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[1] Separation of the net ecosystem exchange of CO2 (F) into its component fluxes of net
photosynthesis (FA) and nonfoliar respiration (FR) is important in understanding the
physical and environmental controls on these fluxes, and how these fluxes may respond to
environmental change. In this paper, we evaluate a partitioning method based on a
combination of stable isotopes of CO2 and Bayesian optimization in the context of
partitioning methods based on regressions with environmental variables. We combined
high-resolution measurements of stable carbon isotopes of CO2, ecosystem fluxes, and
meteorological variables with a Bayesian parameter optimization approach to estimate
FA and FR in a subalpine forest in Colorado, United States, over the course of 104 days
during summer 2003. Results were generally in agreement with the independent
environmental regression methods of Reichstein et al. (2005a) and Yi et al. (2004).
Half-hourly posterior parameter estimates of FA and FR derived from the Bayesian/isotopic
method showed a strong diurnal pattern in both, consistent with established gross
photosynthesis (GEE) and total ecosystem respiration (TER) relationships. Isotope-derived
FA was functionally dependent on light, but FR exhibited the expected temperature
dependence only when the prior estimates for FR were temperature-based. Examination of
the posterior correlation matrix revealed that the available data were insufficient to
independently resolve all the Bayesian-estimated parameters in our model. This could be
due to a small isotopic disequilibrium (D) between FA and FR, poor characterization of
whole-canopy photosynthetic discrimination or the isotopic flux (isoflux, analogous to
net ecosystem exchange of 13CO2). The positive sign of D indicates that FA was more
enriched in 13C than FR. Possible reasons for this are discussed in the context of recent
literature.
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1. Introduction

[2] Carbon uptake by terrestrial ecosystems is estimated
at 2–4 Gt C/yr and therefore constitutes a crucial compo-
nent of the global carbon cycle [Schimel et al., 2001]. Large
uncertainties still remain regarding the latitudinal patterns of
the net CO2 uptake [Piovesan and Adams, 2000; Valentini et
al., 2000; Janssens et al., 2001; Schimel et al., 2001; Van

Dijk and Dolman, 2004] and uptake in response to climate
variations [Goulden et al., 1996; Huxman et al., 2003;
Davidson et al., 2006; Ciais et al., 2005]. These uncertain-
ties reflect the complexity in how environmental drivers
affect gross photosynthesis (GEE) and total ecosystem
respiration (TER). In order to resolve these uncertainties, a
better understanding of the underlying biological processes
is clearly needed.
[3] In the absence of any disturbance, the net ecosystem

CO2 exchange between terrestrial ecosystems and the
atmosphere (NEE, noted F here using the notation of
Bowling et al. [2003a]; see Table 1 for a full listing of all
abbreviations used in the text) is the sum of two opposing
fluxes GEE and TER: F = GEE + TER, where GEE < 0
and TER > 0. For an isotope-based approach, foliar respi-
ration (FL) is often excluded from TER and included into net
photosynthesis, (FA = GEE + FL) so that F = FA + FR, where
FR denotes nonfoliar respiration (FR = TER � FL) [Lloyd et
al., 1996]. Net ecosystem exchange is measured with the
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eddy covariance technique and is the sum of a turbulent flux
(Feddy) and storage flux (Fstorage) [Wofsy et al., 1993].

FA þ FR ¼ w0C0
a þ

Z zh

0

dCa

dt
dz

¼ Feddy þ Fstorage ¼ F ð1Þ

In equation (1), w0 is the vertical turbulent wind speed
(m s�1), Ca

0, turbulent fluctuation of CO2 molar density
(mmol m�3), zh the flux measurement height, Ca the molar
density of atmospheric CO2 (mmol m�3). F, FA, and FR have
units mmol CO2 m

�2 s�1. F is measured worldwide at more
than 400 sites in a variety of biomes through the FLUXNET
network (http://www.fluxnet.ornl.gov/fluxnet) [Baldocchi et
al., 2001].
[4] Separating F into its constituent fluxes of FA and FR

(or GEE and TER) is termed flux partitioning. This parti-
tioning can be done via statistical parameter estimation
using F and climatic variables (e.g., temperature, light,
moisture) as covariates [Huxman et al., 2003; Yi et al.,
2004; Reichstein et al., 2005a], combining F with process-
based biophysical models [Aber et al., 1996; Baldocchi and
Bowling, 2003; Ogée et al., 2003a; Dai et al., 2004;
Braswell et al., 2005; Sacks et al., 2006; Stoy et al.,
2006], scaling chamber measurements to the ecosystem
[Lavigne et al., 1997; Law et al., 1999], or, as in this study,
with stable isotopes of CO2 [Yakir and Wang, 1996;
Bowling et al., 2001, 2003a; Ogée et al., 2003b, 2004;
Lai et al., 2004; Knohl and Buchmann, 2005; Griffis et al.,
2005; Zhang et al., 2006].
[5] Each of these flux partitioning routines have advan-

tages and disadvantages associated with their use. For
example, statistical parameter estimation of F with climatic
variables uses expected physiological patterns (e.g., TER
exponentially related to temperature) and determines un-
known functional parameters to find a best estimate of F
[Huxman et al., 2003; Yi et al., 2004; Reichstein et al.,
2005a]. The advantage to this approach is that relatively few
parameters (usually 2–4) are needed to characterize the
functional relationships and there are plentiful data obser-
vations (usually 48 daily measurements of F) to characterize
such relationships. However, if nighttime F measurements
are used to determine a functional relationship for TER, in
times of strong atmospheric stability Feddy may not be
estimated correctly [Goulden et al., 1996], potentially
biasing the estimate of TER. Recent literature has addressed
the appropriateness of scaling respiration with temperature,
as ecosystem respiration is expected to vary with other
environmental factors such as moisture or substrate avail-
ability [Giardina and Ryan, 2000; Reichstein et al., 2005b;
Davidson et al., 2006; Davidson and Janssens, 2006].
Moreover, temperature-flux relationships are derived from
seasonal flux data and thus do not necessarily reflect the
diurnal temperature-flux relationships. Recent work by
Reichstein et al. [2005a] has attempted to address these
disadvantages by removing periods of atmospheric stability,
utilizing a sophisticated gap-filling routine, and using only
15-day periods to derive the temperature-flux relationship.
[6] Scaling chamber measurements up to the ecosystem is

difficult due to problems of spatial representativeness and
establishment of labor-intensive allometric relationships.

Lavigne et al. [1997] scaled chamber-based respiration
measurements to the ecosystem and found that nighttime
F measurements were consistently lower by 20–40%.
[7] Biophysical models allow estimation of biological

processes in the absence of direct measurements, however
these processes require a large number of additional param-
eters to describe them [Braswell et al., 2005; Sacks et al.,
2006]. We ultimately want to test and improve models with
partitioned flux estimates from other alternative methods.
[8] Stable isotopes of CO2 provide measurements to

characterize another flux partitioning method. Unlike envi-
ronmental regression methods, the isotope flux partitioning
method does not assume that FR is dependent on tempera-
ture or that FA depends on incoming radiation. Hence,
isotope-partitioned fluxes can be used to test these relation-
ships at the ecosystem scale. An additional advantage to the
isotope method is that it provides information about the
isotopic signatures of net photosynthesis (FA) and nonfoliar
respiration (FR). These isotopic signatures can be used to
infer information about ecosystem physiology and the
relations between carbon and water vapor fluxes. A funda-
mental requirement of the isotopic method is that the
isotopic signature of carbon products associated with non-
foliar respiration (dR) is different from the isotopic signature
of carbon products associated with net photosynthesis (dA).
Using mass balance of 13CO2, one can derive an equation
that represents net ecosystem exchange of 13CO2 [Yakir and
Wang, 1996; Lloyd et al., 1996; Raupach, 2001; Bowling et
al., 2001, 2003a]:

dAFA þ dRFR ¼ Feddy�isoflux þ Fisostorage ¼ Fd; ð2Þ

where FA, FR, dA (%), and dR (%) are defined above, Feddy �
isoflux (mmol m�2 s�1 %) is the eddy isoflux, and Fisostorage

(mmol m�2 s�1 %) is the isotopic storage flux. In addition
to F, the isotope partitioning method requires measurements
of Fd, [CO2], and d13C. See the Appendix in Bowling et al.
[2003a] for the full derivation of equations (1) and (2) and
the approximations used to attain them. Carbon isotope
ratios (d13CX or dX) are calculated in the usual manner as the
deviation of a 13CO2 to 12CO2 ratio in sample X from an
international standard (Vienna PDB). The deviation of this
ratio from unity is expressed as permil (%). Using the
permil notation, the isoflux (Fd) is analogous to the net
ecosystem exchange of 13CO2 and has units of % mmol
CO2 m

�2 s�1 rather than mmol 13CO2 m
�2 s�1 [Bowling et

al., 2003a]. With equations (1) and (2), one has a set of
linear equations to determine FA and FR.
[9] A disadvantage to the isotope partitioning method is that

the difference between dA and dR can be near zero. The
difference between dA and dR is defined as the isotopic disequi-
librium:D = dA� dR. Note that whenD� 0 (dA� dR), there is
no unique information in equation (2) relative to equation (1).
This violates the fundamental requirement of the method that
photosynthesis and respiration are isotopically different. There-
fore when D = 0 this implies that stable carbon isotope
measurements do not contain unique information about FA
and FR distinct from F.
[10] A practical limitation of the isotope partitioning

method is the collection of enough data to resolve diurnal
signals of d13C ratios. Ogée et al. [2004] conducted an
intensive campaign of flask-based collection of [CO2] in
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canopy air analyzed by a mass spectrometer for d13C ratios.
Such measurement campaigns traditionally have been the
only way to resolve diurnal signals of d13C ratios needed for
isotopic partitioning [Schauer et al., 2003; Ogée et al.,
2003b; Knohl and Buchmann, 2005]. The advent of tunable
diode laser (TDL) spectroscopy has alleviated this limitation
and continuous measurements of [CO2] mixing ratios and
d13C ratios can now be made in the field [Bowling et al.,
2003b; Griffis et al., 2004; Bowling et al., 2005; Griffis et
al., 2005; Zhang et al., 2006].
[11] Mathematical techniques such as Bayesian parameter

estimation provide a tool to account for additional informa-
tion (such as reasonable bounds for values of FA and FR)
beyond process models such as equations (1) and (2). Hence
Bayesian parameter estimation can be applied to extract infor-

mation about ecosystem-scale fluxes from high-resolution
measurements of F, [CO2], and d13C. This technique is
gaining popularity in the environmental science community
as a way to extract meaningful information from the
inherent stochasticity in environmental observations [Clark,
2005; Raupach et al., 2005]. Bayesian parameter estimation
can be used to estimate parameters that drive biophysical
models [Braswell et al., 2005; Knorr and Kattge, 2005;
Sacks et al., 2006; Xu et al., 2006], estimate surface/ocean
fluxes from global flask measurements [Bousquet et al.,
1999; Peters et al., 2005], estimate anthropogenic sources
of [CO2] using high-resolution stable isotope measurements
[Pataki et al., 2006], or as we focus in this paper, isotope
flux partitioning of F from CO2 and 13C measurements in
forest air. One of the ways that Bayesian parameter estima-

Table 1. List of Symbols and Variables Used in Text

Symbol Units Description

Ca mmol m�3 CO2 molar density
w0 m s�1 Turbulent component to vertical wind speed
Ca

0 mmol m�3 Turbulent component to CO2 molar density
zh m Reference height (21.5 m)
Feddy mmol m�2 s�1 Turbulent eddy flux, defined by w0C0

a

Fstorage mmol m�2 s�1 Storage CO2 flux, see equation (1)
F mmol m�2 s�1 Net ecosystem exchange of CO2, defined by equation (1)
GEE mmol m�2 s�1 Gross primary production flux
TER mmol m�2 s�1 Total ecosystem respiration flux
FA mmol m�2 s�1 Net ecosystem photosynthetic flux of CO2 (gross primary production less foliar respiration)
FR mmol m�2 s�1 Ecosystem heterotrophic respiration
FL mmol m�2 s�1 Ecosystem foliar respiration
T0 �C Regression parameter for TER relationship, see equation (11) (�46�C)
TRef �C Reference temperature, see equation (11) (10�C)
Rref mmol m�2 s�1 Reference respiration rate, see equation (11)
E0 C Activation energy, see equation (11)
a1(T ) dimensionless Parameter in GEE functional form for Yi et al. [2004], see equation (13)
a2(T ) mmol m�2 s�1 Parameter in GEE functional form for Yi et al. [2004], see equation (13)
QP mmol m�2 s�1 Photosynthetically active radiation
Dcanopy % Flux-weighted canopy-scale photosynthetic carbon isotope discrimination
da % Observed isotope ratio at a given measurement height (0.1–21.5 m)
ca ppm Observed [CO2] mixing ratio at a given measurement height (0.1–21.5 m)
dB % Background isotope ratio, see equations (5)
cB ppm Background [CO2] mixing ratio, see equations (5)
dR % Isotope ratio of nighttime F, assumed to be the isotope ratio of daytime FR, see equation (5)
dN % Isotope ratio of daytime CO2 flux, see equation (6)
f % ppm Slope of a nighttime isotopic mixing line, see equation (5)
b % ppm Slope of a daytime isotopic mixing line, see equation (6)

da % Average isotope ratio of 5, 7, 9, 11 m canopy air
ca ppm Average [CO2] mixing ratio of 5, 7, 9, 11 m canopy air
Fisostorage mmol m�2 s�1 % Isotopic storage flux, expressed in % notation, see equation (2)
Fd mmol m�2 s�1 % Net ecosystem exchange of 13CO2, expressed in % notation, see equation (2)
ga mol m�2 s�1 Aerodynamic conductance to [CO2]
gs mol m�2 s�1 Surface conductance to [CO2]
gm mol m�2 s�1 Mesophyll conductance to [CO2] (constant at 0.125 mol m�2 s�1)
g mol m�2 s�1 Overall conductance of [CO2], see equation (8)
cc ppm [CO2] mixing ratio at the sites of carboxylation
ab % Leaf boundary layer fractionation (2.9%)
a % Diffusion fractionation (4.4%)
as(T) % Water dissolution fractionation (1.1%)
a1 % Mesophyll diffusion fractionation (0.7%)
a % Overall photosynthetic fractionation
bR % Photosynthetic enzymatic fractionation of 13CO2 (27.5%)
D % Isotopic disequilibrium, equals dA � dR
~mprior variable Prior parameter vector
CM variable Prior parameter covariance matrix

~d variable Data vector
CD variable Data covariance matrix
G variable Model relating parameters ~m to data ~d
~m* variable Posterior Bayesian parameter vector, see equation (17)
~CM variable Posterior Bayesian parameter covariance matrix, see equation (18)
E variable Posterior correlation matrix, see equation (19)
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tion directly contrasts with traditional parameter estimation
is the use of prior information for the target parameters
[Jaynes, 2003]. This prior information provides a way to
account for additional information about parameters (such
as reasonable probability distributions for FA and FR) that
cannot be specified in the model.
[12] Ogée et al. [2004] used Bayesian parameter estima-

tion in conjunction with isotope flux partitioning at a
homogeneous maritime forest in France. A major conclu-
sion of Ogée et al. [2004] was that the utility of the
isotope partitioning approach was limited by values of D
near zero. In this study, we address two primary questions
motivated from the study of Ogée et al. [2004]. First, do we
find D � 0 using a high-resolution data set of F, [CO2], and
d13C collected in a heterogeneous high-elevation forest?
Second, if D is near zero, then what biological processes
influence D being near zero?
[13] To address these questions, this study utilizes a three-

month data set of measurements collected at a high-elevation
subalpine forest in Colorado (the Niwot Ridge AmeriFlux
size).We apply the isotope partitioningmethodwith Bayesian
parameter estimation to examine photosynthesis, respi-
ration, and isotope disequilibrium. For this study, we
specifically address the following objectives:
[14] 1. Expand upon the approach of Ogée et al. [2004]

and apply a Bayesian optimization method to isotope flux
partitioning. For this approach the estimated parameters
include FA, FR, and dA.
[15] 2. Attempt to independently resolve the parameters

FA, FR, and dA from prior information of these parameters.
[16] 3. Identify mathematical and biological factors that

might limit the effective application of Bayesian parameter
estimation to isotope flux partitioning based upon the results
of the previous two objectives.
[17] The third objective assesses how the mathematical

and biological techniques influence the interpretation of the
partitioned fluxes. If the isotope flux partitioning method is
to be used to develop ecosystem-scale functional relation-
ships, it is critically important to understand how these
estimates of FA and FR are derived. Hence our guiding
philosophy was to use a process model and a Bayesian
parameter estimation technique that allowed us to investi-
gate the direct effects of how the process model and
Bayesian parameter estimation technique influence the final
parameter estimates.
[18] From this data set of F, [CO2], and d13C, this study

generates half-hourly Bayesian parameter estimates of FA
and FR and other additional parameters. We do not include
correlations of the parameters between time steps because of
the synchronicity of [CO2] and d13C data at all daytime
measurement levels (see Figure 2 in Bowling et al. [2005]).
From these Bayesian parameter estimates, we then compare
the posterior results to expected canopy physiological
relationships and discuss the sensitivity of posterior
parameter estimates to prior assumptions. Finally, we make
recommendations on where our understanding of process-
based ecosystem parameters can be improved.

2. Site Description and Measurements

[19] This studywas conducted at theNiwotRidgeAmeriFlux
site, a subalpine forest at 3050 m elevation west of Boulder,

Colorado (40�105800N; 105�3204600W). The site is a century-
old forest, recovering from early twentieth century logging.
The forest contains subalpine fir (Abies lasiocarpa),
Engelmann spruce (Picea engelmannii), and lodgepole pine
(Pinus contorta). Canopy height is 11–12 m. Mean annual
precipitation averages 800 mm and the mean annual
temperature is 1.5�C [Monson et al., 2002].
[20] MeanCO2 profiles (for the termFstorage in equation (1))

were measured with a closed-path infrared gas analyzer
(IRGA) (LI-COR Inc., Lincoln, Nebraska, model LI-6251)
that used a magnesium perchlorate trap to remove water vapor
from the air sample. Fluctuations of CO2 andwater vapor were
measured with a second closed-path IRGA (LI-COR, model
LI-6262) where the measured CO2 was corrected for the
pressure-broadening and dilution effects of water vapor as
described in the LI-6262 manual. While we have conveniently
represented Feddy as w0C0

a in equation (1), it should be noted
that Feddy includes the effect of water vapor fluctuations on
w0C0

a (i.e., the so-called ‘‘Webb correction’’ or WPL term for
flux calculations [Webb et al., 1980]). During the summer, the
water-vapor WPL term at Niwot Ridge is small at night, but
during the day it can be on the order of 30% of Feddy.
Temperature fluctuations have been minimized by passing
the air sample through a short length of copper tubing prior to
entering the LI-6262 sample cell. Additional details about the
eddy covariance and meteorological measurements at Niwot
Ridge can be found inMonson et al. [2002]. Prevailing winds
at Niwot Ridge occur from the west; Turnipseed et al. [2003]
conservatively estimated that 90% of a flux measurement
originates from 1200m west of the tower. Additional details
about the footprint of a flux measurement can be found in that
study.
[21] Carbon dioxide mixing ratios and d13C ratios were

made over three consecutive summer months in 2003
(4 July–15 October, day of year 185–288) by tunable
diode laser absorption (TDL) spectrometry as detailed in
Bowling et al. [2005]. Measurements at nine canopy heights
(0.1, 0.5, 1, 2, 5, 7, 9, 11, and 21.5 m) were made every six
minutes. This six minute data was then averaged into half-
hourly values for use in our analysis. Uncertainties associ-
ated with [CO2] and d

13C measurements were 0.15 ppm and
0.15%. See Bowling et al. [2005] for additional description
on how these uncertainties were determined.
[22] During the study period, average daytime temper-

atures were 12�C, with minimum and maximum values
ranging from �6 to 26�C. Average vapor pressure deficit
was 1 kPa but ranged from minimum and maximum values
of 0�2.6 kPa. The study period had frequent late-afternoon
rain events yielding small amounts of precipitation. The
maximum period between rain events lasted two weeks
from September 18 to October 1 and the highest precipita-
tion rain event (20 mm) occurred August 30.
[23] Figure 1 shows the diurnal histograms of available

data. Quality control measures led to a 10 day gap from
days 200–210 due to failure of the ground heat flux mea-
surement (necessary in the calculation of g, see section 4.1)
and a 20 day period from days 240–260 where F was
gap-filled. Additional time periods were removed in times
when the atmosphere was strongly stable [Goulden et al.,
1996]. Poor calibration performance with the TDL at
midday further reduced periods available for partitioning.
Of all possible daytime half-hourly periods, 34% were
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available to be partitioned (942 out of 2754 possible half-
hourly periods).

3. Theory

3.1. Isotopic Partitioning Method

[24] Equations (1) and (2) define conservation of CO2 and
13CO2 and have previously been discussed. These equations
are expanded in equations (3) and (4), with the difference
that dA, the isotopic signature of photosynthetic products, is
expressed as the difference between the average isotope
ratio of canopy air (da) and whole canopy photosynthetic
discrimination Dcanopy [Bowling et al., 2001, 2003a].

FA þ FR ¼ Feddy þ Fstorage ð3Þ

da �Dcanopy

� �
FA þ dRFR ¼ Feddy�isoflux þ Fisostorage ¼ Fd ð4Þ

[25] The isotopic content of ecosystem respiration (dR)
can be derived from nighttime [CO2] and d13C measure-
ments. Since photosynthesis only occurs in the light, during
the night there is a net flux of respiratory carbon from the
ecosystem. Using mass conservation equations for total CO2

and 13CO2, the following ‘‘Keeling-plot’’ equation can be
derived [Keeling, 1958]:

da ¼ cB
dB � dRð Þ

ca
þ dR ¼ f

ca
þ dR nightð Þ; ð5Þ

where f (% ppm) is the slope of the nighttime Keeling plot,
ca (ppm) is the total measured [CO2], cB (ppm) is the
background [CO2] and da (%) and dB (%) are defined
analogously. For this study we assume that values of dR are
constant during the day. This assumption is not correct as
studies have shown components of dR to be quite dynamic
during the daytime [Hymus et al., 2005; Prater et al., 2006].
This assumption is discussed further in section 5.1.
[26] Shown in Figure 2a are paired [CO2] and d13C data

along with the best-fit Model I ordinary least squares (OLS)
isotopic mixing line for a typical night. Data from all mea-
surement inlets between the hours of 9 PM and 3 AM local
time were used to generate this isotopic mixing line. In this
example, dR andf can be adequately constrained from the data
as evidenced by the high r2 value of 0.99, the low uncertainties
for dR and f (0.3% and 152% ppm) respectively, and the large
[CO2] range for the mixing line (52 ppm). We typically found
high [CO2] ranges most nights during the study period. Large
[CO2] ranges reduce the variability and the uncertainty in the
estimate of dR [Pataki et al., 2003; Zobitz et al., 2006].
[27] The eddy isoflux, Feddy�isoflux, is a key parameter in

equations (2) and (4). This cannot at present be measured
directly as Feddy with eddy covariance, however Feddy�isoflux

is approximately equal to dN Feddy, where dN is a the intercept
of a daytime Keeling plot through the roughness sublayer
above the canopy [Ogée et al., 2003b]:

da ¼ cB
dB � dNð Þ

ca
þ dN ¼ b

ca
þ dN dayð Þ: ð6Þ

Figure 1. Diurnal representation of available daytime data from 4 July to 15 October 2003 (104 days) at
the Niwot Ridge AmeriFlux site, as described by the quality control measures in section 2. The vertical
axis represents the number of measurements for a particular half-hour period. Data availability at night is
not shown in the figure.
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In equation (6), b (% ppm) is the slope of a daytime
Keeling plot.
[28] As emphasized by Ogée et al. [2004], dN should be

determined from measurements made above the roughness
sublayer to avoid bias from concentration plumes from
individual forest elements. For this study, the only mea-
surement of [CO2] and d13C that best satisfied this require-
ment was at 21.5 m (F measurement height). Low [CO2]
ranges were common during the day, even when all mea-
surement inlets were included. A typical isotopic mixing
line for dN is shown in Figure 2b. Data used to determine dN
come from all measurement inlets for a given half hour,
hence there are only nine data points in Figure 2b. The OLS
estimate of dN is quite uncertain, as evidenced by the large
uncertainties on dN and b and the low [CO2] range for the
mixing line (5 ppm). These low [CO2] ranges lead to highly
variable estimates of dN with large uncertainties [Bowling et
al., 2005; Zobitz et al., 2006]. If we were to determine dN
from only the 21.5 m inlet, isotopic mixing lines would be
poorly constrained, therefore dN and b were determined
with measurements from all heights. However, determining
dN from all inlets may bias the estimate from inlets near the
ground. For these reasons, dN and b are Bayesian-estimated
parameters in this study.
[29] FA is related to the CO2 mixing ratio in the chloro-

plast (cc) via a standard conductance relationship:

FA ¼ g cc � cað Þ ð7Þ

1

g
¼ 1

ga
þ 1

gs
þ 1

gm
; ð8Þ

where ca is the mean canopy CO2 mixing ratio, and the
overall conductance (g) is composed of an aerodynamic
conductance (ga), surface conductance (gs), and mesophyll
conductance (gm) (all conductance units mol m�2 s�1)
[Ogée et al., 2003b; Knohl and Buchmann, 2005]. The
aerodynamic conductance is calculated in the same manner
as Ogée et al. [2003b] (see equation (11) in Ogée et al.
[2003b]) and Knohl and Buchmann [2005]. The surface
conductance is obtained by inversion of the Penman-
Monteith equation [Grace et al., 1995] (see equation (9) in
Ogée et al. [2003b]), and the mesophyll conductance was
estimated for the conifers in this study to be 0.125 mol m�2

s�1 (W. K. Smith, personal communication).
[30] The parameter Dcanopy represents the flux-weighted

photosynthetic discrimination of the entire forest. This
parameter expresses the fractionation of 13CO2 when
CO2 is (a) transported through the leaf boundary layer,
(b) diffuses into the stomatal cavity, (c) enters solution,
(d) diffuses through the mesophyll to the sites of carboxylation,
and (e) is reduced via photosynthesis. The total fractionation
is given by equations (9) and (10) [Vogel, 1980; Farquhar
et al., 1989; Farquhar and Lloyd, 1993]:

Dcanopy ¼ aþ bR � að Þ cc
ca

ð9Þ

a ¼ abgsgm þ agagm þ as Tð Þ þ a1ð Þgsga
gsgm þ gagm þ gsga

; ð10Þ

where bR is the enzymatic fractionation of carbon reduction
(�27.5%), ab is the leaf boundary layer fractionation
(2.9%), a is the fractionation due to molecular diffusion

Figure 2. Typical isotopic mixing lines found during the study period. (a) Typical nighttime isotopic
mixing line (Keeling plot) to estimate dR and f. The solid line was generated using the ordinary least
squares estimate of the mixing line intercept (dR) and slope (f). (b) Typical daytime isotopic mixing line
(Keeling plot) to estimate dN and b. The solid line was generated using the ordinary least squares estimate
of the mixing line intercept (dN) and slope (b). The dashed line was generated using the Bayesian
parameter estimate of dN and b.
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across the stomata (4.4%), as(T ) the temperature-dependent
fractionation as CO2 enters solution (assumed constant at
1.1% at 25�C), and a1 the fractionation due to diffusion
within the mesophyll (0.7%).

3.2. Environmental Regression Methods

[31] Environmental regression methods consist of flux
partitioning techniques that directly utilize measurements
such as incoming radiation (QP) or air temperature (T ) to
partition F into GEE and TER. For this study, two different
environmental regression methods were utilized. The fun-
damental difference between the methods utilized is the
prescribed dependency of GEE and TER on environmental
drivers QP and T.
[32] Temperature-based statistical flux partitioning: A

review of temperature-based partitioning methods was pro-
vided by Reichstein et al. [2005a]. Temperature-based
statistical flux partitioning was carried out using the
method exactly detailed in Reichstein et al. [2005a]. We
briefly describe the relevant parts of the theory here.
Estimates of GEE and TER from this method are referred
to as ‘‘statistical flux partitioning.’’ At night, GEE = 0,
implying F = TER. Nighttime regressions of F and air
temperature (T) are calculated using an exponential regres-
sion model [Lloyd and Taylor, 1994]:

TER ¼ Rref exp E0

1

Tref � T0
� 1

T � T0

� �� �
; ð11Þ

where T0 = �46�C, Tref = 10�C. The temperature
independent respiration rate (Rref) and temperature sensitivity
(E0) were free parameters. The temperature sensitivity E0

is estimated through least squares regression on a 15-day
timescale, but then averaged and assumed to be constant in
time. Then a temporally-varying estimate of Rref is
generated through least squares estimation, hence linking
variation in F between shorter and longer timescales. Once
Rref (t) and E0 (constant) are determined, daytime TER is
modeled with equation (11) from measured air temperature,
and GEE is estimated as the difference between F and TER.
The estimated values of Rref (t) and E0 with their standard
errors are utilized to generate different TER estimates and
subsequently an estimate of the intrinsic uncertainty in a
TER estimate. When this was done, TER uncertainty was
conservatively estimated to be 3 mmol m�2 s�1.
[33] Nonparametric flux partitioning: A second method to

estimate GEE and TER from F is to use nonparametric
regression as described in Yi et al. [2004]. For this flux
partitioning routine, TER is assumed to be exponentially
related to daytime air temperature (T) and GEE is assumed
to be a saturating function of photosynthetically active
radiation (QP):

F ¼ GEE þ TER ð12Þ

¼ a1 Tð ÞQPa2 Tð Þ
a1 Tð ÞQP þ a2 Tð Þ þ TER Tð Þ ð13Þ

[34] The parameters ai(T ) that characterize the functional
relationship for GEE are assumed to be dependent on
temperature. The functional parameters for ai(T ) and

parameters characterizing the TER-air temperature relation-
ship are determined with F, air temperature, and QP data and
then minimizing the difference between measured F and the
sum of functional forms of GEE and TER (equation (13))
using nonlinear weighted least squares. Estimates of GEE
and TER from this method are referred to as ‘‘nonparametric
flux partitioning.’’

3.3. Bayesian Parameter Estimation

[35] All the flux partitioning methods described in
section 3.1 have a model that relates data (e.g., F) to
parameters (e.g., FA and FR or GEE and TER). However
the parameter estimation technique utilized can vary, as
evidenced by the two different flux partitioning methods
described in section 3.2. More generally, the goal of any
parameter estimation technique is to estimate parameters ~m
from data~d by assuming a model G (where G is either linear
or nonlinear) between parameters and data (G(~m) = ~d).
[36] Bayesian parameter estimation is a statistical tech-

nique that estimates ~m from ~d and also uses prior informa-
tion about ~m in the estimation routine. Introductions to
Bayesian parameter estimation techniques can be found in
Tarantola [2005] and Gubbins [2004]. Data and prior
parameter distributions are inputs into Bayes theorem,
which is used to generate a posterior probability density
function of estimated parameters, conditional on data and
prior parameter values and their respective uncertainties
[Jaynes, 2003; Tarantola, 2005]. The first two moments
of this posterior probability density function (mean and
variance) can be used to characterize the posterior results
and uncertainty. The conditionality of the Bayesian parameter
estimate on data and prior parameter distributions differs
from traditional parameter estimation techniques.
[37] The process model G relating ~m to parameters~d used

to determine a Bayesian isotope flux partitioning consists of
equations (3), (4), (6), (7), and (9). Equations (3), (4), (7),
and (9) define a system of four equations for the four
unknowns FA, FR, Dcanopy, and cc. However, equation (9)
can be solved for cc and combined with equation (7). As a
result, we have the following system of equations with
unknowns FA, FR, and Dcanopy, dN, and b:

FA þ FR ¼ F

da �Dcanopy

� �
FA þ dRFR ¼ dNFeddy þ Fisostorage

�FA þDcanopy

cag

bR � a
¼ cagbR

bR � a

b
c1a

þ dN ¼ d1a

..

. ..
.

b
cia

þ dN ¼ dia

..

. ..
.

b
c9a

þ dN ¼ d9a;

ð14Þ

where ca
i and da

i represent a measurement of [CO2] and d13C
made at a particular measurement location (height above
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ground) where i = 1 (0.1 m), 2 (0.5 m),. . ., 9 (21.5 m).
Equation (14) is the process model used in the Bayesian
parameter estimation routine and consists of 12 equations
for 5 unknowns. As a result, for each half-hourly estimate,
the vector ~m of estimated parameters is:

~m ¼ FA FR Dcanopy dN b
� 	T

; ð15Þ

where ( )T denotes the transpose operation. The data vector
~d consists of:

~d ¼ F Fisostorage

cag bR

bR � a
d1a ::: dia ::: d9a

� �T
: ð16Þ

[38] To determine a Bayesian parameter estimate ~m* for
the linear problem (G(~m) = G~m, where G is now a matrix)
three assumptions are made. First, we assume that the
observations~d arise from a multivariate normal distribution
with mean G~m and covariance matrix CD. The second
assumption is that measurements are independent and
uncorrelated. The combination of the first two assumptions
prescribes CD to be a diagonal matrix containing the square
of the standard deviation of a particular measurement.
Values of CD for this study are reported in Table 2. The
third assumption is that the prior distribution for parameters
~m is multivariate normal with mean ~mprior and covariance
matrix CM. The matrix CM is a diagonal matrix as well,
where the diagonal entries contains the square of the
standard deviation of a particular parameter. We discuss
values of ~mprior and CM below. With these three assump-
tions, it can be shown that the posterior distribution of ~m* is
normal as well [Tarantola, 2005]. As a result, the first two
moments of this distribution (mean and square of the
standard deviation) characterize the posterior distribution
of ~m and are given by equations (17) and (18):

~m* ¼ ~mprior þ CMG
T GCMG

T þ CD

� ��1 ~d � G~mprior


 �
ð17Þ

~CM ¼ GTC�1
D Gþ C�1

M

� ��1
; ð18Þ

where ~m, ~d, and G are defined above and ( )�1 denotes the
inverse operation. In equation (17), ~m* is the mean value of
the posterior distribution for ~m. In equation (18), ~CM is the
posterior covariance matrix for ~m. The square root of the

diagonal of ~CM contains the posterior standard deviations of
~m. For a nonlinear problem (i.e., G(~m) 6¼ G~m), the solution
for ~m* is found by numerical methods [Tarantola, 2005].
Some measurements (such as Feddy, da, ca, ca

i ) or
experimentally-derived parameters (such as dR, g, bR, a)
may have their own appreciable uncertainties. For this study
we make the assumption that the uncertainty in these
quantities does not unduly influence the Bayesian parameter
estimate of ~m.
[39] The agreement between G(~m*) and

~d will depend on
the values of ~mprior and CM. Because of this ~m* may not be
exactly equal to a least squares estimate of ~m. As a result,
equation (17) may be biased towards ~mprior. For example,
this bias can result if a prior mean value of FR is 20 mmol
m�2 s�1, and the posterior Bayesian parameter estimate is
18 mmol m�2 s�1, but a statistical flux partitioning estimate
of FR yields 5 mmol m�2 s�1. This sensitivity could arise
from two factors: lack of linear independence in the process
model G or weighting ~mprior too strongly by having small
variance estimates in CM. If there is a lack of linear
independence, using a Bayesian approach in this case
specifies additional constraints (the prior values) so that
the system automatically becomes well-posed [Gubbins,
2004], leading to a unique solution. If the prior variance
estimates are too small, then it can be shown that in the limit
as the prior variances approach zero, equation (17) reduces
to ~mprior.
[40] The posterior correlation matrix E is a tool that can

help ascertain if two parameters have been independently
resolved by the data set [Tarantola, 2005]. Denote the
element ij of ~CM by ~CM

ij , and element the ij of E in a similar
manner. Then entries of the posterior correlation matrix are:

Eij ¼
~Cij
Mffiffiffiffiffiffiffi

~Cii
M

q ffiffiffiffiffiffiffi
~Cjj
M

q : ð19Þ

It can be shown that entries of E vary between �1 and 1
[Tarantola, 2005]. In a non-Bayesian context, E represents
the correlation between two estimated parameters. In the
Bayesian context this is still true, however a strong
correlation (or anticorrelation) on off-diagonal entries of E
indicates that the data set cannot independently resolve the
two parameters but rather some combination of the
parameters. Hence the model is poorly parameterized and
additional constraints (such as prior information) is needed
to resolve these parameters [Tarantola, 2005].

Table 2. Entries of~d With the Percentage That Observed Quantity

Was Availablea

Observed Quantity
Measurement Standard

Deviation Percent Coverage

F (mmol m�2 s�1) 2b 64%
Fisostorage (mmol % m�2 s�1) 50 76%

cagbR
bR�a

(mmol m�2 s�1) 2 57%

da (%) 0.15 57%
aPercent coverage values are out of 2734 possible half-hourly

observations. The square of the sample standard deviation is the
corresponding diagonal entry in CD.

bThe standard deviation of F is linearly scaled with u* as done in Ogée et
al. [2004] from a value of 2 at u

*
= 0.3 m s�1 to a value of 6 mmol m�2 s�1

at u
*
= 0.6.

Table 3. Prior Mean and Standard Deviation for Each of the Prior

Parameter Distributions Used in the Study Assuming the

Probability Distribution of These Parameters is Normala

Parameter Prior Mean Prior Standard Deviation

FA (mmol m�2 s�1) �10 10
FR (mmol m�2 s�1) 5; FR(T )

b 5; 3
Dcanopy (%) 17 10
dN (%) �24.5 10
b (% ppm) 6100 1000

aThe prior means are entries of ~mprior and the square of the standard
deviation is the corresponding diagonal entry of CM.

bThe prior mean and standard deviation was specified from nighttime
F and statistical temperature regressions, following Reichstein et al. [2005a].
See discussion in the text for how the standard deviation was selected.
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[41] For this study Bayesian parameter estimates of ~m
were derived using two different sets of prior mean values
and standard deviations for certain parameters. These sce-
narios are the following and are summarized in Table 3.
[42] Fixed-in-time priors: Prior mean values and their

respective standard deviations are fixed in time for each
half-hourly measurement period, as done in Ogée et al.
[2004]. Prior values and standard deviations of FA are �10 ±
5 mmol m�2 s�1, FR = 5 ± 5 mmol m�2 s�1. The standard
deviations for FA and FR are similar to those used in Ogée et
al. [2004]. Additional prior mean values and standard
deviations are Dcanopy = 17 ± 10%, dN = �24.5 ± 10%,
and b = 6100 ± 1000% ppm. The prior mean values for dN
and b are derived from a Keeling-plot regression using all
daytime [CO2] and d13C data at 21.5 m over the measure-
ment period.
[43] Temperature-based priors: In this case, the prior mean

value for FRwas set equal to the estimated daytime TER using
the statistical flux partitioning routine described in section 3.2,
herein referred to as ‘‘T-based priors.’’ The standard
deviation for FR is fixed-in-time at 3 mmol m�2 s�1, as
described in section 3.2. All the other prior parameter
values (FA, Dcanopy, dN, b) are the same as fixed-in-time
priors. Estimates of TER from the nonparametric flux
partitioning routine were not used as a prior mean value
for FR.
[44] Each of these scenarios are used to generate Bayesian

parameter estimates of ~m at half-hourly timescales. As a
result, two sets of posterior parameter mean values and
standard deviations were generated: (a) half-hourly esti-
mates derived from fixed-in-time prior values, (b) half-
hourly estimates derived from T-based prior values. We
also ran an additional Bayesian parameter estimation routine
at daily time steps from 9 AM-3 PM local time, representing
an aggregated midday estimate of ~m. Since the conclusions
from the daily Bayesian parameter estimates did not differ
from those based on the half-hourly estimates, these results
are not discussed.

3.4. A New Application of Bayes’ Theorem to
F Partitioning

[45] There are three important differences between this
study and that of Ogée et al. [2004]. First, there are orders of
magnitude more measurements of [CO2] and d13C measure-
ments available for this study than Ogée et al. [2004]. That
study used flask-collected data collected over a single diurnal
period. In contrast, for this study the [CO2] and d13C data
collected by TDL spectroscopy spans 104 days. This high-
resolution data led to 942 time periods that were isotope
flux-partitioned that span a wide range of meteorological
conditions. This data density allows for examination of both
diurnal patterns of FA and FR as well as bin-averaged diurnal
patterns over the study period.
[46] Second, the process model used in the Bayesian

parameter estimation differs from Ogée et al. [2004]. For
that study, equations (1) and (2) only were used in the
Bayesian parameter estimation. Here additional equations
describing Dcanopy are dN (see equation (14)) are included in
the process model for Bayesian parameter estimation.
[47] Third, the high-density data set allowed further

determination of dN than what was done in Ogée et al.
[2004]. In particular, Ogée et al. [2004] held the value of dN

constant over the diurnal pattern. For this study, dN is
Bayesian-estimated parameter determined every half-hour
from a Keeling-plot regression of [CO2] and d13C using all
sampling heights measured.

4. Results

[48] Our first objective was to generate Bayesian parameter
estimates of FA, FR, Dcanopy, dN, and b. At each time step,
the posterior correlation matrix E was also calculated.
In general, the posterior standard deviation of all the
parameters was reduced from the prior standard deviation
(results not shown), indicating that the data indeed
contained information that reduced the prior uncertainty of
the parameters.
[49] Figure 3 shows a subset of the partitioned data using

both non-Bayesian (Figures 3c and 3d) and Bayesian
(Figure 3e) techniques to determine flux partitioning esti-
mates. Overall a diurnal pattern in both posterior mean
estimates of FA and FR using either fixed-in-time or T-based
priors was produced. This is in agreement with other diurnal
patterns generated from isotope flux partitioning [Bowling
et al., 2001; Ogée et al., 2003b; Knohl and Buchmann,
2005]. A similar diurnal pattern for non-Bayesian statistical
flux partitioning of F into GEE and TER was generated
(Figure 3c). Figure 3d presents isotope flux partitioning
estimates generated without Bayesian parameter estimation
following the solution given in the Appendix of Bowling et
al. [2001]. Examining Figure 3a with Figures 3c–3e
suggests that FA (or GEE) has a diurnal pattern that
correlates with diurnal trends of photosynthetically active
radiation (QP), with FA (GEE) increasing from zero to a
midday maximum at noon.
[50] Figure 4 shows Bayesian values of FA and FR or GEE

and TER in the context of expected canopy biophysical
relationships. Half-hourly estimates of FA and FR are
grouped in incremental bins of photosynthetically active
radiation (QP) or air temperature and the mean value and
standard deviation of each bin are shown. Figure 4a shows
the binned data of QP versus FA. Figure 4c shows the binned
data of air temperature versus FR. In addition, Figures 4a
and 4c show the response of prior mean values of FA and FR

to QP and air temperature respectively. These values
were binned because examination of the half-hourly data
suggested a meaningful trend in the raw data (results not
shown), however this trend was masked due to measure-
ment stochasticity over the long time period (3 months).
Binning the results in this manner allows one to see the
underlying relationship in the fluxes [e.g., Greco and
Baldocchi, 1996]. Clearly, posterior estimates of FA and
FR generated from fixed-in-time priors were higher than
posterior estimates from T-based priors. Posterior estimates
of FA generated from both fixed-in-time and T-based priors
produced a saturating light response curve of FA (Figure 4a).
However, Bayesian estimates of FR from fixed-in-time
priors show no relationship with temperature, and the
temperature sensitivity of posterior estimates of FR from
T-based priors strongly matches prior parameter temperature
sensitivity (Figure 4c). For comparison, Figures 4b and 4d
show the QP or temperature response curve for F from Yi et
al. [2004].
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[51] Figures 3 and 4 suggest that the estimates of FA and
FR from the Bayesian parameter estimation routine are
dependent on the choice of prior parameters for FA and
FR. Consequently the data may not be able to independently
resolve these parameters. This is confirmed by examining
the posterior correlation matrix E. Taken as an ensemble
average of the entire sampling period, a graphical represen-
tation of E for posterior parameter estimates generated from
fixed-in-time prior values is shown in Figure 5. As the
covariance matrix was symmetric, only lower diagonal
entries of E are shown. Similar results for E using T-based
prior values were obtained and hence are not shown.
Figure 5 is structured so that the vertical axis of each
subplot represents the correlation of a posterior parameters
uncertainty to the parameters in the title of the top row. The
horizontal axis represents a particular time of day. If the
posterior parameter correlation between two different
parameters is zero, this implies the data set can adequately
resolve the two parameters. If this is not the case, some
linear combination of the parameters is resolved by the data

[Tarantola, 2005]. Hence prior parameter values or addi-
tional data related to the processes (or parameters) of
interest are needed to independently resolve the two param-
eters. Figure 5 shows that Dcanopy is positively correlated
with FA, but also negatively correlated with FR. Hence more
informative priors or additional data for Dcanopy would be
helpful in resolving this parameter.
[52] Figure 6 shows how the sum of GEE and TER

(Figure 6a) from statistical flux partitioning or Bayesian-
estimated FA and FR (Figure 6b) compare to measured F.
Figure 6c compares measured Fd to estimated Fd from the
left hand side of equation (2) using Bayesian estimated
parameters. Values of dN for the measured Fd were derived
from OLS regression using equation (6). In Figure 6 the
Bayesian estimated parameters were derived from fixed-in-
time prior values. Similar results for T-based priors were
derived and hence not shown.
[53] Shown in Figure 7 are the diurnal ensemble averages

of posterior parameter estimates of FA, FR, Dcanopy and dN
from fixed-in-time priors (empty symbols) and temperature

Figure 3. Half-hourly partitioning results and associated environmental variables from August 12–17,
2003. Nighttime periods are indicated with grey shading. (a) Photosynthetically active radiation (QP),
(b) air temperature (dashed line) and soil temperature (dash-dot line), (c) non-Bayesian statistical flux
partitioning of GEE and TER, and (d) non-Bayesian isotope flux partitioning of FA and FR. (e) FA and FR

obtained from Bayesian parameter estimation using fixed-in-time priors. Similar results for T-based priors
were obtained and hence not shown.
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based priors (solid symbols), along with measured dR and
the calculated isotopic disequilibrium (D = dA � dR).
Posterior estimates generated by both fixed-in-time and
T-based priors suggest that dA > dR or D > 0 at midday.
The prior isotopic disequilibrium was 0%, generated
from the prior values of Dcanopy = 17%, and dR � �25%,
with the average value of dA (�8%).

5. Discussion

5.1. Bayesian Parameter Estimation on Half-Hourly
Timescales

[54] One of the objectives of this study was to compare
isotope-partitioned fluxes of FA and FR to expected canopy
biophysical relationships. Figure 4a provides evidence that
FA is indeed a saturating function of incoming radiation,
even for posterior Bayesian estimates generated from either
fixed-in-time or T-based prior values. However, posterior
estimates of FR were only sensitive to temperature when
T-based prior values were used (Figure 4c). This difference

of the FR temperature sensitivity between fixed-in-time and
T-based prior values may arise from two possibilities:
(a) biological factors preventing the establishment of a
robust FR-temperature relationship, and (b) sensitivity of
the Bayesian parameter estimation routine to prior parameter
values.
[55] The temperature sensitivity of FR may not be as

strong as expected compared to the TER temperature
sensitivity. As discussed in section 1, scaling respiration
with temperature may be confounded by other covariates
such as moisture or substrate availability. The dynamic
microbial community at Niwot Ridge also confounds such
relationships [Monson et al., 2006], as each community may
have different temperature sensitivities on a seasonal time-
scale. While soil temperature may influence FR more than
air temperature, using soil temperature did not lead to more
robust functional relationships (results not shown). The
other environmental regression flux partitioning routines
in this study additionally use air temperature to determine

Figure 4. Regression of posterior Bayesian parameter estimates FA and FR against photosynthetically
active radiation (QP) and air temperature respectively. (a and c) Binned data of posterior estimates of
FA (FR) either from fixed-in-time prior values (triangles or diamonds) or temperature based priors (circles
or squares), along with the binned response curves of the fixed-in-time prior values (solid line) and
T-based priors (dashed line). Periods with QP less than 100 mmol m�2 s�1 were excluded from the
averaging. QP was binned in 100 mmol m�2 s�1 increments, and air temperature was binned in 2 C
increments. (b) Light response curves of F for fixed values of temperature at Niwot Ridge from Yi et al.
[2004], and (d) nighttime F measurements versus air temperature for the 2003 sampling period along with
the temperature response curve for TER at Niwot Ridge from Yi et al. [2004].
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TER, hence for consistency, regressions with air temperature
are presented in Figure 4c.
[56] Isotope partitioned FA matched other studies con-

ducted at Niwot Ridge to a first approximation. From
individual needle measurements for each of the dominant
conifer species at the site, Huxman et al. [2003] found
midsummer leaf-area based estimates of FA to be between
�2 to �5 mmol m�2 s�1 at leaf temperatures of 10–20�C
and saturating light, with variation in photosynthetic rates
among each of the dominant species. When scaled with
estimated LAI at Niwot Ridge (4.2 m2 leaf area m�2 ground
area [Monson et al., 2002]) these values range from �8 to
�20 mmol m�2 s�1 for FA. These estimates assume photo-
synthesis scales linearly with leaf area, however other
factors (e.g., nonlinear light penetration through the canopy)
may affect our simplistic scaling arguments [Dang et al.,
1997].
[57] For comparison, Figure 4b shows Niwot Ridge light

response curves of F and QP from Yi et al. [2004] and
Figure 4d shows nighttime measurements of F and the
Niwot Ridge temperature response curve of nighttime F
from Yi et al. [2004]. Our isotope-derived FA and FR fluxes

are generally consistent with the independent methods of
Reichstein et al. [2005a] and Yi et al. [2004] (Figure 4).
However they appear to be particularly sensitive to the
choice of prior values.
[58] The sensitivity to prior values can be explained by

examining Figure 5. Note how Figure 5 has a decoupling of
the correlations of the parameters FA, FR, and Dcanopy from
the parameters dN and b. This is most likely due to the fact
that equation (14) is highly coupled in FA, FR, and Dcanopy,
mildly so with dN, and not at all with b. Figure 5 suggests
that at a worst case scenario, the data can resolve dN and b
from FA, FR, and Dcanopy. The resolution of dN and b from
the other parameters most likely arises from the fact that at
each half hour in the model for G, there are 9 separate
equations (equation (6) at each measurement height) for
these two parameters. The set of equations to determine dN
and b by itself is typically a well-posed and overdetermined
mathematical system for dN and b. On the other hand we
have exactly three equations (equation (14)) for the three
parameters FA, FR, and Dcanopy.
[59] The sign of D is potentially very important for

carbon cycle studies. Randerson et al. [2002] showed that

Figure 5. Lower triangular entries of the posterior correlation matrix derived from fixed-in-time prior
values, taken as an ensemble average over the summer 2003 sampling period. See section 3.3 for a
description of the posterior correlation matrix.
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a 0.2% change in the global-scale analogy of Dcanopy could
alter the magnitude of the inferred terrestrial carbon sink by
25% (0.5 Pg C yr�1), provided this 0.2% change was
correlated with changes in GEE. Estimates of Dcanopy from
carbon cycle modeling studies at ecosystem, regional, or
global scales generally have Dcanopy = 17–19% [Ciais et
al., 1995; Randerson et al., 2002; Baldocchi and Bowling,
2003; Scholze et al., 2003; Suits et al., 2005], indicating for
C3 dominated systems that dA = dA � Dcanopy � �8�18 =
�24 to �26%, or that dA < dR (D < 0). Negative values of
D are consistent with the widely-accepted concept of
isotope disequilibrium between terrestrial photosynthesis
and respiration. The d13C of atmospheric CO2 has become
more negative over the last two centuries due to the 13-C
Suess effect [Francey et al., 1999]. Since a large component
of the respiratory flux consists of carbon that resides in the

biosphere for many decades [e.g., Trumbore, 2000], d13C of
the photosynthetic flux is expected to be more negative than
the respiratory flux (D < 0 [Fung et al., 1997; Yakir, 2004]).
[60] In contrast, using the biophysical model ISOLSM to

simulate carbon fluxes of CO2 and 13CO2 in a pine forest,
Aranibar et al. [2006] found dA > dR. A study by Tissue et
al. [2006] found leaf-level estimates of D to be 20% and
values of dR = �26%. Given canopy d13C ratios are
typically �8%, this suggests for Tissue et al. [2006] study
that dA � Dcanopy � �28%, indicating dA < dR. However,
measurement-based isotope studies (including this study)
frequently generate estimates of dA > dR [Bowling et al.,
2001; Miller et al., 2003; Bowling et al., 2003a; Ogée et al.,
2003b; Knohl and Buchmann, 2005; Lai et al., 2005; Zhang
et al., 2006]. With the data set used in the present study,
Bowling et al. [2005] provided evidence for a consistent
enrichment of canopy dR compared to ground dR. If canopy
dR reflects respiration of recent assimilation, and ground dR
is more reflective of heterotrophic respiration, then this
provides support for dA > dR. Furthermore, Scartazza et
al. [2004] measured phloem sugars over the course of the
growing season and consistently found these were more
enriched than dR. If the isotope ratio of phloem sugars
reflects dA, then this implies dA > dR. A sustained difference
between dA and dR provides support for the hypothesis of
post-photosynthetic fractionations [Ghashghaie et al., 2003;
Tcherkez et al., 2003; Badeck et al., 2005; Tcherkez and
Farquhar, 2005; Nogués et al., 2006]. We expect long-term
(years to centuries) estimates of dA and dR to be the same
because of mass conservation at the ecosystem scale. The
possibility of unknown fractionations complicates this pic-
ture considerably.
[61] A common assumption of the isotopic method is that

dR is constant during the day (we have made this assump-
tion in the present study). This assumption may be incorrect.
Ogée et al. [2004] discussed the appropriateness of using
nighttime dR to estimate the isotopic signature of daytime
nonfoliar respiration (dR) and partially addressed this
assumption by optimizing for dR in the study. However in
Ogée et al. [2004] Bayesian parameter estimates of dR
showed little diurnal variation (Figure 5 in Ogée et al.
[2004]). In the absence of direct measurements of the
isotopic signature of nonfoliar respiration, addressing the
assumption that dR adequately represents the isotopic sig-
nature of daytime nonfoliar respiration is beyond the scope
of the present study.
[62] As stated above, statistical flux partitioning produces

estimates of GEE and TER, whereas the isotope method
produces estimates of net photosynthetic uptake FA
(= GEE + FL) and nonfoliar respiration FR (= TER � FL).
As a result, temperature-based estimates are inappropriate
for use as a prior for FR since foliar respiration is treated
differently by the isotope [Lloyd et al., 1996] or temper-
ature-based [Reichstein et al., 2005a] partitioning methods.
However, as Figures 3 and 7 demonstrate, Bayesian
parameter estimates from either fixed-in-time or T-based
prior values yielded similar results within uncertainty.
[63] For this study, all the Bayesian parameter estimates

cannot be independently resolved from the data (Figure 5).
This implies that prior values for this application influence
posterior parameter estimates. Yet if error bars were plotted
in Figure 7, the results of FA, FR, Dcanopy, and D for either

Figure 6. Comparison of measured and derived fluxes
from Bayesian parameter estimation. (a) Comparison of
measured F to derived F from statistical flux partitioning
estimates of GEE and TER. The best fit line has slope 1.00,
r = 1. (b) Comparison of measured F to derived F from
Bayesian-generated isotope flux partitioning estimates
derived with fixed-in-time prior values. The best fit line
has slope 1.01, r = 0.97. (c) Comparison of measured Fd to
derived Fd for Bayesian-generated isotope flux partitioning
estimates derived with fixed-in-time prior values. The best
fit line for has slope 0.80, r = 0.94. In all panels the 1:1 line
is shown.
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parameter estimation scenario would be in agreement.
Given the importance of these parameters in reconciling
global carbon budgets, large uncertainties in them are
unacceptable.
[64] Figure 4c shows that the temperature sensitivity of

FR is dependent on the choice of prior values used in the
Bayesian parameter estimation routine. This sensitivity to
prior values is confirmed by examining the posterior corre-
lation matrix (Figure 5). This means that isotope flux
partitioning, when combined with Bayesian parameter esti-
mation, either 1) provides no information about the sensi-
tivity of nonfoliar respiration to temperature, or 2) provides
evidence that nonfoliar respiration is controlled by factors
other than temperature (such as soil moisture, substrate
quality, phenology, etc.).
[65] Sensitivity to prior values is enhanced when there are

exactly as many independent observations as unknowns
(which is true for a given half hour in equation (14)).
Estimates of D derived from Bayesian parameter estimates
of Dcanopy suggest that the posterior isotopic disequilibrium
(Figure 7f) at Niwot Ridge forest is near zero [Ogée et al.
[2004]]. If this is the case, the system of equations is close
to being underdetermined with equation (2) being a multiple
of equation (1), and hence is especially sensitive to prior
parameter values. This conclusion is also supported with
Figure 5 and in addition shows that it is difficult to
independently estimate dN and b from the data.

5.2. Evaluation of Bayesian Parameter Estimation for
Isotope Flux Partitioning

5.2.1. Limitations of the Isotope Flux Partitioning
Method
[66] There are at least four potential limitations to the

isotope flux partitioning method that prevent its use to
estimate FA and FR on a sub-daily timescale. First, as
previously discussed, the isotopic content of the photosyn-
thetic flux may be similar to the isotopic content of the
respiratory flux (D = 0) in some (or most) ecosystems

[Bowling et al., 2001; Ogée et al., 2003b]. Ogée et al.
[2003b] and Baldocchi and Bowling [2003] suggested that
D is non-zero in midafternoon, allowing for the possibility
of a time-varying D that permits partitioning during at least
part of the day. This study strongly supports this claim as
Figure 7f shows the highest disequilibrium around midday.
[67] The second limitation of isotope flux partitioning is

accurate determination of net ecosystem exchange of
13CO2, or the isoflux (Fd, see equation (2)), which cannot
be measured directly at present. The isoflux has been
estimated with a variety of techniques (eddy covariance/
flask [Bowling et al., 1999a, 2001; Ogée et al., 2003b],
HREA [Bowling et al., 1999b], flux-gradient [Yakir and
Wang, 1996; Bowling et al., 2003a], flux-ratio [Griffis et al.,
2004], or biophysical models [Baldocchi and Bowling,
2003; Ogée et al., 2003b]). Any one of these techniques
can be combined with measurements of [CO2] and d13C to
serve as a proxy for Fd. Bowling et al. [2003a] directly
compared eddy covariance/flask,HREA, and the flux-gradient
techniques in the same study and found convergent results.
However, until direct measurement of the 13CO2 flux can be
done, we must be critical of the uncertainties of each
method. If direct measurement of Fd were possible by eddy
covariance measurements of 13CO2 flux [Saleska et al.,
2006], this would eliminate estimation of dN and b and
potentially improve our ability to resolve FA, FR, and
Dcanopy from the data. We examined how better measure-
ments of the isoflux could potentially improve our results by
reducing the uncertainty of Fisostorage by decreasing the prior
standard deviations of dN and b by a factor of 10. The
posterior correlation matrix showed an improvement in the
data to independently determine FR and Dcanopy, however
correlations between FA and FR and FA and Dcanopy still
existed (results not shown).
[68] A third limitation concerns scaling of leaf-level

quantities to the canopy. Despite the fundamental impor-
tance of Dcanopy and D, our results do not provide a clear
understanding of the nature of these parameters at the

Figure 7. Comparison of diurnal trends for Bayesian posterior parameter estimates generated with
fixed-in-time (circles) or T-based (solid squares) priors, taken as an ensemble average over the entire
sampling period. Error bars were omitted from each plot for clarity. Figure 7f contains the isotope
disequilibrium D = dA � dR.
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ecosystem scale. At the leaf-level, equations describing
Dcanopy have been extensively studied [Farquhar et al.,
1982]. In the absence of biophysical models [Baldocchi and
Bowling, 2003; Ogée et al., 2003a] that account for leaf-
level scaling to the canopy, it is unknown whether or not the
same leaf-level relationship for Dcanopy holds at the ecosys-
tem level. Given the discrepancy between the sign of the
isotopic disequilibrium (D > 0 for isotope partitioning
studies, D < 0 for leaf-level or global-based modeling
studies), more work needs to be done to investigate scaling
assumptions and estimation of Dcanopy. If we had a better
experimental understanding of Dcanopy, then the prior value
could be better constrained and we might have more
confidence in our results.
[69] A final limitation of isotope flux partitioning is that

accurate estimation of the overall canopy conductance
(g, defined by equation (8)) is critical for a successful
partitioning exercise. This was first noted in Bowling et
al. [2001], who used a form of g that did not include
diffusion in the mesophyll to the sites of photosynthesis.
Ogée et al. [2003b] demonstrated the value of incorporating
mesophyll conductance in the equation for g. By including
these effects, Knohl and Buchmann [2005] have been able
to isotopically partition F into FA and FR for a two-week
timeseries. We would expect mesophyll conductance (gm) to
vary in time. However measurements of gm are difficult to
make and hence the diurnal or seasonal variation in gm is
not well known [Warren and Adams, 2006; Warren, 2006].
5.2.2. Limitations of the Application of Bayesian
Parameter Estimation to Isotope Flux Partitioning
[70] In addition to the limitations of the isotope flux

partitioning method, there are limitations of the application
of the Bayesian parameter estimation method applied to
isotope flux partitioning. As shown in section 5.1 the
approach of Ogée et al. [2004] was expanded by estimating
Dcanopy, dN, and b in addition to FA and FR. However in
spite of these refinements, the Bayesian parameter estima-
tion did not show an improvement in our ability to inde-
pendently estimate parameters from this data (Figure 5).
[71] Isotope flux partitioning estimates can potentially be

used to determine ecosystem-scale functional relationships.
Our Bayesian-generated estimates (Figure 4e) produced
results basically indistinguishable from the statistical
(Figure 4c) or isotope (Figure 4d) non-Bayesian flux
partitioning methods. Examining Bayesian parameter esti-
mates derived from fixed-in-time priors generates an inter-
esting result. Bayesian parameter estimates of FR were
sensitive to temperature only when the prior values for FR

were temperature based (Figure 4c). If temperature is the
fundamental control on nonfoliar respiration for this eco-
system, then clearly isotope flux partitioning does not work.
However, if the isotope partitioning method is correct, then
a simplistic temperature dependence for nonfoliar respira-
tion cannot be correct for this subalpine forest.
[72] Figure 6 compares how well the different flux

partitioning routines reproduce measured F (Figures 6a
and 6b) or Fd (Figure 6c). In general, Bayesian parameter
estimation was able to reproduce F more than Fd as
evidenced by the higher r value for F when comparing
measured to estimated F and Fd. This result is also indic-
ative of our ability to measure F with far more confidence
than Fd.

[73] The lack of multiple, independent equations describ-
ing FA, FR and Dcanopy is a mathematical limitation to the
isotope partitioning method. Because of this, Bayesian
parameter estimates are highly sensitive to prior parameter
values. This limitation has previously been noted [Ogée et
al., 2004], and one suggestion was that inclusion of oxygen
isotope measurements (d18O of CO2) can help constrain
parameter estimates of FA and FR [Yakir and Wang, 1996].
Concurrent measurements of d18O data were not made in
this study. Using Bayesian parameter estimation to estimate
a single daily value of the target parameters is one way to
test whether multiple, independent measurements can re-
duce the sensitivity to prior parameters. The posterior
correlation matrix E from daily parameter estimation had
a similar structure as Figure 5, and hence the results are not
shown in this study. When isotope flux partitioning is
compared to statistical regressions of temperature and F,
over the course of a night, as many as 15 independent paired
measurements of F and air temperature are used to deter-
mine an exponential relationship that can have as few as two
parameters [Reichstein et al., 2005a].
[74] We expect posterior estimates of FA 
 0 and FR � 0,

however, some half-hourly periods generated results that
produced non-sensible results of FR < 0 (Figure 3e). We
note that some of these time periods where FR < 0 also
occurred for the non-Bayesian isotope flux partitioning
estimates of FA and FR (Figure 3d). This suggests exami-
nation of the isotope partitioning model to determine what
causes this discrepancy in sign, as the Appendix in Bowling
et al. [2001] showed that solutions of the isotope partition-
ing model yields a unique estimate for the fluxes. Non-
sensible Bayesian posterior estimates are also influenced by
the assumption that the prior distributions of FA and FR are
normal. Mathematically, a normally distributed random
variable has no sign restrictions. If the prior mean value is
close to zero with a large variance, it is entirely feasible (but
biologically meaningless) that the Bayesian parameter esti-
mate be of opposite sign than expected. This limitation
could be overcome with the implementation of biophysi-
cally realistic prior distributions for FA and FR.
[75] Three modifications to the Bayesian parameter esti-

mation method could take additional advantages of the
information contained in high-resolution measurements of
F, [CO2] and d13C. First, the model could be constrained
by assuming that parameters (namely FA and FR) vary
smoothly in time under some given model and apply
techniques such as a Kalman filter to estimate parameters
[Peters et al., 2005; Gove and Hollinger, 2006]. This
effectively reduces the number of degrees of freedom and
helps to constrain the target parameters. Second, different
assumptions on the probability distributions of the prior
parameter values and data could prevent non-sensible
Bayesian parameter estimates (e.g., lognormally distributed
FA and FR would prevent Bayesian estimates of FA > 0 and
FR < 0). Third, different process models could be used to
constrain the fluxes to environmental variables (e.g., FR

functionally dependent on soil temperature, soil moisture,
plant phenology, etc.). These modifications might require
the use of Monte Carlo techniques to simulate posterior
parameter distributions [Gelman et al., 1995; Knorr and
Kattge, 2005; Braswell et al., 2005; Sacks et al., 2006; Xu et
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al., 2006], as the analytical Bayesian parameter estimate
(equations (17) and (18)) might not hold.
[76] The success and further development of the isotope

flux partitioning method will require advances in understand-
ing in several areas. Isotope partitioning results are likely to
be substantially improved with greater understanding of
(a) the isotopic signature of daytime nonfoliar respiration
and (b) isotopic disequilibrium, particularly with regard to
resolving conflicting estimates of D in ecosystem and global
scale studies. Application of the isotope partitioning method
in ecosystems expected to show larger disequilibrium (e.g., a
mixed C3–C4 ecosystem) and investigation of seasonal
variation in D in contrasting biomes would elucidate how
environmental variation and phenology influence D. Such
studies may lead to important new understanding of the
magnitude of the inferred terrestrial carbon sink [Randerson
et al., 2002]. There is also a direct need to understand diurnal
variation and ecosystem-scale importance of (a) mesophyll
conductance [Warren, 2006; Warren and Adams, 2006] and
(b) post-photosynthetic fractionations [Ghashghaie et al.,
2003; Tcherkez et al., 2003; Badeck et al., 2005; Tcherkez
and Farquhar, 2005; Nogués et al., 2006]. Such studies will
improve our overall knowledge of ecosystem-scale isotopic
processes, and as a result will improve the overall effective-
ness of isotope flux partitioning.

6. Conclusions

[77] A Bayesian optimization method was combined with
an isotopic partitioning method to examine the fluxes of net
photosynthesis and nonfoliar respiration in a high-elevation
subalpine forest in Colorado. Results were generally con-
sistent with fluxes obtained from statistical regression
methods between fluxes and climatic variables, including
the methods of Yi et al. [2004] and Reichstein et al. [2005a].
However, examination of the posterior correlation matrix
revealed that the data were not able to independently resolve
all the parameters.
[78] The results of this study confirm the conclusions of

Ogée et al. [2004] that (a) a small disequilibrium between
FA and FR limits the effectiveness of isotope flux partition-
ing on a diurnal timescale by generating unacceptable
uncertainties for FA and FR, (b) poor characterization of
key parameters (whole-canopy photosynthetic discrimina-
tion, mesophyll conductance, and the isoflux) and (c) the
lack of independent multiple observations prevent effective
implementation of the Bayesian approach. These results
are supported with the large density of data even when
bin-averaged into mean diurnal patterns. We advocate
that future isotope flux partitioning studies address and
investigate these limitations through (a) utilization of addi-
tional measurements (such as C18O16O measurements) and
(b) better characterization of dR during the daytime in order
to improve upon the isotope flux partitioning method.

Appendix A: Bayesian Parameter Estimation of
Daytime Isotopic Mixing Relationships

[79] Here we provide an example to illustrate the Bayesian
approach. We focus solely on parameters for daytime
isotopic mixing relationships (namely dN and b). Further-
more isotopic mixing lines can be characterized as a linear

Bayesian parameter estimation problem, facilitating their
analysis. For this example we demonstrate how to set up
and calculate the fundamental components to a Bayesian
parameter estimation problem (e.g., equations (17) and (18)).
The [CO2] and d

13C data utilized for this example are shown
in Figure 2b.
[80] Equation (5) gives a functional relationship between

measurements of [CO2] and d13C to mixing line parameters
dN and b. Zobitz et al. [2006] showed that because [CO2] is
measured more precisely than d13C, dN uncertainty is influ-
enced more by d13C uncertainties than [CO2] measurement
uncertainty. This assumption allows for the estimation of dN
and b to be characterized as a linear parameter estimation
problem. (See Tarantola [2005, p. 273] for an example if
[CO2] and d13C both had measurement uncertainties.)
[81] For this study, [CO2] and d

13C were measured at nine
different heights. Hence the model relating the parameters to
the data is the following matrix equation:

1 1=C1

1 1=C2

1 1=C3

1 1=C4

1 1=C5

1 1=C6

1 1=C7

1 1=C8

1 1=C9

2
6666666666664

3
7777777777775

dN
b

� �
¼

d1
d2
d3
d4
d5
d6
d7
d8
d9

2
6666666666664

3
7777777777775

ðA1Þ

G~m ¼~d; ðA2Þ

where for convenience Ci and di represents a measurement
of [CO2] and d13C. We make the assumption that each
measurement of d13C is independent and uncorrelated to the
other measurements and is normally distributed about di
with standard deviation 0.15%. Hence, the covariance
matrix is a diagonal matrix:

CD ¼

s2
d 0 0 0 0 0 0 0 0

0 s2
d 0 0 0 0 0 0 0

0 0 s2
d 0 0 0 0 0 0

0 0 0 s2
d 0 0 0 0 0

0 0 0 0 s2
d 0 0 0 0

0 0 0 0 0 s2
d 0 0 0

0 0 0 0 0 0 s2
d 0 0

0 0 0 0 0 0 0 s2
d 0

0 0 0 0 0 0 0 0 s2
d

2
6666666666664

3
7777777777775

ðA3Þ

[82] If measurements of d13C were correlated with each
other, then off-diagonal terms in equation (A3) would arise.
The prior mean value and standard deviation for dN andb from
Table 3 can be organized into the vector ~mprior and CM

assuming that prior values dN and b are normally distributed:

~mprior ¼
�24:5
6100

� �
ðA4Þ

CM ¼ 102 0

0 10002

� �
: ðA5Þ
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[83] Similar to CD, we assume there is no a priori
correlation between dN and b, hence diagonal elements of
CM are zero. Using the data in Figure 2b, the posterior
Bayesian parameter estimate and covariance matrix can be
calculated with equations (17) and (18):

~m* ¼ �24:2
6004

� �
ðA6Þ

~CM ¼ 2:52 �2352

�2352 9422

� �
: ðA7Þ

[84] Since the off-diagonal terms in ~CM are non-zero,
parameter estimates are correlated. The degree that these
estimates are correlated can be found from the posterior
correlation matrix, whose off diagonal term is �0.99. The
best fit line using the values of ~m* as shown as a dashed line
in Figure 2b.
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