figures 11c) yields larger within- and below-canopy downwards QH (Fig-
ure S8) that drives greater heat flux into the snow (Figures 11d) that melts the snowpack more efficiently. 
During this period (April 8 to May 15), M-O-RSL understory sensible heat flux has smaller errors than M-O 
relative to observations (Figure S8); however, greater melt from M-O during this time compensates for un-
derestimated sublimation throughout accumulation, which overall results in smaller errors between M-O 
simulated and observed peak SWE.

At GLEES, albedo biases persist into the 2014 ablation period, causing underestimates in absorbed short-
wave radiation. These biases are partially accounted for with biases in LH and absorbed longwave radiation 
(Figure 10b and Table 1). It is reasonable to assume that remaining albedo biases are accounted for with 
underestimates in simulated heat flux into the snow surface. However, this is difficult to confirm because 
this is not an observed quantity. These energy budget biases translate to biases in ablation rates: 27 mm/
day for observations, 14 mm/day for M-O, and 16 mm/day for M-O-RSL (Figure 11a). M-O-RSL calculates 
higher heat flux into the snow surface and LH relative to the M-O simulation, causing the 2 mm/day faster 
ablation rate than M-O (Figures 10b and 11a).

Figure 9. Differences in variables (Δ) are calculated as M-O-RSL minus M-O outputs from ablation periods. (a)–(d) are calculated from the representative 
deciduous broadleaf forest site and (e)–(h) are calculated over the representative closed shrubland site. (a, e) ratio of M-O-RSL to M-O surface heat exchange 
coefficient under the canopy top (CH-UC; Equation 24) and above canopy (CHV; Equation 14); (b, f) change in sensible heat flux (QH), heat flux into snow surface 
(G) and latent heat flux (LH). (c, g) change in ground, snow and canopy air temperature. (d, h) change in ablation rates.
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At NR, both M-O and M-O-RSL overestimate albedo relative to observations during the 2017 accumula-
tion period, resulting in lower absorbed shortwave radiation and hence lower LH and downwards QH that 
both contribute to overestimates of simulated peak SWE (Figures 10d and 12a and Table 1). The LH bias 
alone accounts for a 27 and 28 mm underestimate of sublimation from M-O and M-O-RSL over the 72-
day accumulation period, respectively. This accounts for 43% and 25% of peak SWE biases from M-O and 
M-O-RSL, respectively. It is reasonable to assume the majority of the remaining difference is accounted 
for by underestimated snowmelt driven by underestimated QH (Figure 10d and Table 1) and spatial heter-
ogeneity in the snowpack between the AmeriFlux and the nearest neighbor SNOTEL station 350 m away 
(Burns et al., 2014). M-O-RSL predicts peak SWE to be 47 mm higher than M-O predictions during the 
2017 WY (Figure 12a). At NR, M-O and M-O-RSL simulated SWE begin to diverge approximately 2-months 
before the day of peak SWE because temperatures are regularly above freezing beginning in early February 
(Figure 12b). Thus, beginning in February, discrepancies between M-O and M-O-RSL CH-UC (Figure 12c) 
translate to QH that drives the increased heat flux into the snowpack (Figure 12d) causing differences in 
snowmelt.

At NR, albedo errors persist into the 2017 ablation period, causing underestimates in absorbed shortwave 
radiation (Figure 10e and Table 1). These underestimates are partially balanced by underestimates in LH 
(Figure 10e and Table 1). It is reasonable to assume that shortwave radiation biases that are not accounted 
for with biases in LH are accounted for with underestimates in simulated heat flux into the snow surface. 
These energy budget biases drive slower simulated ablation rates, relative to observations: 7.9 mm/day for 
observations and 3.8 mm/day for M-O and M-O-RSL simulations (Figure 12a).

There is no dominant solution between M-O and M-O-RSL simulated energy budgets at GLEES and NR 
(Table 1). It is noteworthy that albedo errors are much smaller when snow is not present at both GLEES and 

Figure 10. Absorbed solar radiation (Net S↓), absorbed longwave radiation (Net L↓), sensible heat flux (QH) and latent heat flux (LH) for GLEES observations 
(red), M-O simulations (gray), and M-O-RSL simulations (green) during (a) accumulation and (b) ablation periods and (c) times with no snow over the 2014 
water year. (d)–(f) same as (a)–(c) but for the 2017 water year from Niwot Ridge.



Journal of Advances in Modeling Earth Systems

ABOLAFIA-ROSENZWEIG ET AL.

10.1029/2021MS002665

18 of 24

NR (Figures 10c and 10f). This indicates that the discrepancies between simulated and observed albedo are 
attributable to errors in simulated snow cover and/or snow albedo computed using the CLASS physics op-
tion. The other Noah-MP snow surface albedo physics option (BATS) is known to produce even larger snow 
surface albedo than the CLASS option used herein, thus switching snow surface albedo physics options is 

Figure 11. Variables in panels (a)–(d) cover the 2014 WY at GLEES and are used to interpret differences between M-O and M-O-RSL peak SWE. Vertical 
dashed black lines mark the day of peak SWE. (a) SWE from M-O (red) and M-O-RSL (blue) simulations. (b) Air temperature forcing M-O and M-O-RSL 
simulations. Red dots represent days when the mean daily temperature exceeds freezing, and blue dots represent days when the mean daily temperature is 
below freezing. The horizontal dashed line marks the freezing point (273.15K) (c) CH-UC from M-O (red) and M-O-RSL (blue) simulations. (d) M-O-RSL minus 
M-O G. Negative values indicate M-O is simulating more heat flux into the snowpack or soil (when there is no snow) than M-O-RSL.

Figure 12. Variables in panels (a)–(d) cover the 2017 WY at NR and are used to interpret differences between M-O and M-O-RSL peak SWE. (a) SWE from 
M-O (red) and M-O-RSL (blue) simulations. (b) Air temperature forcing M-O and M-O-RSL simulations. Red dots represent days when the mean daily 
temperature exceeds freezing, and blue dots represent days when the mean daily temperature is below freezing. The horizontal dashed line marks the freezing 
point (273.15K) (c) CH-UC from M-O (red) and M-O-RSL (blue) simulations. (d) M-O-RSL minus M-O G. Negative values indicate M-O is simulating more heat 
flux into the snow and soil than M-O-RSL.
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not expected to improve this issue (Niu et al., 2011). Although improving 
simulated snow cover and albedo is out of the scope of this study, it is an 
important topic we are evaluating in on-going research.

4.3. AmeriFlux Within-Canopy Wind Speed and Turbulent Heat 
Flux Analysis

At GLEES, M-O and M-O-RSL underestimate within-canopy wind speed 
by 68% and 60%, respectively, and M-O has a higher correlation with ob-
served within-canopy wind speed than M-O-RSL (Figure 13a). Discrep-
ancies between simulated and observed within-canopy wind speed are 
partially attributable to the actual canopy height at GLEES being lower 
than the Noah-MP default setting of HCAN (20 m) for evergreen needle-
leaf forests (Burns et al., 2021). M-O and M-O-RSL within-canopy wind 
speed predictions have smaller biases and higher correlations when Hcan 
is set to a more accurate value (12 m) (Burns et al., 2021) (Figure 13b). 
Discrepancies that persist between simulated and observed within-cano-
py wind speed are likely affected by limitations imposed by the one-lay-
er bulk canopy model structure of Noah-MP as well as violations of the 
HF08 dense canopy assumption (Bonan et al., 2021; Burns et al., 2018). 
Counterintuitively, despite M-O predicting lower within-canopy wind 
speed than M-O-RSL, M-O predicts larger below-canopy sensible heat 

GLEES Niwot ridge

Accumulation period

  M-O M-O-RSL M-O M-O-RSL

 

Bias 
(W/
m2) R

Bias 
(W/
m2) R

Bias 
(W/
m2) R

Bias 
(W/
m2) R

Net S↓ −16.9 1.00 −16.9 1.00 −13.5 1.00 −13.5 1.00

Net L↓ 1.10 1.00 0.60 1.00 3.60 0.99 −0.30 1.00

Q H 14.7 0.49 15.5 0.48 10.9 0.63 8.00 0.53

L H −30.7 0.41 −32.0 0.44 −12.6 0.72 −12.7 0.65

Ablation period

Net S↓ −47.0 1.00 −44.2 1.00 −38.4 1.00 −38.1 1.00

Net L↓ 11.1 0.99 4.30 1.00 6.50 0.99 0.70 1.00

Q H 3.50 0.63 −11.9 0.60 10.4 0.62 −2.90 0.48

L H −11.1 0.42 −7.10 −0.04 −24.4 0.45 −16.6 0.37

Table 1 
Mean Bias and Correlation (R) Between Simulated and Observed Surface 
Energy Budget Terms Over Accumulation (Top) and Ablation Periods 
(Bottom)

Figure 13. Scatter plots of observed within-canopy wind speed (horizontal axis) and simulated within-canopy wind 
speed (vertical axis) from M-O (red) and M-O-RSL (blue). The solid black line is a reference 1:1 line. For each panel, 
correlation coefficients (R) and percent bias from M-O and M-O-RSL simulations are recorded. (a) GLEES 6.5 m 
wind speed, when Noah-MP HCAN is set to 20 m. R(M-O) = 0.94; R(M-O-RSL) = 0.77; Bias(M-O) = −68%; Bias(M-O-
RSL) = −60%. (b) GLEES 6.5 m wind speed, when Noah-MP HCAN is set to 12 m. R(M-O) = 0.95; R(M-O-RSL) = 0.89; 
Bias(M-O) = −42%; Bias(M-O-RSL) = −46% (c) Niwot Ridge 5.7 m wind speed, when Noah-MP HCAN is set to 20 m. 
R(M-O) = 0.72; R(M-O-RSL) = 0.67; Bias(M-O) = −27%; Bias(M-O-RSL) = 0.8% (d) Niwot Ridge 5.7 m wind speed, 
when Noah-MP HCAN is set to 12 m. R(M-O) = 0.73; R(M-O-RSL) = 0.70; Bias(M-O) = 18%; Bias(M-O-RSL) = 23%.
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flux (Figure S8). This is attributable to M-O-RSL explicitly accounting for rahg-0 (Equation 20) which favors 
larger resistance to sensible heat flux from M-O-RSL compared to M-O; noting that rahg-0 accounts for 49% 
of total rahg at GLEES in the M-O-RSL simulation.

At NR, M-O underestimates wind speed by 27% and M-O-RSL overestimates wind speed by 0.8% (Fig-
ure 13c). The underestimation of wind speed at M-O is partially attributable to the actual canopy height 
at NR being lower than the HCAN for evergreen needleleaf forests used in Noah-MP (Burns et al., 2018). 
M-O and M-O-RSL overestimate wind speed (by 18% and 23%, respectively) when HCAN is set to a more 
accurate height (12m) (Burns et al., 2018) (Figure 13d). However, both M-O and M-O-RSL have increased 
correlations corresponding with the HCAN adjustment. M-O and M-O-RSL have lower correlations with 
observed wind speed at NR than at GLEES which is likely attributable to the assumed linearity between 
above-canopy friction velocity and within-canopy wind speed being violated at NR (Burns et al.,  2018); 
whereas this assumption is reasonable at GLEES (Figure S10). Similar to GLEES, M-O-RSL predicts higher 
within-canopy wind speed at NR and lower within-canopy sensible heat flux than M-O due to M-O-RSL 
explicitly accounting for rahg-0; noting that rahg-0 accounts for 51% of total rahg at NR in the M-O-RSL simu-
lation (Figures 13 and S9).

5. Conclusions and Implications
This study implemented a new surface exchange physics scheme into the Noah-MP LSM that accounts for 
canopy-induced turbulence in the RSL based on a modified version of the MOST following methodologies 
of Harman and Finnigan (2007, 2008) and Bonan et al. (2018). Noah-MP simulations that used the default 
M-O scheme (i.e., M-O simulations) were compared with simulations that used the new M-O-RSL scheme 
(i.e., M-O-RSL simulations) over 647 SNOTEL stations and 2 AmeriFlux stations. The primary interest of 
this study was to evaluate M-O-RSL snowpack simulations, benchmarked against M-O simulations. Overall, 
M-O-RSL simulations tend to have better agreement with observed snowpack and energy fluxes than M-O 
simulations, although there is heterogeneity in results across different sites. Specifically, SWE simulated from 
M-O-RSL has higher correlation and lower RMSE with SNOTEL observed SWE at 69% and 65% of the study 
sites, respectively, compared to M-O. M-O-RSL performance is likely limited by the Noah-MP one-layer bulk 
canopy assumption because the HF08 methodology (Harman & Finnigan, 2007, 2008) is most appropriately 
applied in a multilayer model that considers heterogeneity in the vegetated vertical profile (Bonan et al., 2021).

Differences between M-O and M-O-RSL simulated snowpack are primarily attributable to differences in CH-

UC, which controls downward sensible heat flux to the ground and hence heat flux into snowpack. Differences 
in heat flux into snowpack drive differences in snowmelt when temperatures are close to or above the melting 
point, which typically occurs late in accumulation periods and throughout ablation periods. Differences in 
CH-UC are a product of M-O-RSL accounting for canopy-induced turbulence as well as explicit consideration 
of aerodynamic resistance for heat directly above the land surface. The largest improvements for M-O-RSL 
occur over closed shrubland sites, and the largest degradations for M-O-RSL occur over deciduous broadleaf 
forest sites. Over closed shrubland sites, M-O-RSL tends to simulate smaller CH-UC, and thus less snowmelt 
than M-O. Conversely, over deciduous broadleaf forest sites, M-O-RSL tends to simulate larger CH-UC, and thus 
more snowmelt than M-O. Degraded performance over DBF sites is reflective of the fact that the M-O-RSL 
scheme is developed by assuming a dense canopy; an assumption that is violated over DBF sites in winter.

Based on the surface energy budget analysis over GLEES and NR stations, differences between M-O and 
M-O-RSL can be overwhelmed by biases that do not relate to the new canopy turbulence scheme. For 
example, when snow is present, both M-O and M-O-RSL simulations overestimate surface albedo which 
dominates errors in the simulated surface energy budget and snowpack. Toward the goal of improving the 
representation of surface albedo in Noah-MP, we are conducting on-going research focused on improving 
the albedo formulation in Noah-MP guided by observed incoming and outgoing shortwave radiation at both 
visible and near infra-red wavelength bands at a high-elevation site in Colorado.

M-O tends to more accurately predict wind speed within the canopy than M-O-RSL. This is likely because 
the HF08 methodology, which the M-O-RSL is based on, was designed with a greater emphasis on im-
proving above-canopy fluxes rather than within- and below-canopy fluxes, and thus HF08 is less accurate 
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underneath the canopy top where vegetation density is more complex (Harman & Finnigan, 2007, 2008). 
Differences in understory wind speed from M-O and M-O-RSL do not dictate differences in understory sen-
sible heat flux, primarily because M-O-RSL explicitly accounts for aerodynamic resistance to sensible heat 
flux directly over the land surface and M-O does not. Hence, higher understory wind speed in M-O-RSL 
does not necessarily favor greater understory sensible heat flux.

We intend for the M-O-RSL physics scheme to improve weather and hydrological applications for models 
such as WRF and the National Water Model, and improve estimates of model uncertainty. We expect M-O-
RSL to be considered in the future multi-model ensemble studies, similar to Zhang et al. (2016) and You 
et al.  (2020), that employed Noah-MP to quantify uncertainty based on different combinations of phys-
ics options. Furthermore, the Noah-MP modeling community will benefit from a new surface exchange 
scheme that accounts for canopy-induced turbulence in the RSL which has been shown to improve model 
agreement with the majority of SNOTEL snowpack observations. Future work that optimizes tunable pa-
rameters for Noah-MP simulations using the M-O-RSL physics option should consider the sensitivities to z1 
and HCAN that are discussed in this manuscript.
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