
Forecasting net ecosystem CO2 exchange in a subalpine forest
using model data assimilation combined with simulated climate
and weather generation

Laura E. Scott-Denton,1 David J.P. Moore,2 Nan A. Rosenbloom,3 Timothy G.F. Kittel,4

Sean P. Burns,3,5 David S. Schimel,6 and Russell K. Monson1,2,7

Received 25 September 2012; revised 4 February 2013; accepted 8 February 2013.

[1] Forecasting the carbon uptake potential of terrestrial ecosystems in the face of future
climate change has proven challenging. Process models, which have been increasingly used
to study ecosystem-atmosphere carbon and water exchanges when conditioned with
tower-based eddy covariance data, have the potential to inform us about biogeochemical
processes in future climate regimes, but only if we can reconcile the spatial and temporal
scales used for observed fluxes and projected climate. Here, we used weather generator and
ecosystem process models conditioned on observed weather dynamics and carbon/water
fluxes, and embedded them within climate projections from a suite of six Earth Systems
Models. Using this combination of models, we studied carbon cycle processes in a subalpine
forest within the context of future (2080–2099) climate regimes. The assimilation of daily
averaged, observed net ecosystem CO2 exchange (NEE) and evapotranspiration (ET) into the
ecosystem process model resulted in retrieval of projected NEE with a level of accuracy that
was similar to that following the assimilation of half-daily averaged observations; the
assimilation of 30min averaged fluxes or monthly averaged fluxes caused degradation in the
model’s capacity to accurately simulate seasonal patterns in observed NEE. Using daily
averaged flux data with daily averaged weather data projected for the period 2080–2099, we
predicted greater forest net CO2 uptake in response to a lengthening of the growing season.
These results contradict our previous observations of reduced CO2 uptake in response to
longer growing seasons in the current (1999–2008) climate regime. The difference between
these analyses is due to a projected increase in the frequency of rain versus snow during
warmer winters of the future. Our results demonstrate the sensitivity of modeled processes to
local variation in meteorology, which is often left unresolved in traditional approaches to
earth systems modeling, and the importance of maintaining similarity in the timescales used
in ecosystem process models driven by downscaled climate projections.
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1. Introduction

[2] The uptake of atmospheric CO2 by forest ecosystems
is the largest and most persistent component of the terrestrial
global carbon sink [Pan et al., 2011]. Forest inventory data,
remotely sensed satellite images, and computer models have
provided evidence that regional forest carbon sinks are
weakening, and some studies have shown that this weaken-
ing is due to changes in climate and associated effects on
physiological processes in plants and soils [Canadell et al.,
2007; Zhao and Running, 2010; Gurney and Eckels,
2011]. Other studies have provided evidence that sinks have
not weakened in their overall strength but that they have be-
come more variable in their interannual responses to climate
variation [Knorr, 2009; Gloor et al., 2010; Ballantyne et al.,
2012]. Accurate forecasts of climate change and its effect on
carbon sinks cannot be made without an understanding of
the coupling between forest metabolism and specific climate
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variables, and in particular, the role of nonlinear responses
as metabolic processes respond to climate change [IPCC,
2007]. In fact, it is the nonlinear responses in both the
first-order and higher order interactions with climate that
have proven to be the most difficult aspects of future climate
projections [Meir et al., 2006; Heimann and Reichstein,
2008; Friedlingstein and Prentice, 2010; Milcu et al.,
2012]. For example, Medvigy et al. [2010] found that the
nonlinearities that characterize the physiological responses
of processes such as photosynthesis, respiration, and transpi-
ration to variable climate can have large effects on projec-
tions of regional carbon balance, and these responses are
often missed in the coarse spatiotemporal resolution used
in global Earth Systems Models (ESMs).
[3] The coupling between forest carbon exchange

processes and systematic changes in future climate can be
explored through existing ESMs [Moss et al., 2010; Taylor
et al., 2012]. When fully coupled to global climate simula-
tion, land surface processes are simulated at relatively short
time steps (subhourly-to-hourly) [e.g., Washington and
Meehl, 1984; Oleson et al., 2008], but results are rarely an-
alyzed at these shorter timescales. Rather, the results of such
simulations are assessed across months or multiple decades,
or they are used to establish future steady states of the earth
system at a defined endpoint [e.g., Booth et al., 2011]. In or-
der to explore process-climate interactions in more nuanced
scenarios, the components of land surface models are often
developed and run “offline,” where they can be parameter-
ized and validated using observations of a more restricted
spatiotemporal scope, and then reinserted into ESMs to pro-
ject future states of the entire global system [e.g., Thornton
and Zimmerman, 2007; Lawrence et al., 2007]. Recently, a
new generation of ecosystem process models has emerged,
which are intended specifically for use with tower flux net-
works that have generated observations of ecosystem-
atmosphere carbon and water fluxes for a decade or longer
[e.g., Stöckli et al., 2008; Williams et al., 2009]. These
models have been deployed as a means of assessing seasonal
and interannual controls over the photosynthetic and respira-
tory fluxes within a single ecosystem [e.g., Braswell et al.,
2005; Sacks et al., 2006, 2007] or in ecosystems and biomes
extending across climate gradients [e.g., Schwalm et al.,
2010; Richardson et al., 2012]. Most often, models of this
type have been used for the purpose of inverse parameter
estimation, including the partitioning of observed net eco-
system CO2 exchange (NEE) into estimates of its component
photosynthetic and respiratory processes [e.g., Stoy et al.,
2005; Fox et al., 2009; Richardson et al., 2010; Schwalm
et al., 2010; Dietze et al., 2011; Schaefer et al., 2012]. These
types of models have not yet been implemented in fully
coupled ESMs; but when properly used for parameter esti-
mation, they provide the potential to explore the response
of ecosystem-atmosphere carbon fluxes to future climate
change [Keenan et al., 2012].
[4] The process of posterior parameter estimation is a type

of inverse modeling—observations from a flux time series
are assimilated into the model and compared to model
projections of the flux following iterative adjustments in
parameter values. After numerous iterations, the parameter
set that produces the least error between observations and
projections is considered “most parsimonious.” Often,
several alternative sets of parameters will provide similarly

low levels of error, thus permitting one to estimate “allowed
variance” for each optimized parameter [Braswell et al.,
2005]. Once parameter values have been optimized through
this inverse process, the model can be run in forward mode
to predict fluxes given a prescribed set of meteorological
drivers; this approach improves accuracy of model prognosis
at temporal scales that match those of the assimilated data
[Braswell et al., 2005; Stoy et al., 2005; Schwalm et al.,
2010; Dietze et al., 2011]. With parameter estimation condi-
tioned on the timescale of observations during the inverse
phase of the process, however, comes the necessity to gener-
ate meteorological drivers at the same timescale for use dur-
ing forward projections. Previous studies have indeed shown
the potential for error when mismatches are allowed between
the timescales used in parameter estimation and subsequent
forward deployment [Stoy et al., 2005; Richardson et al.,
2010]. This condition has rendered the use of these models
difficult for forecasting carbon cycle processes in future
climate regimes and created the need to generate downscaled
climate data capable of driving flux predictions [e.g., Ueyama
et al., 2009; Jansson et al., 2008; Grant et al., 2011].
[5] Here, we present an analysis in which we have

confronted these challenges by using a pair of weather gen-
erator models to produce multiple realizations of future
weather within a single projected climate scenario. Weather
generator models have been used in numerous past studies
for the purpose of downscaling projections from climate
models [for review, see Wilks and Wilby, 1999; Wilks,
2012]. In this study, our interest was not to further develop
the weather generator approach per se but rather to couple
weather generation to an ecosystem process model to pro-
vide an improved match between the scales of assimilated
flux observations and meteorological drivers for a projected
future climate regime. The responses of forest metabolism to
weather variables were predicted with a simple ecosystem
process model (Simplified Photosynthesis and Evapotranspi-
ration; SIPNET). By combining SIPNET with an ensemble
of future weather projections, we were able to estimate mul-
tiple responses of NEE that were equally justified within the
context of regional climate change. We used this approach to
predict future NEE for an evergreen, subalpine forest in the
Rocky Mountains of Colorado (the Niwot Ridge AmeriFlux
site). This forest has been the site of numerous past studies
that have focused on the relations between carbon fluxes
and seasonal-to-interannual climate variation [e.g., Monson
et al., 2002; Monson et al., 2005; Sacks et al., 2007; Moore
et al., 2008; Hu et al., 2010b]. From the form of these previ-
ously studied relations, several predictions have been gener-
ated concerning the possible responses of forest-atmosphere
carbon exchanges in the face of climate change. Here, we
were able to evaluate these predictions using model
approaches with explicitly defined climate and weather
projections for the period 2080–2099.

2. Methods and Materials

2.1. Site Description

[6] Observations of CO2, H2O, and energy fluxes have been
made using the eddy covariance approach at the Niwot Ridge
AmeriFlux Site. The site is located in the Front Range of the
Rocky Mountains of Colorado (40�105800N; 105�3204700W)
at 3050m elevation. The site is vegetated by a subalpine
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forest dominated by three tree species: lodgepole pine
(Pinus contorta), subalpine fir (Abies lasiocarpa), and
Engelmann spruce (Picea engelmannii). The forest was
logged in the early 20th century and has been allowed
to aggrade since that time. The site straddles the ecotone
between the pine-dominated forest to the east (downslope
from the flux tower) and the spruce/fir-dominated forest
to the west (upslope from the flux tower). For a more de-
tailed description of forest structure including a treatment
of spatial heterogeneity, see Monson et al. [2010]. An-
nual precipitation averages 800mm, with approximately
65% falling as snow. The mean annual temperature is
1.5�C. For a more detailed description of the site’s phys-
ical and meteorological characteristics, see Monson et al.
[2002; 2005] and Turnipseed et al. [2003]. The tower
is located less than 1 km from the Niwot Ridge Long
Term Ecological Research (LTER) C1 climate station,
where meteorological data have been collected since
1952 (http://culter.colorado.edu/NWT/).

2.2. Flux Measurements and SIPNET Modeling

[7] Turbulent flux measurements at the site have been
described in detail in several previous publications [Monson
et al., 2002; Turnipseed et al., 2002; 2003; Yi et al., 2008;
Burns et al., 2011]. Briefly, we combine the turbulent flux
for CO2 with canopy storage to calculate half-hourly averaged
values for NEE. The 30min averaged data are filtered, remov-
ing points with inadequate turbulence (determined as the
21.5m surface friction velocity, u*, below 0.2m s�1) or with
instrument failure. All 30min fluxes are available along with
appropriate flags for gap-filled corrections and climate data
(version 2011.04.20) at the Niwot Ridge AmeriFlux Web
page (http://urquell.colorado.edu/data_ameriflux/).
[8] The SIPNET (Simplified Photosynthesis and Evapo-

transpiration) model is a simplified version of the PnET
(Photosynthesis and EvapoTranspiration) model [Aber and
Federer, 1992; Aber et al., 1995; 1996]. In SIPNET, we par-
tition ecosystem carbon into two pools: soil carbon and veg-
etation, the latter being further subdivided into plant “wood”
and plant “leaf” carbon. We simulate transitions among
these pools and their exchange with the environment as
CO2 fluxes, including those of photosynthesis, autotrophic
respiration, and heterotrophic respiration. Descriptions of
model logic and past efforts to validate parameter estimates
have been provided in several past studies [Braswell et al.,
2005; Sacks et al., 2006; 2007; Moore et al., 2008; Zobitz
et al., 2008; Hu et al., 2010a], and we direct the reader to
those studies for a more complete assessment of model per-
formance. Dynamics in ecosystem H2O pools are resolved
through consideration of rain and snowmelt water, and mod-
ified to account for leaf interception, canopy throughfall, soil
infiltration, and drainage [Sacks et al., 2006; Moore et al.,
2008]. Following resolution of the H2O budget, available
soil water is used to estimate evaporation and transpiration
fluxes, and to constrain photosynthetic and respiratory CO2

fluxes. The SIPNET model is driven by six meteorological
variables that were taken from the Niwot Ridge AmeriFlux
Web page (see web address above): air temperature at
21.5m, soil temperature at 10 cm depth, relative humidity
at 21.5m, photosynthetically active radiation (PAR) above
the canopy, wind speed at 21.5m, and precipitation.

[9] We used the Metropolis-simulated annealing algo-
rithm to optimize parameters governing the initial state
and time evolution of SIPNET [Metropolis et al., 1953].
Initial values and boundaries for the parameters were de-
fined through a combination of literature values, best
guesses, and actual measurements. We bounded each pa-
rameter within a range (a uniform “prior distribution”) that
is biologically or physically possible based on previous
knowledge about the process, therefore eliminating solu-
tions that violate prior knowledge. The ranges surrounding
each parameter were similar to those used in past studies
[Sacks et al., 2006; Moore et al., 2008]. Model optimiza-
tion consisted of performing a quasi-random (subject to
some progressive narrowing of parameter boundaries) walk
through the multidimensional parameter space to find the
parameter set that caused the model to generate the “best
match” of projected NEE with observed NEE. We
conducted the analysis across all years of available data.
Here, “best match” is defined as the model output that max-
imizes likelihood (L) as follows:

L ¼
Yn
i¼1

1ffiffiffiffiffiffi
2p

p
s
e� xi�mið Þ2=2s2 ; (1)

where n is the number of data points, xi is the observed flux
summed over time step i, mi is the modeled flux in time step i
and is the error (one standard deviation) on each data point,
relative to the model prediction. Our standard practice was to
filter out those 30min periods in which over 50% of the data
were gap-filled, meaning that for this study, 77% of the
available averaging periods across all 11 years were in-
cluded. We estimated at each step of the optimization [Hurrt
and Armstrong, 1996]. For a given model output (that is, a
given set of mi values), the value of that maximizes L (which
we denote e) was determined by the following:

se ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn
i¼1

xi � mið Þ2
s

: (2)

[10] Due to the high density of assimilated data when ob-
servation time series are used, models such as SIPNET tend
to best project NEE values near the central tendencies of the
data; they tend to underestimate the frequencies of extremely
high or low NEE [Sacks et al., 2006; Moore et al., 2008].
[11] As a starting point, we used the version of SIPNET

described in Moore et al. [2008]. In applying the SIPNET
model to the study, we used 11 years of CO2 andH2O flux data
(1999–2009) obtained from the Niwot Ridge AmeriFlux web
site referenced above. The model was conditioned on both
net ecosystem exchange (NEE) and evapotranspiration (ET)
obtained initially as 30min averages, but then assimilated into
the model as either 30min, half-daily, daily, or monthly
averages. We used the model data assimilation in inverse
mode to optimize SIPNET parameter estimates, using meteo-
rological data for the same 30min flux periods that were
assimilated into the model. Once model parameters were opti-
mized for the 11 year observation period (1999–2009), the
model was run in forward mode to make projections of NEE
using meteorological drivers from downscaled climate data,
processed through the weather generator, for a future 20 year
period (2080–2099). The initial parameter set used to run
SIPNET in inverse mode for the period 1999–2009 was
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derived from previous studies on the same ecosystem [Moore
et al., 2008; Zobitz et al., 2008]. The posterior estimates of 15
(out of 32) parameters from the 1999–2009 inverse runs were
used to initialize forward runs in future climate scenarios
(Table 1). Estimates of the remaining 17 parameters were fixed
and derived from sources cited inMoore et al. [2008] or from
recent field observations (Table 1). We used an initial spin-up
period as previously described [Sacks et al., 2006], followed
by the “optimization” runs. The estimated parameter set that
yielded the maximum likelihood was taken to be the “most
parsimonious” parameter set. We ran each optimization long
enough to generate 150,000 accepted points, which requires
300,000–500,000 model iterations. We did not report standard
errors retrieved for model parameters nor did we discuss pat-
terns in those retrieved uncertainties. Discussion of these un-
certainties has been covered in numerous past studies in
which SIPNET was deployed to study patterns in the same
flux data used here [Sacks et al., 2006; 2007; Moore et al.,
2008; Zobitz et al., 2008; Hu et al., 2010a].

2.3. Modification of Soil Moisture in the SIPNET
Model

[12] In analyzing past studies of the SIPNET model as ap-
plied to the Niwot Ridge AmeriFlux site, we noticed that

predicted fractional soil moisture content during the summer
was significantly higher than what we observed in the field.
Admittedly, these are difficult numbers to compare, given
that the measurement values were taken at a relatively shal-
low soil depth (integrated across the upper 15 cm) and the
modeled values reflect processes from the entire rooted pro-
file [Hu et al., 2010b]. Nonetheless, our past observations
have revealed evidence of midsummer soil moisture limita-
tions on ET and NEE [Moore et al., 2008; Hu et al.,
2010b], which were not reflected in the modeled results
[Sacks et al., 2006; 2007]. We examined this situation more
closely, especially with regard to the soil moisture compo-
nent of SIPNET (see details in the supporting information).
A run of SIPNET conditioned on all 11 years of the flux data
that we used revealed that soil moisture fraction (on a volu-
metric basis) never decreased below 0.5 (data not shown).
Our observations, which have been made since 2006 at
10 cm depth, have revealed midsummer values that are typ-
ically below 0.25 (data not shown, but available at the Niwot
Ridge AmeriFlux web site). We experimented with several
different strategies to force the model to project soil moisture
dynamics that were drier and closer in value to our observa-
tions. We decided upon two steps for remedy: (1) reducing
the canopy aerodynamic resistance term in the model to

Table 1. Values Used to Initialize SIPNET for the Years 2080–2099a

Symbol Definition Value Source

Initial Pool Values:
WS,0 Initial soil moisture content (fraction of WS,c) 0.743 Optimization
CW,0 Initial plant wood C content (g Cm�2) 9600 M2008
CL,0 Initial leaf area index (m2m�2) 4.2 M2008
CS,0 Initial soil C content (organic layer only) (gCm�2) 16,000 M2008
WP,0 Initial snow pack (cm water equivalent) 0 M2008

Photosynthesis/Respiration Parameters:
Amax Maximum net CO2 assimilation rate (nmolCO2 g

�1 (leaf biomass) s�1) 4.627 Optimization
KF Foliar maintenance respiration as fraction of Amax (no units) 0.2996 Optimization
Tmin Minimum temperature for photosynthesis (�C) –3.6626 Optimization
Topt Optimum temperature for photosynthesis (�C) 21.623 Optimization
Q10V Vegetation respiration Q10 (no units) 1.912 Optimization
Ts Soil temperature at which photosynthesis and foliar respiration are shut down (�C) 0.0037 Optimization
KVPD Slope of VPD-photosynthesis relationship (kPa�1) 0.106 Optimization
PPFD1/2 Half saturation point of PPFD-photosynthesis relationship (molm�2 d�1) 7.92 Optimization
NPPL Fraction of NPP allocated to leaf growth (no units) 0.455 Optimization
KA Wood respiration rate at 0�C (gC g�1 C yr�1) 0.0102 Optimization
KH Soil respiration rate at 0�C and moisture-saturated soil (g C g�1 C yr�1) 0.0037 Optimization
Q10S Soil respiration Q10 (no units) 4.826 Optimization
FAmax Average daily max photosynthesis as fraction of Amax (no units) 0.76 M2008
k Canopy PAR extinction coefficient (no units) 0.5 M2008
KL Turnover rate of leaf C (gC g�1 C yr�1) 0.13 M2008

Moisture Parameters:
f Fraction of soil water removable in one day (no units) 0.1546 Field obs.
KWUE VPD-water use efficiency relationship (mgCO2 kPa g

�1H2O) 13.351 Optimization
WS,c Soil water holding capacity (cm (precipitation equivalent)) 35.939 Optimization
Rd Scalar relating aerodynamic resistance to wind speed (no units) 25 Field obs.
E Fraction of rain immediately intercepted and evaporated (no units) 0.1 M2008
F Fraction of water entering soil that goes directly to drainage (no units) 0.1 M2008
KS Snowmelt rate (cm (water equivalent) �C�1 d�1) 0.15 M2008
Rsoil,1 Scalar relating soil resistance to fractional soil wetness (no units) 0–16.4 M2008
Rsoil,2 Scalar relating soil resistance to fractional soil wetness (no units) 0–8.6 M2008

Tree Physiological Parameters:
SLWC C content of leaves on a per-area basis (gCm�2 (leaf area)) 270 M2008
FC Fractional C content of leaves (gC g�1 (leaf biomass)) 0.45 M2008
KW Turnover rate of plant wood C (gC g�1 C yr�1) 0.014 M2008

aInitial parameters are either derived after assimilating 11 years of daily averaged Niwot Ridge AmeriFlux Data from 1998–2009 (as described in the text
and labeled “Optimization” in the table), from analyses and observations in the field (labeled Field Obs. in the table), or from the sources cited byMoore et al.
[2008] (labeledM2008 in the table). Initial pool values are for 1 January 1999. VPD, vapor pressure deficit; PPFD, photosynthetic photon flux density; NPP,
net primary productivity.
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allow for greater rates of ET and (2) increasing daily uptake
of H2O by roots to allow greater partitioning of ET into T.
Prior to taking these steps, the canopy aerodynamic resis-
tance term in the model, which is estimated as a unitless sca-
lar and is typically generated as a posterior parameter
estimate, was shown to be forced frequently toward the high
extreme of feasible values (e.g., estimated to be 1471 out of
a possible upper limit of 1500 in the study of this forest by
Moore et al. [2008]). Furthermore, the partitioning of ET
to T was shown to be approximately four times lower in
the model, compared to independent observations of sap flux
in the same ecosystem [Moore et al., 2008]. When we man-
ually forced both of these terms to fixed values and then ran
the optimization of the model conditioned with observed
fluxes, posterior (derived) values of the soil water content
were lower and compared more closely to observed values
(see supporting information). In order to achieve this result,
other parameters, such as potential soil water holding capac-
ity, water use efficiency, and certain photosynthetic parame-
ters were adjusted in a pattern of compensation, though we
have not conducted an analysis to reveal all compensatory
changes and cross-sensitivities in these parameters. We used
the modified version of the model, with the daily removal
fraction fixed at 0.155 and the aerodynamic scalar term fixed
at 25 in subsequent simulations.

2.4. The Earth System Models Used to Project Future
Climate Scenarios

[13] In order to assess future climate projections for the
Niwot Ridge AmeriFlux site, we used monthly averaged
data generated by six well-established ESMs (Table 2) and
extracted for the regional spatial domain containing the
Niwot Ridge AmeriFlux site for the years 2080–2099. The
six ESMs were chosen from the entire suite of models used
in the fourth Assessment of the International Panel on
Climate Change [IPCC 2007, Working Group 1], with pri-
mary consideration being whether the models included inde-
pendent specification of snow versus rain. We used future
CO2 emissions scenario A1B from the IPCC Special Report
on Emissions Scenarios (2000). We averaged values for two
adjacent grid cells from the ESM model projections because
the Niwot Ridge AmeriFlux site is located near the northern
boundary of one grid cell; the two cells together provided
more balanced spatial coverage north and south of the flux
site, than considering only the cell that actually contained
the site (Figure 1). The exact grid cells were defined by three
east-west boundaries (1) 37.67N, �106.88W to 37.67N,
�104.06W (the lower boundary of the most southern cell),
(2) 40.46N, �106.88W to 40.46N, �104.06W (the middle

boundary between the two cells), and (3) 43.25N,
�106.88W to 43.25N, �104.06W (the upper boundary of
the most northern cell) (Figure 1).
[14] The aim of our study was not to compare ESM model

performance, but rather to use a broad range of models to
generate a reasonable projection of future climate for our
study site—thus we did not assess why each model
produced differences in their projections. Rather, we used
their average output as an ensemble projection of climate
tendencies. We recognize that each of the six models is
based on different representations of climate physics and
that these differences will create uncertainty in the ultimate
projections that we used. We chose not to conduct sensitivity
analyses to determine the influence of these differences on
our projections of ecosystem processes; a task worthy of
an independent study in its own right. Rather, by averaging
the projections of the models, we hoped to obtain a broad
and robust perspective on future climate at this site.
[15] The modeled grids include topography that varies

with elevations ranging from approximately 4000m to
approximately 1500m. Ecosystem types within each
domain include semiarid, short-grass prairie at the lowest
elevations (with mean annual precipitation of 300mm
and mean annual temperatures of approximately 10�C)
and alpine tundra at the highest elevations (with mean
annual precipitation of approximately 800mm and mean
annual temperatures of 0�C). The ESM models do not
account for these gradients and in averaging climate for
the entire grid, a form of “topographic smoothing”
occurs. To remove model biases and to adjust grid point
climate projections to the elevation of the flux site, we
applied ESM mean monthly anomalies (in terms of
differences for temperature and change ratios for precipi-
tation from a baseline period of 1980–1999) to the LTER
C1 Climate Station monthly climatological means for the
same baseline [Mearns et al., 2001]; this created an
adjusted future (2080–2099) monthly time series of tem-
perature and precipitation.

2.5. Weather Generator (WGEN) and
MT-CLIM4 models

[16] In order to downscale and disaggregate the projected
monthly time series from the ESMs into a daily time series,
we used the Weather Generator (WGEN) model [Richardson,
1981; Parlange and Katz, 2000; Kittel et al., 2004]. The
WGEN model was conditioned on C1 daily climate data from
1980 to 1999 to determine distributions and serial and cross-
correlations of daily minimum and maximum temperature
and precipitation events depending on month. WGEN was

Table 2. List of General Earth System Models (ESMs) Used in the Analysis to Provide Climate Predictions for the Years 2080–2099a

Model Institution Citation/Web Page

CSIRO-Mk3 CSIRO Atmospheric Research, Melbourne, Australia cmar.csiro.au/e-print/open/gordon_2002a.pdf
GISS-AOM NASA/Goddard Institute for Space Studies, New York, NY, USA aom.giss.nasa.gov/
INM-CM3.0 Institute for Numerical Mathematics, Russian Academy of Science, Russia Diansky and Volodin (2002)
MIROC3- high res Center for Climate System Research (Univ. of Tokyo), Natl. Inst. for

Environmental Studies, and Frontier Research Center for Global
Change (JAMSTEC)

ccsr.u-tokyo.ac.jp/kyosei/hasumi/MIROC/tech-repo.pdf
MIROC3- med res

CCSM3 National Center for Atmospheric Research (NCAR) Boulder, CO, USA http://www.ccsm.ucar.edu

aCSIRO, Commonwealth Scientific and Industrial Research Organisation; AOM, Atmosphere-Ocean Model; CM, climate model; JAMSTEC,
Independent Administrative Institution, Japan Agency for Marine-Earth Science and Technology; CCSM, Community Climate System Model; MIROC,
Model for Interdisciplinary Research on Climate.
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modified from Kittel et al. [2004] to have separate
parameterizations for months with precipitation above and be-
low climatological means for the conditioning period; this
permitted some shifting of temperature and precipitation
daily event structure in projected future climate shifts to
drier or wetter states, and provides an advantage over statis-
tical models that combine all daily records to resolve
monthly probability density functions [e.g., Hayhoe et al.,
2008]. We viewed the conditional parameterization pro-
vided in WGEN as advantageous to predicting daily precip-
itation variance structure given past observations that event
statistics shift under drought versus nondrought conditions

[Wilks, 1989]—two sets of conditions that characterize the
pre-monsoon and monsoon periods of summer climate at
the Niwot Ridge AmeriFlux site [Hu et al., 2010b]. WGEN
has been evaluated in past studies using climate observa-
tions from stations across the coterminous United States
during the Vegetation/Ecosystem Modeling and Analysis
Project [Kittel et al., 2004].
[17] WGEN uses a first-order Markov chain algorithm to

predict whether a day will be wet or dry, depending on
whether precipitation occurred on the previous day; then it
stochastically assigns precipitation amount according to a
gamma distribution of possible event sizes. Temperature

Figure 1. A map of the grid cells specified by the coordinates (37.67N, �106.875W) (37.67N,
�104.0625W); (40.46N, �106.875W) (40.46N, �104.0625W); (43.25N, �106.875W) (43.25N,
�104.0625W). The 1000m isoline is shown as solid lines. The lowest elevations within both grids lie in
the eastern part of the domains, with elevations between 1000 and 2000m. The urban center of Denver,
Colorado, is visible as the dark spot just east of the 2000m isoline. The location of the Niwot Ridge
AmeriFlux tower is shown with a triangle and is located at ~3000m elevation. Major vegetation types are
shown as different shades of grey. State border lines are shown in dark grey, and the grid cell boundaries
are shown in black.
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minima and maxima are stochastically generated from
corresponding distributions conditioned on precipitation
occurrence and as a function of temperature minimum and
maximum serial trends and cross-correlations. Thus, the
model creates a daily time series that manufactures the per-
sistence of wet and dry periods, minimum and maximum
temperature patterns that are conditioned on precipitation
events, and it mimics the general intensity and duration of
oscillating synoptic weather cells. In general, the daily series
are driven by future projected monthly temperature and pre-
cipitation, but with a stochastic component. The stochastic
nature of these simulations allowed us to create 10 ensemble
members of WGEN dailies for the period 2080–2099. Each
member is equally plausible but with slightly varying daily
structure and monthly values—i.e., they have the same “tar-
get” ESM monthly mean, but they vary stochastically about
that value. Daily temperature and precipitation output from
WGEN was used to drive an empirical surface climate
model, MT-CLIM4, to estimate daily solar radiation and hu-
midity [Thornton and Running, 1999; Thornton et al., 2000;
Kittel et al., 2004]. MT-CLIM4 uses day of the year,
latitude, temperature, precipitation, elevation, and solar
beam geometry to estimate solar radiation, daylight-period
irradiance, vapor pressure, and relative humidity. Solar radi-
ation and humidity are estimated using the assumptions that
the diurnal temperature range at the site is a function of solar
radiation transmittance and that daily minimum temperature
is a function of dew point temperature [Thornton and
Running, 1999]. In order to predict wind speed, we used a
correlation between half-daily averaged wind speed and
vapor pressure using data from the Niwot Ridge AmeriFlux
tower instruments. While this correlation is not obvious in
terms of underlying explanations, it was the best-fit correla-
tion we obtained after testing wind speed against all other
possible climate correlates, and it permitted us to estimate
one unknown variable (wind speed) from a known variable
(atmospheric vapor pressure) [wind speed = 0.0046 (vapor
pressure) + 6.8; r =�0.38].

3. Results

[18] Past studies using the SIPNET model have used half-
daily time steps, principally because the desired partitioning
of NEE into its gross primary productivity (GPP) and eco-
system respiration (RE) components was best justified when
the model was able to assimilate the day-night contrast in
NEE [Sacks et al., 2006; 2007; Moore et al., 2008]. These
studies also showed that model performance in predicting
most parameters was not improved when 30min averaged
flux data was assimilated, compared to half-daily averaged
flux data; in fact, in most cases, model performance was de-
graded with the use of 30min averaged data [Sacks et al.,
2007; Moore et al., 2008]. It is possible that the poor perfor-
mance of SIPNET when conditioned with 30min data is due
to inadequacies in the tower observation system, such that
CO2 that is stored in the canopy during a “calm” 30min pe-
riod is not adequately separated from that vented past the
tower sensors in the subsequent “turbulent” 30min period;
thus “smearing” relations in the model between 30min aver-
aged NEE and specific micrometeorological drivers.
[19] In this study, we had access to daily averaged meteo-

rological data from the downscaled climate projections using

the WGEN and MT-CLIM4 models. We began the study
with the a priori assumption that: given daily averaged mete-
orological data with which to drive the SIPNET model, we
would be best served by conditioning the model on daily av-
eraged NEE and ET observations. We found that the
optimized posterior parameter values derived from the as-
similation of daily averaged fluxes into SIPNET (Table 1)
did not differ significantly from those retrieved in previous
studies in which half-daily averaged fluxes were assimilated;
at least for 4 of the 15 parameters that were allowed to vary
during the optimization and represented the most relevant
parameters with regard to defining carbon fluxes. For
example, using daily averaged NEE and ET, we retrieved
“optimized” values of 4.63 nmol CO2 g

�1 (leaf biomass)
s�1 for the maximum (ecosystem) net CO2 assimilation rate
(Amax), 7.9molm�2 d�1 for the photon flux density of half-
saturation for daily net CO2 assimilation rate (PPFD1/2),
0.004 gC g�1 yr�1 for the soil respiration rate at 0�C (KH),
and 4.83 for the Q10 for soil respiration (Q10s). Using half-
daily averaged NEE and ET for the first 7 years of the same
database, Moore et al. [2008] retrieved “optimized” values
of 4.98 nmol CO2 g

�1 (leaf biomass) s�1, 8.29molm�2 d�1,
0.003 gC g�1 yr�1, and 4.66 for the same parameters.
[20] In Figure 2A, we have presented monthly averaged

projected NEE for a single year (2003) using SIPNET with
parameters conditioned on fluxes and associated
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Figure 2. Comparisons between SIPNET projections of
NEE conditioned on fluxes and meteorological drivers aver-
aged at different timescales and compared to NEE observa-
tions from the 11 year Niwot Ridge AmeriFlux time series
(1999–2009). (A) Monthly estimates of NEE (gCm�2) over
a single year (2003) from the tower flux observations (open
diamonds, dashed line), and from SIPNET runs using fluxes
and meteorological data (for 2003) averaged according to
four different time steps: 30min (open circles, no line),
half-daily (open, inverted triangles, dotted line), daily (solid
squares, solid line), and monthly (open squares, no line). (B)
Cumulative NEE (gCm�2) over the period 1999–2009. The
lowermost dashed line was determined from tower flux ob-
servations. The solid black line represents projected NEE
that was calculated using the SIPNET model with parame-
ters conditioned on fluxes and drivers averaged at the daily
time step. The grey dashed and dotted line represents
projected NEE with parameters conditioned on fluxes and
drivers averaged at the daily time step.
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meteorological drivers averaged at 30min, half-daily, daily,
and monthly time steps, and compared to monthly averaged
NEE observations. Conditioning the model with assimilated
monthly averaged fluxes and meteorological drivers resulted
in large overestimates of CO2 uptake during the summer and
CO2 loss during the winter, compared to observations. Con-
ditioning the model with fluxes and drivers averaged at the
30min time step resulted in a substantial underestimate of
net CO2 uptake during most of the year. When conditioned
with fluxes and drivers averaged at the half-daily time step,
projections of NEE closely matched observations through
the entire year. Finally, when conditioned with fluxes and
drivers averaged at the daily time step, projections of NEE
diverged from those using half-daily values in the early sum-
mer and early winter, but overall, they were quite similar.
[21] In Figure 2B, we have presented observations and

modeled results of cumulative NEE across all 11 years of
the assimilated flux observations, using either daily or half-
daily averaged fluxes and drivers for model conditioning.
In this analysis, the model performed slightly better when
projecting NEE after conditioning with fluxes and drivers
averaged at the daily time step (overall root mean squared
error of 0.54), compared to the run with fluxes and drivers
averaged at the half-daily time step (overall root mean
squared error of 0.71). Overall, the model reproduced the as-
similated NEE fluxes reasonably well with daily averaged
fluxes and drivers, except for 2005, where model projections
of net CO2 uptake were lower than observations, and this
difference continued to increase, converging with the half-
daily run in 2007. The half-daily run began to diverge from
observations in 2002 and continued to project lower net CO2

uptake rates through 2009. It is noteworthy that 2002, the
year that the half-daily averaged run began to diverge signif-
icantly from observations, exhibited the earliest start to the
growing season in the 11 year flux record and had the driest
summer recorded in the 50 year climate record for this site;
whereas, 2005, the year that the daily averaged run began
to diverge significantly from observations, exhibited the lat-
est start to the growing season in the 11 year flux record and
had a warmer-than-average growing season [Hu et al.,
2010b]. Thus, inadequacies in the representation of interac-
tions between fluxes and meteorological drivers in the model
may be amplified in unique ways during years with extreme
weather patterns. When the results of Figures 2A and 2B are
considered together, we conclude that our original decision
to use daily averaged fluxes and drivers for the SIPNET
modeling as the basis for carbon cycle forecasting was rea-
sonable when compared to past and current studies using
half-daily values.
[22] Sacks et al. [2007] found that there was indeed a dif-

ference in the posterior estimation of GPP and RE when
using SIPNET with half-daily versus daily averaged NEE
observations. In that study, it was discovered that while the
model was capable of projecting nearly equal mean monthly
NEE during the growing season when conditioned on either
half-daily or daily averaged fluxes, the projections of mean
monthly GPP and RE were significantly higher for the daily
averaged runs. The study by Sacks et al. [2007] used the
SIPNET model conditioned on six (1999–2004) of the same
years of Niwot Ridge AmeriFlux data as was used in this
study. Although it should be noted that there was a major
correction applied to the Niwot Ridge flux data in 2011,

rendering the Sacks et al. data set and the data set used in
the current study as two different versions. Nonetheless,
we found the same pattern previously recognized by Sacks
et al. [2007], whereby the SIPNET model projected similar
NEE, but greater GPP and RE, when conditioned on daily
averaged fluxes, compared to half-daily averaged fluxes
(Figure 3). It is likely that the half-daily data does indeed
provide greater constraint on nighttime RE, when assimilated
into the model, and thus modulates projected GPP down-
ward to best match the observed NEE time series. Given
these observations, we recognize that our retrievals of GPP
and RE from the model runs conditioned on daily averaged
flux data likely represent overestimates of the true values.
However, given our access to daily averaged micrometeoro-
logical drivers, and the analysis discussed in the next para-
graph that shows similarity between the daily averaged and
half-daily averaged NEE projections, we decided to retain
the use of daily averaged NEE and ET data for model
conditioning and note the potential for overestimate in the
retrieved values for GPP and RE.
[23] Considerable variation existed among projections of

temperature and precipitation from the six ESM models
(Figure 4A). The projected increase in mean monthly tem-
perature ranged across 14�C during the midsummer months
and 3.5�C during the midwinter months. The averaged pro-
jection from all models was approximately 10.0�C warmer
than current monthly maximum midsummer temperatures,
and approximately 5.3�C warmer than current monthly max-
imum midwinter months. Total monthly precipitation falling
as rain was projected to increase up to 2.5 dm in May, the
wettest month of the year (Figure 4B). Two of the models,
the CSIRO-Mk3 and NCAR-CCSM3, predicted that
maximum seasonal rainfall would occur in June, whereas
the remainder of the models predicted May as the wettest
month. Similarly, winter snowfall amounts varied across
model projections, spanning a range of approximately
0.9 dm (Figure 4C). All of the models predicted that a signif-
icant fraction of future winter (December–February) precip-
itation would fall as rain, rather than snow (Figure 4D).
[24] In Figure 5, we compare the distribution of monthly

precipitation totals measured at the Niwot Ridge AmeriFlux
tower for the years 1999–2009 (Figure 5A), the seasonal
precipitation patterning of the “training data” from 1980 to
1999 (Figure 5B), and a single WGEN/MT-CLIM4 run
(“run 1”) averaged over the years 2080–2099 (Figure 5C).
Thus, data presented in Figures 5A and 5B represent obser-
vations, though from two different time series, and the data
presented in Figure 5C represents modeled data from the
weather generator conditioned on future climate projections
from the six ESMs. Comparison of Figures 5A and 5C,
which includes observed versus modeled data, respectively,
shows that the combination of WGEN and MT-CLIM4 is
able to realistically retrieve the seasonal distribution and
daily variance in precipitation that was assimilated from
the C1 meteorological observations. It is noteworthy, how-
ever, that projections for the annual distribution of precipita-
tion in the 2080–2099 scenarios (Figure 5C) show
significantly higher median amounts (1.5–2.0 times higher)
during the winter months of December and January, com-
pared to the 1980–1999 training data (Figure 5B); in this
case, with the increase projected to be for predominantly
rain, rather than snow. One assumption implicit in the
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precipitation distribution patterns presented in Figure 5 is
that the statistics driving the downscaling of monthly precip-
itation to daily precipitation are the same in the future
projected climate for the Niwot Ridge AmeriFlux site, as
they are in the climate regime during 1980–1999.
[25] There is potential for bias in our use of different time

frames for the derivation of climate drivers used in the
SIPNET modeling. We used weather data for the period
1980–1999 to train the WGEN and MT-CLIM4 models
and generate projected meteorological drivers for the
SIPNET runs in future climate scenarios. However, we used
weather data for the period 1999–2009 to drive the SIPNET
runs for the present climate scenario. There is potential for
bias in this process if climate trends during 1980–1999 were
different from those during 1999–2009. There was no evi-
dence for such bias when comparing the seasonal distribu-
tion of precipitation for these two time series (compare
Figures 5A to 55B). Considering this issue further, the most
complete analysis of overall climate trends at the Niwot
Ridge C1 site for the approximately five decades between
1953 and 2000 showed no significant trends in mean
monthly temperature (though there was a nonsignificant
springtime warming trend of 0.04�Cyr�1) or in precipitation
(Loesleben and Chowanski, http://culter.colorado.edu/Cli-
mate/Mrsclimate/mcssNIWOT.pdf). Even accepting the
nonsignificant trend in springtime temperature, and assum-
ing it continued through 2009, any bias in temperature be-
tween 1980–1999 and 1999–2009, must be small (less than
0.5�C), compared to the approximately 10–14�C increase
in mean monthly temperature projected for the period

2080–2099. Thus, any bias in derived NEE due to our ana-
lytical approach must also be small.
[26] We used the 10 independent runs of WGEN and

MT-CLIM4 to produce the climate drivers to support 10 in-
dependent runs of SIPNET, which in turn produced
projected patterns of cumulative NEE (Figure 6A). The
initial parameter set used to run SIPNET was estimated
from the literature or using a procedure as described previ-
ously [Table 1, and in Moore et al., 2008]. It is unrealistic
to assume that parameters, such as carbon pool sizes,
should be the same in 2080 as in 2009. Likewise, physio-
logical parameters such as maximum photosynthetic rate
and ecosystem water-use efficiency may be different in a
CO2-enhanced future atmosphere. We made the decision
to use parameters from the model runs conditioned on
present-day (1999–2009) observations of NEE and ET,
rather than invoke arbitrary or poorly informed assump-
tions about how the parameters would change in a future
climate. This allowed us to directly compare present-day
runs of SIPNET with future projections conditioned on me-
teorological drivers being the only variables.
[27] In all 10 of the projected SIPNET runs, cumulative

NEE is shown to be negative in sign, indicating that the
projected climate potentially fosters net ecosystem carbon
uptake (Figure 6A). Interpreting these figures must be done
with caution, as SIPNET outputs have never been compared
against a time series as long as 20 years, and cumulative
analyses will compound errors in assumptions and initial
conditions. Within the context of these caveats, the 10
SIPNET runs reflect aspects of the same interannual
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Figure 3. (A) Annual cumulative NEE for each of the 11 years used in conditioning the SIPNET model
shown for runs with daily averaging of fluxes and drivers (white bars), half-daily averaging of fluxes and
drivers (grey bars), and observations (black bars). (B) Annual cumulative GPP retrieved as a posterior pa-
rameter estimate for each of the 11 years used in conditioning the SIPNET model shown for runs with
daily averaging of fluxes and drivers (white bars) and half-daily averaging of fluxes and drivers (grey
bars). (C) Annual cumulative RE retrieved as a posterior parameter estimate for each of the 11 years used
in conditioning the SIPNET model shown for runs with daily averaging of fluxes and drivers (white bars)
and half-daily averaging of fluxes and drivers (grey bars).
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variation that was assimilated into the model from the 1999–
2009 eddy flux observations. A noticeable feature in 9 of the
10 runs is an attenuation of NEE in the second decade of the
time series (the exception being Run 10). This attenuation is
due to the effect of progressive drought during the second
decade of climate data from 1980 to 1999, which was carried
into the conditioning of WGEN and thus SIPNET (Figure 7).
The effect of the second decade drought is especially appar-
ent in the results of Figure 6B. Growing season decreases in
both GPP and RE were observed most clearly in 2092–2095
in runs 7–9. In essence, the lower-than-normal amounts of
total annual precipitation at the C1 climate station during
the period 1987–1994 created similar periods of drought in
projected climate.
[28] In Figure 8, we show cumulative NEE averaged

across the 10 projected SIPNET runs. Once again, a flatten-
ing in the rate of carbon uptake due to drought can be seen in
the first 4 years of the second decade. In Table 3, we have
summarized the change across 20 years in the future climate
regime (2080–2099) for aboveground plant wood carbon,
plant leaf carbon, soil carbon, and cumulative NEE predicted
by the 10 SIPNET runs. The changes in these pools are
given separately for the first 10 years and for the entire
20 years of the model run. All 10 runs show a similar pat-
tern, with wood, leaf, and soil carbon pools increasing over
the first 10 years, but with the leaf carbon pool actually re-
versing its gains and losing biomass in the second 10 years
(with the exception of Run 10). The loss of biomass during

the second decade is coincident with the extended drought
predicted by the climate models. We note that while the gen-
eral trend of increasing carbon pools in vegetation and soil is
consistent with higher rates of NEE in the future climate, the
SIPNET model is simple in the logic used to transfer carbon
among these pools. Past studies using SIPNET at this site
have revealed clear evidence of overestimation in the turn-
over rates of wood and soil carbon pools [Sacks et al.,
2006; Zobitz et al., 2008]. The model is much better at
predicting fluxes, such as NEE, than pools. Cumulative
NEE is larger after 10 simulated years between 2080 and
2089 (average =�4965 gCm�2) than would be expected
for a decade in the current climate regime (approximately
�2100 gCm�2 was observed and modeled for the period
between 1999 and 2008 using the Niwot Ridge AmeriFlux
data record, see Figure 2B). This represents a projected
134 % increase in forest net CO2 uptake due to climate
change alone.
[29] The projected future climate scenarios caused a

shift in the beginning of seasonal GPP and the initiation
of seasonal net CO2 uptake (i.e., negative NEE) to earlier
in the year (Figure 9). This is driven by the projection of
warmer winter temperatures in the future climate, and as-
sociated shifts to rain, rather than snow. In fact, monthly
net CO2 uptake is projected to begin during February or
March in the future climate scenario, whereas it typically
begins in April or May in the current climate regime
[Monson et al., 2002; 2005]. Similarly, RE is projected
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to increase earlier in the year due to warmer tempera-
tures, though not as much as GPP, consistent with the
projection of negative NEE values earlier in the year.
By definition, this shift in the timing of net CO2 uptake
reflects a longer growing season. The model projections
of GPP and RE for the autumn months in the future cli-
mate do not change significantly, compared to patterns
observed in the present climate. Thus, the principal effect
of future climate projections on NEE are expected to oc-
cur in the early, rather than late, phases of the growing
season, consistent with the analysis of Hu et al.
[2010b] for patterns in the current climate regime. This
may be due to similarities in current and projected (fu-
ture) precipitation amounts and monthly distribution dur-
ing the autumn months (Figure 5). We also reiterate the
probability that GPP and RE are likely overestimated in
their absolute values due to the daily averaging scheme
we used [Sacks et al., 2007, Figure 3].

4. Discussion

[30] We pursued three principal aims. First, we developed
a method of combining an ecosystem process model, condi-
tioned on eddy flux observations, and a pair of weather gen-
erator models, conditioned on local meteorology, with site-
specific climate change projections obtained from six ESMs.
Second, we evaluated the potential for error between model
projections and observations of NEE with regard to seasonal
and multiyear dynamics given different flux and driver

averaging schemes. Third, we used daily output from the
weather generator models, conditioned on the future climate
scenario, as the input to the ecosystem process model to in-
vestigate future responses to climate change of carbon cy-
cling in the Niwot Ridge subalpine forest.
[31] With regard to the first aim, we were able to use state-

of-the-art weather generation models to downscale monthly
climate projections and produce regional-specific weather
patterns at the daily scale. This allowed us to generate mul-
tiple, equally likely solutions to the problem of how weather
variation might be averaged to produce future mean climate.
Past studies have addressed the need to downscale the mean
monthly projections of ESMs to drive ecosystem process
models [e.g., Ueyama et al., 2009; Jansson et al., 2008;
Grant et al., 2011]. In fact, for the year 2011 alone, we iden-
tified 10 separate studies with the aim of downscaling
monthly climate forecasts to shorter time increments for
the purpose of forecasting local carbon cycling dynamics
[Ge et al., 2011; Grant et al., 2011; Kang et al., 2011;
Keenan et al., 2011a; 2011b; Zhu et al., 2011; Coops and
Waring, 2011; Tao and Zhang, 2011; Wang et al., 2011;
Donmez et al., 2011; Xu et al., 2011]. In most of these stud-
ies, the framework for downscaling involved the use of frac-
tionalized, but constant, differences in climate between a
known current time series and a projected future time series;
e.g., working backward from modeled monthly climate
means to bias correct a current time series, and then using
those corrections to forecast a future time series at the
submonthly scale. Other approaches have been used, such
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Figure 5. Boxplot comparisons of monthly precipitation total (in millimeter). In each panel, the “whis-
kers” show the smallest observation within 1.5 times the interquartile range from the end of the box, the
bottom of the box shows the lower quartile, the central line shows the median, the top of the box shows the
upper quartile, and the upper whisker shows the largest observation within 1.5 times the interquartile range
from the end of the box. Points that are mathematically considered outliers are shown with a (+) symbol.
(A) The distribution of monthly precipitation totals measured at the Niwot Ridge AmeriFlux tower for the
years 1999–2009. (B) The seasonal precipitation patterning of the “training data” from 1980 to 1999. (C)
A single WGEN run (“run 1”) averaged over the years 2080–2099.
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as deploying regional climate models to downscale global
climate projections, but these often include the same limita-
tion of a monthly time step that we find in global general
ESMs. Our method differs from those used in previous
studies in that we took advantage of an observed daily
climate record to “train” two weather generator models
and thus produce daily meteorological inputs for the eco-
system process model. This approach allowed us to not

only replicate natural variation in the short-term meteoro-
logical drivers that determine responses of ecosystem me-
tabolism but they allowed us to generate multiple
trajectories of daily weather that equally satisfy projected
changes in mean monthly climate.
[32] In addressing the second aim of our study, we evalu-

ated whether our approach to parsing projected climate into
submonthly increments was likely to improve the accuracy

A

B

Figure 6. (A) Twenty years (2080–2099) of projected cumulative net ecosystem exchange (in kgCm�2)
modeled by SIPNET for 10 different model outputs of the WGEN/MT-CLIM4 model. The x-axes show
days since the simulation starts (i.e., day 1 is 1 January 2080 and day 7305 is 31 December 2099). (B)
Daily values of GPP (black) and RE (grey) calculated by the same 10 SIPNET model runs with climate
drivers from the period 2080–2099 given in gCm�2.
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of NEE projections provided by the ecosystem process
model; in other words, does this approach solve the per-
ceived problem with temporal mismatches between the daily
or subdaily time step used by the ecosystem process model
and the monthly time step generated from most ESM projec-
tions? In the results of Figure 2A, it is clear that running the
model with monthly averaged fluxes and meteorological
drivers resulted in large errors in projections of NEE. Errors
due to nonlinearities and the associated averaging problems
posed by Jensen’s inequality [Ruel and Ayers, 1999], are

possible causes of an overestimate of light-dependent CO2

uptake during the day (decelerating rectangular hyperbola
as photosynthetic photon flux density increases), and an un-
derestimate of temperature-dependent CO2 loss during the
night (accelerating rectangular hyperbola as temperature in-
creases), resulting in a predicted overestimate of net CO2 up-
take when using monthly means compared to shorter time
steps [Medvigy et al., 2010]. Wavelet spectral transforma-
tions have shown the daily timescale to contain the most
power in predicting dynamics in the response of GPP to pho-
tosynthetic photon flux density (PPFD) and ecosystem respi-
ration (RE) to temperature in models conditioned on flux
tower time series [Braswell et al., 2005; Stoy et al., 2005;
Dietze et al., 2011]. Less formal analyses have shown that
half-daily averaging of fluxes and drivers is likely to provide
improved resolution of GPP and RE as optimized parame-
ters, when trained on observations of NEE [Sacks et al.,
2007]. Our results showed that daily averaging of NEE
and ET prior to model conditioning provided similar re-
trievals of projected NEE, when compared to half-daily av-
eraging, but overestimates of GPP and RE. Our results
demonstrate the importance of maintaining a match between
the timescales used in parameter estimation and the observa-
tions used for model data error assessment [Stoy et al., 2005;
Richardson et al., 2010].
[33] In addressing the third aim of this study, we used the

coupled weather-generation and ecosystem models to fore-
cast carbon uptake in a subalpine forest within the context
of projected climate change. The six ESMs that we used
for future climate projections varied significantly with regard
to both air temperature and precipitation (Figure 4). All
models produced projections of winter rain exceeding snow.
This projection is a distinct contrast to the situation for the
present climate, in which snow dominates as the winter form
of precipitation, even at the lowest elevations represented in
the modeled grids. The projected switch in the relative fre-
quency of rain versus snow in the ESMs reflects the average
projection for the entire spatial extent of the modeled grids.
We tried to correct this “smoothing” bias to some extent
by applying a change ratio (snow-to-rain) to projected
changes in temperature in the C1 climate record that was
used to train the weather generator models (using the base-
line period 1980–1999) [Mearns et al., 2001]. We have no
way of assessing the effectiveness of this correction, nor of
knowing whether the nonlinear form of the relation between
snow/rain transition and temperature, produced new errors
in the weather generation due to daily averaging. Accurate
description of the snow-to-rain shift at the C1 site is crucial
to understanding the influences on future NEE in this subal-
pine forest. The importance of this knowledge is evidenced
in the large changes that projected winter warming has on
the seasonal distribution of GPP and RE (Figure 9).
[34] In a past study, we predicted that increased winter

warming in future climate scenarios would cause reduced
summertime GPP in the Niwot Ridge AmeriFlux forest
due to reduced snowpack depth, earlier snowmelt, and
reduced midsummer soil moisture [Hu et al., 2010b]. This
prediction was made on the basis of observations across
9 years in the AmeriFlux record reflecting current climate
(1999–2007); comparing years with earlier versus later
snowmelt dates. We tested this prediction in the current
study to determine if the warmer winters and reduced snow
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Figure 7. Two decades (1980–1999) of the WGEN model
“training data” for total precipitation measured at the Niwot
Ridge Long Term Ecological Research Site “C1” meteoro-
logical station. A multiyear drought is observable in the first
part of the second decade. This is the drought that is likely
reflected in lower NEE in the projected climate series for
2080–2099 (discussed in text). Monthly precipitation totals
from these data determined the timing and frequency of
“wet” and “dry” months in the WGEN model output.
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Figure 8. Cumulative NEE (grey line) averaged over the
10 SIPNET model outputs for 2080–2099 shown in Fig-
ure 5A. The x-axis shows days since the simulation starts,
i.e. day 1 is 1 January 2080; day 7305 is 31 December
2099. The black envelope shows standard error.
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projected for the Niwot Ridge site would be accompanied by
lower midsummer soil moisture contents and reduced mid-
summer GPP. We used the modified version of SIPNET
with enhanced summer drawdown of soil moisture
(described in Methods) to test this hypothesis. The model
did not predict reduced annual NEE given the future climate
projections of warm winters and reduced winter snowpack
(Figure 9, Table 3). However, when compared to observations
of soil moisture content, the SIPNET model performs poorly
with regard to predicting early-season and late-season soil dy-
namics (see supporting information); the model is much better
at predicting midsummer soil moisture. Given this knowledge,
we focused on whether the model was predicting midsummer
drought reductions in GPP during years with lower summer
precipitation. The answer to this question was “probably,” as
the regression between July GPP and July precipitation was

positive in sign (r2 = 0.34) and statistically probable at the
0.06 level (data not shown). Thus, the model does seem capa-
ble of predicting reduced GPP during years with drier sum-
mers. The reason for failure of the model to predict a
negative correlation between annual cumulative NEE and
growing season length is likely due to the projection for in-
creased winter rain in the future climate scenarios.
[35] Considering the overall question as to how carbon

exchange in this ecosystem may change in the future, the
model results revealed that warmer winter temperatures,
coupled with a conversion of winter precipitation from snow
to rain, will cause higher rates of CO2 uptake by the forest.
The temperature optimum for photosynthesis has been ob-
served to be relatively low for all three dominant tree species
in this ecosystem—being between 7 and 12�C—and statisti-
cal path analysis demonstrated that a slight increase in

Table 3. Initial Values and Subsequent Values Over Time for Four Variables Estimated by the SIPNET Modela

Run Year Plant Wood C Plant Leaf C Soil C Cumulative NEE

Initial value 2080 9,600.00 1133.60 16,000.00 0.00
1 2085 10,737.02 1565.35 17,259.55 �2827.92

2090 11,476.16 1733.37 18,283.40 �4758.93
2099 11,651.10 1358.74 21,381.96 �7657.80

2 2085 10,737.10 1572.25 17,379.00 �2954.35
2090 11,483.36 1747.21 18,596.23 �5092.80
2099 11,404.17 1319.68 21,701.85 �7691.70

3 2085 10,325.43 1377.96 17,445.81 �2415.20
2090 10,776.40 1463.91 18,528.66 �4034.98
2099 10,715.92 1143.47 21,334.41 �6459.80

4 2085 10,906.35 1647.74 17,338.31 �3158.41
2090 11,662.93 1803.87 18,451.19 �5183.99
2099 12,052.11 1476.34 21,769.79 �8564.24

5 2085 10,609.29 1504.01 17,345.22 �2724.51
2090 11,264.46 1650.10 18,447.11 �4627.67
2099 11,574.14 1396.27 21,551.40 �7787.81

6 2085 11,024.08 1717.94 17,463.59 �3471.60
2090 11,903.09 1907.08 18,729.23 �5805.40
2099 11,435.05 1349.64 21,965.81 �8016.49

7 2085 10,783.62 1591.14 17,454.02 �3094.79
2090 11,580.87 1781.84 18,626.25 �5254.96
2099 11,395.24 1298.22 21,752.33 �7711.79

8 2085 10,954.23 1684.82 17,434.00 �3339.05
2090 11,797.78 1869.13 18,689.80 �5622.71
2099 11,736.41 1412.61 22,021.10 �8436.12

9 2085 10,774.69 1593.30 17,408.69 �3042.68
2090 11,418.32 1712.73 18,579.29 �4976.34
2099 11,756.68 1451.74 21,762.07 �8236.49

10 2085 10,642.66 1509.08 17,151.13 �2568.87
2090 11,248.04 1610.02 18,171.75 �4295.80
2099 12,700.88 1769.15 20,913.74 �8649.77

Mean Pool Size Delta and Standard Error:
5 years 1149.45 442.76 1367.93 �2959.74
SE 62.79 31.03 31.43 104.99

10 years 1861.14 594.33 2510.29 �4965.36
SE 101.05 40.95 55.74 174.97

20 years 2042.17 263.99 5615.45 �7921.20
SE 161.00 50.73 104.80 201.00

aThe results of 10 runs are shown, driven by climate time series generated from 10 ensemble members of the WGEN/MT-CLIM4 model. Values are given
in gC.
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temperature during the late winter and early spring is likely
to increase forest net CO2 uptake [Huxman et al., 2003].
Here, the model results also showed that a slight increase
in air temperature during the late winter and early spring, ac-
companied by higher precipitation, is likely to cause an ear-
lier seasonal maximum in GPP. When, combined with the
results of our past studies of water use in the forest, and
the effects of both winter and summer drought [Hu et al.,
2010b], we are led to predict that winter warming will in-
crease carbon sequestration by subalpine forests in the West-
ern U.S., but only if liquid soil water is present. Once again,
the issue as to where and to what extent snow will change to
rain during the late winter months is critical to assessing fu-
ture patterns of carbon cycling in this type of ecosystem.
[36] In this study, we used an ecosystem process model

conditioned on a long-term record of flux observations to
study the controls by weather and climate on carbon cycling
in a subalpine forest ecosystem. Our approach was to: (1)
use the flux observation record as a means to optimize those
parameters in the model that interact with weather and con-
trol NEE, (2) deploy the optimized form of the model with
meteorological inputs generated by weather generator
models conditioned on synoptic variation and future climate
projections, and (3) predict seasonal and interannual patterns
of ecosystem-atmosphere CO2 exchange. The advantage of
this approach lies in being able to match the timescales of
meteorological change with the unique physiological attri-
butes of the subalpine forest biome, thus revealing patterns
of ecophysiological and biogeochemical control at spatio-
temporal scales that would not be revealed in conventional
ESM modeling [Medvigy et al., 2010]. Accepting these ad-
vantages, however, we also recognize that there are logisti-
cal limitations to the approach. For example, we have
accounted for processes that occur during the 100 year span
of projected climate change; processes such as changes in
forest structure or composition, episodic disturbance (e.g.,
fire and insect outbreaks), or physiological acclimation.
Rather, our approach focuses on changes in those processes
and interactions that determine NEE within, not between,
current and future climate regimes. This approach has value
in elucidating controls over some of the subgrid dynamics

that are averaged in ESMs, and while we have focused on
only one site, our approach should be applicable to a broad
range of ecosystems for which long-term flux and weather
records are available.
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