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The quantification of carbon fluxes between the terrestrial biosphere and the atmosphere is of scientific
importance and also relevant to climate-policy making. Eddy covariance flux towers provide continuous
measurements of ecosystem-level exchange of carbon dioxide spanning diurnal, synoptic, seasonal, and
interannual time scales. However, these measurements only represent the fluxes at the scale of the tower
footprint. Here we used remotely sensed data from the Moderate Resolution Imaging Spectroradiometer
orology, Pennsylvania State University, University Park, PA 16802, USA.
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(MODIS) to upscale gross primary productivity (GPP) data from eddy covariance flux towers to the
continental scale. We first combined GPP and MODIS data for 42 AmeriFlux towers encompassing a wide
range of ecosystem and climate types to develop a predictive GPP model using a regression tree approach.
The predictive model was trained using observed GPP over the period 2000–2004, and was validated using
observed GPP over the period 2005–2006 and leave-one-out cross-validation. Our model predicted GPP fairly
well at the site level. We then used the model to estimate GPP for each 1 km×1 km cell across the U.S. for
each 8-day interval over the period from February 2000 to December 2006 using MODIS data. Our GPP
estimates provide a spatially and temporally continuous measure of gross primary production for the U.S.
that is a highly constrained by eddy covariance flux data. Our study demonstrated that our empirical
approach is effective for upscaling eddy flux GPP data to the continental scale and producing continuous
GPP estimates across multiple biomes. With these estimates, we then examined the patterns, magnitude, and
interannual variability of GPP. We estimated a gross carbon uptake between 6.91 and 7.33 Pg C yr−1 for
the conterminous U.S. Drought, fires, and hurricanes reduced annual GPP at regional scales and could have
a significant impact on the U.S. net ecosystem carbon exchange. The sources of the interannual variability of
U.S. GPP were dominated by these extreme climate events and disturbances.
© 2009 Elsevier Inc. All rights reserved.
1. Introduction

The quantification of ecosystem carbon fluxes for regions, con-
tinents, or the globe can improve our understanding of the feedbacks
between the terrestrial biosphere and the atmosphere in the context of
global change and facilitate climate-policy decisions (Law et al., 2006).
Gross primary productivity (GPP) is the amount of carbon fixed by
vegetation through photosynthesis and a key component of ecosystem
carbon fluxes and the carbon balance between the biosphere and the
atmosphere (Mäkelä et al., 2008). The accurate estimation of GPP is
essential for the quantification of net ecosystem carbon exchange (NEE)
as the latter is often a small difference of two large carbon fluxes— GPP
and ecosystem respiration (Re). The estimation of GPP for regions,
continents, or the globe, however, can only bemade by using ecosystem
models (e.g., Prince & Goward, 1995) and/or remotely sensed data (e.g.,
Running et al., 2004).

Eddy covariance flux towers have been providing continuous
measurements of ecosystem-level exchange of carbon, water, and
energy spanningdiurnal, synoptic, seasonal, and interannual time scales
since the early 1990s (Baldocchi et al., 2001; Wofsy et al., 1993). At
present, over 500 eddy covariance flux towers are operating on a long-
term and continuous basis around the world (FLUXNET, http://daac.
ornl.gov/FLUXNET). This global network encompasses a large range of
climate and biome types (Baldocchi et al., 2001), and provides probably
the best estimates of ecosystem-level carbon fluxes. The flux towers
directlymeasureNEE that canbe separated into twomajor components:
GPP and Re (Desai et al., 2008; Reichstein et al., 2005). However, these
estimates only represent fluxes at the scale of the tower footprint with
longitudinal dimensions rangingbetweena hundredmeters and several
kilometers depending on homogeneous vegetation and fetch (Göckede
et al., 2008; Schmid, 1994). Toquantify theexchangeof CO2between the
terrestrial biosphere and the atmosphere, significant efforts are needed
to upscale flux tower measurements from the stand scale to landscape,
regional, continental, or global scales.

Satellite remote sensing is a potentially valuable tool for upscaling
efforts (Running et al., 1999; Xiao et al., 2008). Several studies have
integrated flux data with remote sensing data to quantify GPP over
large areas. Zhang et al. (2007) estimated GPP for the Northern Great
Plains grasslands using satellite and flux tower data. Yang et al. (2007)
linked satellite observations to flux tower GPP data for the estimation
of GPP for two broad vegetation types in the U.S. using a machine
learning approach. Despite these efforts, to our knowledge, no study
has upscaled AmeriFlux GPP data to the continental scale to produce
spatially-explicit estimates of GPP across multiple biomes and to
examine the patterns, magnitude, and interannual variability of GPP
over the conterminous U.S.

Here we used a regression tree approach and remotely sensed data
from the Moderate Resolution Imaging Spectroradiometer (MODIS) to
upscale flux tower GPP data to the continental scale and producedwall-
to-wall GPP estimates for multiple biomes across the conterminous U.S.
First,wedeveloped apredictiveGPPmodelbasedon site-specificMODIS
andflux towerGPPdata, and validated themodel using eddyfluxdata in
both temporal and spatial domains. Second, we applied the model to
estimate GPP for each 1 km×1 km cell across the conterminous U.S. for
each 8-day interval over the period 2000–2006 using wall-to-wall
MODIS data. Third, we examined the patterns, magnitude, and
interannual variability of GPP across the conterminous U.S.

2. Data and methods

2.1. Regression tree approach

We used a modified regression tree approach implemented in the
commercial software, Cubist, to upscale flux tower GPP to the
continental scale. Regression tree algorithms typically predict class
membership by recursively partitioning a dataset into more homo-
geneous subsets. The partitioning process splits each parent node into
two child nodes, and each child node is treated as a potential parent
node. Regression tree models can account for a nonlinear relationship
between predictive and target variables and allow both continuous
and discrete variables. Previous studies showed that regression tree
methods are not only more effective than simple techniques including
multivariate linear regression, but also easier to understand than
neural networks (e.g., Huang & Townshend, 2003).

Cubist constructs an unconventional type of regression tree, in
which the terminal nodes or leaves are linear regression models
instead of discrete values (Minasny & McBratney, 2008). Cubist
produces rule-based models containing one or more rules, each of
which is a set of conditions associated with a multivariate linear
submodel. Cubist is a powerful tool for generating rule-based
predictive models. A Cubist model resembles a piecewise linear
model, except that the rules can overlap with one another (RuleQuest,
2008). Details on regression tree approaches and Cubist were
described in Yang et al. (2003), Wylie et al. (2007), and Xiao et al.
(2008). In our previous study, we used Cubist to develop a predictive
NEEmodel and upscaled NEE estimates to the continental scale for the
conterminous U.S. (Xiao et al., 2008). In this study, we used Cubist to
construct a predictive GPPmodel based onMODIS and AmeriFlux GPP
data. Cubist uses three statistical measures to evaluate the quality of
the constructed predictive model, including mean absolute error
(MAE), relative error (RE), and product-moment correlation coeffi-
cient (Xiao et al., 2008; Yang et al., 2003). MAE is calculated as:

MAE =
1
N

∑
N

i=1
jyi−ŷi j ð1Þ

http://daac.ornl.gov/FLUXNET
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where N is the number of samples used to establish the predictive
model, and yi and ŷi are the actual and predicted values of the
response variable, respectively. RE is calculated as:

RE =
MAET
MAEμ

ð2Þ

where MAET is the MAE of the constructed model, and MAEµ is the
MAE that would result from always predicting the mean value. All
three statistical measures were used to evaluate the performance of
the constructed model.

2.2. Explanatory variables

GPP is influencedby a varietyof physical, physiological, atmospheric,
hydrological, and edaphic variables. At the leaf level, GPP is influenced
by several factors, including incoming solar radiation, air temperature,
vapor pressure deficit, soil moisture, and nitrogen availability (Clark
et al., 1999, 2004; Ruimy et al., 1995). At the canopy or ecosystem level,
GPP is also influenced by leaf area index (LAI) (Ruimy et al., 1995) and
canopy phenology (Richardson et al., 2009). At the stand or regional
level, GPP is significantly affected by disturbances such as fire and
harvest (Law et al., 2004). Many of these factors can be effectively
assessed by satellite remote sensing. Surface reflectance depends on
vegetation type, biophysical properties (e.g., biomass, leaf area, and
stand age), soil background, soil moisture conditions, and sun-object-
Table 1
Site descriptions including name, latitude, longitude, vegetation type, years of data availabl

Site State Lat Lon

Audubon Research Ranch (ARR) AZ 31.59 −110.51
Santa Rita Mesquite (SRM) AZ 31.82 −110.87
Walnut Gulch Kendall Grasslands (WGK) AZ 31.74 −109.94
Sky Oaks Old Stand (SOO) CA 33.37 −116.62
Sky Oaks Young stand (SOY) CA 33.38 −116.62
Tonzi Ranch (TR) CA 38.43 −120.97
Vaira Ranch (VR) CA 38.41 −120.95
Niwot Ridge Forest (NRF) CO 40.03 −105.55
Kennedy Space Center — Scrub Oak (KSC) FL 28.61 −80.67
Austin Cary — Slash Pine (AC) FL 29.74 −82.22
Bondville (Bon) IL 40.01 −88.29
FNAL agricultural site (FAg) IL 41.86 −88.22
FNAL Prairie site (FPr) IL 41.84 −88.24
Morgan Monroe State Forest (MMS) IN 39.32 −86.41
Harvard Forest EMS Tower (HFE) MA 42.54 −72.17
Harvard Forest Hemlock Site (HFH) MA 42.54 −72.18
Little Prospect Hill (LPH) MA 42.54 −72.18
Howland forest (HF) ME 45.20 −68.74
Howland forest (west tower) (HFW) ME 45.21 −68.75
Sylvania Wilderness Area (SWA) MI 46.24 −89.35
Univ. of Mich. Biological Station (UMB) MI 45.56 −84.71
Missouri Ozark (MO) MO 38.74 −92.20
Goodwin Creek (GC) MS 34.25 −89.97
Fort Peck (FPe) MT 48.31 −105.10
Duke Forest loblolly pine (DFP) NC 35.98 −79.09
Duke Forest hardwoods (DFH) NC 35.97 −79.10
North Carolina loblolly pine (NCP) NC 35.80 −76.67
Mead irrigated continuous maize site (MIC) NE 41.17 −96.48
Mead irrigated rotation (MIR) NE 41.16 −96.47
Mead rainfed (MR) NE 41.18 −96.44
Bartlett Experimental Forest (BEF) NH 44.06 −71.29
Toledo Oak Openings (TOO) OH 41.55 −83.84
ARM Oklahoma (ARM) OK 36.61 −97.49
Metolius intermediate aged ponderosa pine (MI) OR 44.45 −121.56
Metolius new young pine (MN) OR 44.32 −121.61
Brookings (Bro) SD 44.35 −96.84
Freeman Ranch Mesquite Juniper (FRM) TX 29.95 −98.00
Wind River Crane Site (WRC) WA 45.82 −121.95
Lost Creek (LC) WI 46.08 −89.98
Willow Creek (WC) WI 45.81 −90.08
Wisconsin intermediate hardwood (WIH) WI 46.73 −91.23
Wisconsin mature red pine (MRP) WI 46.74 −91.17
sensor geometry (Penuelas et al., 1993; Ranson et al., 1985; Schmidt &
Skidmore, 2003). Vegetation indices including normalized difference
vegetating index (NDVI) and enhanced vegetation index (EVI) are
closely correlated to the fraction of photosynthetically active radiation
(fPAR; Asrar et al., 1984) absorbed by vegetation canopies, and are also
related to vegetation biomass and fractional vegetation cover (e.g., Chen
et al., 2004;Myneni et al., 2001; Persson et al., 1993; Tucker et al., 1985).
Compared to NDVI, EVI is more responsive to canopy structural
variations, such as LAI, canopy type, plant physiognomy, and canopy
architecture (Gao et al., 2000). The normalized difference water index
(NDWI; Gao, 1996)was shown to be strongly correlatedwith leaf water
content (Jackson et al., 2004) and soil moisture (Fensholt & Sandholt,
2003) over time. LAI and fPAR characterize vegetation canopy
functioning and energy absorption capacity (Myneni et al., 2002) and
are key parameters inmost ecosystemproductivity and biogeochemical
models (Sellers et al., 1997). We therefore selected surface reflectance,
EVI, LST, LAI, fPAR, and NDWI as explanatory variables. All of these
variables were derived from MODIS data, which also avoided the
complications and difficulties to merge disparate data sources (Xiao
et al., 2008).

2.3. AmeriFlux data

We obtained the following three types of data: GPP from eddy
covariance flux towers, explanatory variables derived fromMODIS, and
a land-covermap. The AmeriFlux network coordinates regional analysis
e, and references for each flux site.

Vegetation type Year References

Grasslands 2002–2006
Savannas 2004–2006 Scott et al. (2009)
Grasslands 2004–2006
Shrublands 2004–2006 Lipson et al. (2005)
Shrublands 2001–2006 Lipson et al. (2005)
Savannas 2001–2006 Ma et al. (2007)
Grasslands 2001–2006 Xu and Baldocchi (2004)
Evergreen forests 2000–2003 Monson et al. (2002)
Shrublands 2000–2006 Dore et al. (2003)
Evergreen forests 2001–2005 Powell et al. (2008)
Croplands 2001–2006 Hollinger et al. (2005)
Croplands 2005–2006
Grasslands 2004–2006
Deciduous forests 2000–2005 Schmid et al. (2000)
Deciduous forests 2000–2004 Urbanski et al. (2007)
Evergreen forests 2004
Deciduous forests 2002–2005
Evergreen forests 2000–2004 Hollinger et al. (1999, 2004)
Deciduous forests 2000–2004 Hollinger et al. (1999, 2004)
Mixed forests 2002–2006 Desai et al. (2005)
Mixed forests 2000–2003 Gough et al. (2008)
Deciduous forests 2004–2006 Gu et al. (2006, 2007)
Grasslands 2002–2006
Grasslands 2000–2006
Evergreen forests 2001–2005 Oren et al. (1998, 2006)
Deciduous forests 2003–2005 Pataki and Oren (2003)
Evergreen forests 2005–2006
Croplands 2001–2005 Verma et al. (2005)
Croplands 2001–2005 Verma et al. (2005)
Croplands 2001–2005 Verma et al. (2005)
Deciduous forests 2004–2005 Jenkins et al. (2007)
Savannas 2004–2005 Noormets et al. (2008b)
Croplands 2003–2006
Evergreen forests 2003–2005 Irvine et al. (2007); Law et al.(2003)
Evergreen forests 2004–2005 Irvine et al. (2007); Law et al. (2003)
Grasslands 2004–2006
Savannas 2004–2006
Evergreen forests 2000–2004 Falk et al. (2008)
Deciduous forests 2000–2005
Deciduous forests 2000–2006 Cook et al. (2004)
Deciduous forests 2003 Noormets et al. (2008a)
Evergreen forests 2002–2005 Noormets et al. (2007)
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of observations fromeddy covariance flux towers across North America,
Central America, and SouthAmerica (Law, 2006).Weobtained the Level
4 data product for 42 AmeriFlux sites over the period 2000–2006 from
theAmeriFluxwebsite (http://public.ornl.gov/ameriflux) (Table 1). This
product includes NEE data from most of the active flux sites in the
network. These sites are distributed across the conterminous U.S. and
cover a range of vegetation types: forests, shrublands, savannas,
grasslands, and croplands. Moreover, the distribution of these sites in
the mean annual climate space indicates that the sites we selected are
fairly representative of typical U.S. climate types (Xiao et al., 2008). In
addition, some of the forested sites (e.g., Austin Cary, FL; Metolius new
young pine, OR; Metolius intermediate aged ponderosa pine, OR;
Wisconsin intermediate hardwood, WI) are at different stages since
stand replacingdisturbance,which are located in disturbance clusters of
sites. In addition, some of the sites have received treatment, including
the Howland Forest West Tower (ME; nitrogen fertilizer) and theMead
cropland sites (NE; irrigation versus rainfed, continuous maize versus
maize/soybean rotation).We therefore believe that these sites are fairly
representative of typical U.S. ecosystem and climate types.

The Level 4 product consists of two types of GPP data, including
standardized (GPP_st) and original (GPP_or) GPP. GPP was calculated
from NEE and ecosystem respiration (Re):

GPP st = Re−NEE st ð3Þ
and

GPP or = Re−NEE or ð4Þ

where NEE_st and NEE_or are standardized and original NEE,
respectively. NEE_st was calculated using the storage obtained from
the discrete approach (single point on the top of the tower) with the
same approach for all the sites, whereas NEE_or was calculated using
the storage sent by the principal investigators that can be obtained
with the discrete approach or using a vertical CO2 profile system. Both
NEE_st and NEE_or were gap-filled using the Marginal Distribution
Sampling (MDS) method (Reichstein et al., 2005) and the Artificial
Neural Network (ANN) method (Papale & Valentini, 2003). The ANN
method was generally, if only slightly, superior to the MDS method
(Moffat et al., 2007). A number of methods are available for estimating
Fig. 1. Scatterplots of observed 8-day GPP versus predicted 8-day GPP. (a) Our estimate (
(y=0.50x+1.01, R2=0.58, pb0.0001). For each plot, the solid line is the 1:1 line, and the
GPP. Although Stoy et al. (2006) showed that the non-rectangular
hyperbolic method (Gilmanov et al., 2003) produces estimates more
consistent with independent data, we chose to use a method that
relies on gap-filled nighttime data because it is more frequently used
and less computationally demanding. We used GPP calculated from
NEE data that was gap-filled using the ANN method. For each site, if
the percentage of the remaining missing values for GPP_st was lower
than that for GPP_or, we selected GPP_or; otherwise, we used GPP_st.
GPP_st was the first choice so that the processing procedure for GPP
was the same for as many sites as possible. We used 8-day average
GPP data (g C m−2 day−1) to match the compositing intervals of
MODIS data.
2.4. MODIS data

We used the following four MODIS data products (Collection 4),
including surface reflectance (MOD09A1; Vermote & Vermeulen,
1999), daytime and nighttime LST (MOD11A2; Wan et al., 2002), EVI
(MOD13A1; Huete et al., 2002), and LAI/fPAR (MOD15A2; Myneni
et al., 2002). Surface reflectance and EVI are at a spatial resolution of
500 m, while LST, LAI, and fPAR are at spatial resolution of 1 km.
Surface reflectance, LST, LAI, and fPAR are at a temporal resolution of
8 days, while EVI is at a temporal resolution of 16 days. Sims et al.
(2005) showed that the midday values of gross CO2 exchange during
satellite overpasses can be used to estimate 8-day mean gross CO2

exchange, bridging the connection between continuous measure-
ments of flux tower data and 8-day MODIS data. We used the 16-day
EVI product instead of EVI calculated from 8-day surface reflectance
despite the lower temporal resolution of the 16-day EVI product. Each
16-day EVI composite was composited from 16 daily observations
(Huete et al., 2002). The VI algorithm applies a filter to the data based
on quality, cloud, and viewing geometry, and only the higher quality,
cloud-free, filtered data are retained for compositing; the maximum
value composite (MVC) method employed selects the observation
with the highest VI value to represent the composting period
(16 days) (Huete et al., 2002). MVC minimizes the contamination of
clouds and aerosols and the effects of sensor view angles on VI
(Hoblen, 1986). For the 8-day surface reflectance product, each pixel
contains the best possible daily observation during an 8-day period as
y=0.85x+0.37, R2=0.74, pb0.0001). (b) MODIS GPP product (Running et al., 2004)
dashed line is the regression line.

http://public.ornl.gov/ameriflux
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selected on the basis of high observation coverage, low view angle, the
absence of clouds or cloud show, and aerosol loading (Vermote &
Kotchenova, 2008), and the EVI calculated from the 8-day surface
reflectance is less representative of the composting period than the
MODIS EVI product.

For each AmeriFlux site, we obtained MODIS ASCII (American
Standard Code for Information Interchange) subsets (Collection 4)
consisting of 7 km×7 km regions centered on the flux tower,
including surface reflectance, daytime and nighttime LST, EVI, LAI,
and fPAR over the period 2000–2006 from the Oak Ridge National
Laboratory's Distributed Active Archive Center (ORNL DAAC, 2006).
We extracted average values for the central 3 km×3 km area within
the 7 km×7 km cutouts to better represent the flux tower footprint
Fig. 2. Examples of time series plots of observed (open circles) and predicted (solid circl
(1) evergreen forests— AC (FL) andMRP (WI); (2) deciduous forests— DFH (NC); (3) mixed
VR (CA); (6) grasslands — ARR (AZ); (7) croplands — MIC (NE). For x-axis, the starting date
numbers. Dashed lines are used to separate 2005 from 2006. Site abbreviations are used he
(Rahman et al., 2005; Schmid, 2002; Xiao et al., 2008). For each
variable, we determined the quality of the value of each pixel within
the area using the quality assurance (QA) flags included in the
product. At each time step, we averaged the values of each variable
using the pixels with good quality within the area to represent
the values at the flux site. If none of the values within the 3×3 km
area were of good quality, we treated the period as missing. Each
16-day EVI value was used for the two 8-day intervals corres-
ponding with the compositing interval of other MODIS data
products. NDWI was calculated from band 2 and band 6 of the
surface reflectance product.

To estimate GPP at the continental scale, we obtained wall-to-wall
MODIS data including surface reflectance, daytime and nighttime LST,
es) 8-day GPP (g C m−2 day−1) for each AmeriFlux site over the period 2005–2006:
forests— SWA (MI); (4) shrublands— KSC (FL); (5) savannas— SRM (AZ), TR (CA), and
s (month/day) of every two 8-day intervals are provided in parentheses under interval
re, and their full names are given in Table 1.



Fig. 3. Scatterplot of observed mean 8-day GPP versus predictedmean 8-day GPP across
the AmeriFlux sites. Error bars are standard errors (defined as the standard deviation
divided by the square root of the number of observations) of the observed and
predicted 8-day mean GPP. The solid line indicates the 1:1 line, and the dashed line
indicates the regression line (y=0.95⁎x+0.21, R2=0.84, pb0.0001). Site abbrevia-
tions are used here, and their full names are given in Table 1.
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LAI, and EVI over theperiod fromFebruary 2000 toDecember 2006 from
the Earth Observing System (EOS) Data Gateway. For each variable, we
determined the quality of the value of each pixel using the QA flags and
replaced the bad-quality value using a linear interpolation approach
(Zhao et al., 2005). The NDWI was calculated from band 2 (near-
infrared, 841–876 nm) and band 6 (shortwave infrared, 1628–
1652 nm) of the surface reflectance product (MOD09A1). Similarly,
each 16-day EVI composite was used for two 8-day intervals
corresponding to the compositing interval of other MODIS products.
NDWIwas calculated from band 2 and band 6 of the surface reflectance
product for each 8-day interval.

We also used the MODIS 8-day GPP product (MOD17A2; Running
et al., 2004) for comparison purposes at both the site level and the
continental scale. The MODIS GPP product is at a spatial resolution of
1 km, and a temporal resolution of 8 days. We obtained MODIS ASCII
subsets (Collection 4) for theMODIS 8-day GPP product over the period
2005–2006 from theOak RidgeNational Laboratory's Distributed Active
ArchiveCenter (ORNLDAAC, 2006).We alsoobtained theMODISannual
GPP product (MOD17A3; Running et al., 2004) for 2005 from the
Numerical Terradynamic Simulation Group, University of Montana
(http://www.ntsg.umt.edu).

2.5. Land cover

To construct a predictive GPP model, we obtained the land-cover
type for each AmeriFlux site based on the site descriptions (Table 1)
and categorized each site into a class of the UMD (University of
Maryland) land-cover classification system. Although the 42 Ameri-
Flux sites used in this study cover a variety of vegetation classes of this
classification system, some classes (e.g., deciduous needleleaf forests,
open shrublands) were not covered by any site. We therefore
reclassified all vegetation classes of the UMD classification system to
seven broader classes : evergreen forests (EF), deciduous forests (DF),
mixed forests (MF), shrublands (Sh), savannas (Sa), grasslands (Gr),
and croplands (Cr), following Xiao et al. (2008). Specifically, evergreen
needleleaf forests and evergreen broadleaf forests were merged to
evergreen forests, deciduous needleleaf forests and deciduous broad-
leaf forests to deciduous forests, closed shrublands and open shrub-
lands to shrublands, and woody savannas and savannas to savannas.

To estimate GPP for each 1 km×1 kmpixel across the conterminous
U.S., we obtained the land-cover type for each pixel from the MODIS
land-over map with the UMD classification system (Friedl et al., 2002).
Similarly,we reclassified the vegetation classes of theMODIS land-cover
map to the seven broader classes. We then used the reclassified land-
cover map to specify the land cover of each 1 km×1 km cell across the
conterminous U.S.

2.6. Model development

We developed a predictive GPP model using Cubist based on the site-
specific MODIS and AmeriFlux GPP data. Our explanatory variables
included land cover, surface reflectance (bands 1–7), daytime and
nighttime LST, EVI, NDWI, fPAR, and LAI, and our response variable was
GPP (g Cm−2 day−1). Land coverwas included as a categorical variable in
the model. We split the site-level data set of AmeriFlux and MODIS data
into a training set (2000–2004) and a test set (2005–2006). If a site only
hadGPPobservations for the period2000–2004, the sitewas only included
in the training set; if a site only had GPP observations for the period 2005–
2006, the site was only included in the test set; otherwise, the site was
included in both training and test sets. The training and test sets included
40 and 34 AmeriFlux sites, respectively. We had a total of 4529 and 2240
data samples for the training and test sets, respectively. In addition to the
full model that includes all of the 14 independent variables, we also
developed a series of models by dropping one or more variables at a time
using Cubist. To select the best model, we evaluated the performance of
each model based on MAE, RE, and correlation coefficient. We chose the
modelwith theminimalMAEandREandmaximumcorrelation coefficient
as the best model. We also evaluated the model performance using the
Root Mean Squared Error (RMSE), scatterplots of predicted GPP versus
observedGPP, andseasonalvariationsbetween thepredictedandobserved
GPP.

We also evaluated the performance of ourmodel in the spatial domain
using leave-one-out cross-validation. In this approach, the data from a
single site was used for validation, and the data from the remaining sites
wereused for training. The training andvalidationdatawere fromdifferent
sites and were therefore independent from each other as these sites are
generally hundreds of kilometers away from each other and the spatial
autocorrelation between these sites was negligible. The leave-one-out
cross-validation was conducted for each site, separately.

2.7. Continental-scale estimation of GPP

As mentioned earlier, the AmeriFlux sites used in this study are
fairly representative of typical U.S. ecosystem and climate types. We
believe that the predictive GPP model constructed from the 42 sites
can be extrapolated to the conterminous U.S. We used the model to
estimateGPP for each1 km×1 kmcell across the conterminousU.S. for
each 8-day interval over the period 2000–2006 using wall-to-wall
MODIS data. GPP was not estimated for non-vegetated cells (e.g.,
urban, barren), and water bodies. We compared our estimate with the
MODIS GPP product (MOD17A3; Running et al., 2004).With our 8-day
GPP estimates, we examined the patterns, magnitude, and interannual
variability of GPP.

3. Results and discussion

3.1. Model development

3.1.1. Predictive GPP model
We chose the model containing five explanatory variables — land

cover, EVI, daytime LST, LAI, and NDWI as the best model to predict

http://www.ntsg.umt.edu
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GPP at the continental scale (RE=0.38, MAE=1.22 g C m−2 day−1,
R2=0.74; Fig. 1a). The performance of the model was comparable to
that of the full model (RE=0.37, MAE=1.19 g C m−2 day−1,
R2=0.74). Having only five explanatory variables could substantially
reduce the computational complexity for continental-scale predic-
tions compared to the full model. The predictive model consisted of
five committee models, each of which was made of a number of rule-
based submodels. For instance, the first committee model was made
of the following 23 rule-based submodels:
Fig. 4. Examples of leave-one-out cross-validation scatterplots with observed 8-day GPP
pb0.0001) and NRF (y=0.67x+0.63, R2=0.63, pb0.0001); (2) deciduous forests — HFE (y
(3) mixed forests — SWA (y=0.89x+0.03, R2=0.89, pb0.0001) and UMB (y=0.92x+
pb0.0001); (5) savannas — FRM (y=0.83x+1.94, R2=0.49, pb0.001); (6) grasslands —

R2=0.86, pb0.0001). The solid line indicates the 1:1 line, and the dashed line indicates the r
Rule1: if land cover in {Deciduous forests,Mixed forests}, EVIb=0.37,
and LAIb=2.64, then

GPP = 0:28 + 0:012LSTday

Rule 2: if LSTdayb=3.27, EVIN0.22, then

GPP = −0:64 + 4:8EVI + 0:6NDWI + 0:06LAI
versus predicted 8-day GPP: (1) evergreen forests — HF (y=0.85x+1.00, R2=0.91,
=0.97x+0.24, R2=0.87, pb0.0001) and WC (y=0.73x+0.62, R2=0.86, pb0.0001);
0.66, INS;R2=0.93, pb0.0001); (4) shrublands — KSC (y=0.28x+2.35, R2=0.14,
GC (y=0.76x+2.03, R2=0.55, pb0.0001); (7) croplands — MR (y=1.04x+0.81,

egression line. Site abbreviations are used here, and their full names are given in Table 1.



Fig. 5. Leave-one-out cross-validation scatterplot of observed mean 8-day GPP versus
predicted mean 8-day GPP across the AmeriFlux sites. Error bars are standard errors of
the observed and predicted 8-day GPP. The solid line indicates the 1:1 line, and the
dashed line indicates the regression line (y=0.73⁎x+1.07, R2=0.69, ;pb0.0001). Site
abbreviations are used here, and their full names are given in Table 1.
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Rule 3: if land cover in {Evergreen forests, Shrublands, Savannas,
Grasslands, Croplands}, EVIb=0.22, LAIb=2.64, then

GPP = 0:15 + 1:4EVI + 0:01LSTday

Rule 4: if land cover in {Deciduous forests, Mixed forests, Savannas,
Croplands}, LSTdayN3.26, EVIb=0.37, LAIb=1.78, then

GPP = −1:10 + 0:75LAI + 4:6EVI
…

Rule 22: if NDWIb=−0.28, LSTdayN17.65, EVIN0.58, then

GPP = 10:49 + 1:9EVI + 0:02LSTday−0:7NDWI

Rule 23: if land cover=Croplands, LSTdayN29.92, EVIN0.37, then

GPP = −24:85 + 5:47LAI + 58:9EVI + 0:124LSTday−0:5NDWI

where LSTday is the daytime LST. As mentioned earlier, the rules of
the model could overlap with one another. For instance, rule 1
overlapped with rule 4 as land cover could be deciduous forests in
both cases; rules 22 and 23 also overlapped with each other as EVI
could be greater than 0.58 in both cases.

3.1.2. Model evaluation
The analysis ofmodel residuals indicated that the residuals were not

randomly distributed. Low GPP values were generally associated with
low prediction errors, whereas high GPP values were associated with
high prediction errors. The uncertainties of carbon flux measurements
are directly proportional to the magnitudes of the fluxes (Richardson
et al., 2008). The residuals also exhibited a systematic component. For
example, large GPP tended to have consistently negative residuals. The
residuals also had a random component that arose partially fromerrors/
uncertainties in the measured fluxes as well as MODIS data. Random
errors in AmeriFlux GPP data are significant (Hagen et al., 2006) and
these errorsmay ultimately limit the agreement between observed and
predicted GPP values. In addition, the explanatory variables included in
the model could not completely explain the variance of GPP. For
example, the independent variables used in the model could not
account for nitrogen availability, and may affect the accuracy of the
model.

We compared our GPP estimates with observed GPP for each
AmeriFlux site over the period 2005–2006 (Fig. 2). Our estimates
captured most features of observed GPP including seasonality and
year-to-year variations over the period 2005–2006. GPP was under-
and over-predicted for some sites. The model could not capture
exceptionally high GPP values for some sites, such as Audubon
Research Ranch (AZ), Santa Rita Mesquite (AZ), and Fort Peck (MT).
We averaged observed and predicted 8-day GPP for each site, and
plotted mean predicted GPP against observed GPP (Fig. 3). The model
estimated GPP fairly well at the site level (y=0.95x+0.21, R2=0.84,
pb0.0001; RMSE=0.77 g C m−2 day−1). Overall, the model slightly
under- and overestimated GPP for values greater or lower than
∼4 g C m−2 day−1, respectively. The model performance also varied
with site. Large underestimation occurred at some sites such as the
North Carolina Loblolly Pine (NCP, NC), Freeman Ranch Mesquite
Juniper (FRM, TX), and Walnut Gulch Kendall Grasslands (WGK, AZ),
whereas large overestimation occurred at some sites such as Lost
Creek (LC, WI) and Mead Rainfed (MR, NE). The model predicted GPP
remarkably well at the biome level (y=0.99x−0.13, R2=0.91,
pb0.00001; RMSE=0.42 g C m−2 day−1). The model slightly over-
estimated GPP for deciduous forests and croplands and slightly
underestimated GPP for all other biomes.

The disagreement between predicted and observed GPP values is
likely due to the following reasons. First, the MODIS and tower
footprints do not match with each other and the vegetation structure
at the flux tower could be significantly different from that within the
MODIS footprint (Xiao et al., 2008). For example, the Tonzi Ranch site
(CA) is dominated by deciduous blue oaks (Quercus douglasii) and the
understory and open grassland are mainly cool-season C3 annual
species (Ma et al., 2007). The MODIS footprint consists of a larger
fraction of grassland than the tower footprint. Blue oaks and grasses
have distinct phenologies (Ma et al., 2007) and therefore had
differential contributions to the carbon fluxes integrated over the
MODIS footprint over time (Xiao et al., 2008). Second, MODIS data is
less sensitive to changes in understory vegetation and damage to
canopies that do not increase canopy gaps, leading to overestimation
of carbon assimilation rates. Third, the independent variables
included in the model could not account for other factors such as
nitrogen availability (Clark et al., 1999, 2004) and stand age (Ryan
et al., 2004), all of whichmay influence GPP. Finally, we estimated GPP
for each 8-day interval, and therefore our estimates may not capture
the variability of GPP within that period. The 8- or 16-day LST and EVI
values do not always represent average environmental conditions and
average fluxes over the 8- or 16-day period (Xiao et al., 2008), and the
exclusion of days with high and low values could lead to underes-
timation and overestimation of GPP values, respectively. In addition,
during drought or days with high vapor pressure deficits, the midday
GPP may not be representative because of the skewed diurnal
variation in GPP (Anthoni et al., 2000).
3.1.3. Model validation
We validated our model in both temporal and spatial domains. We

first validated the model in the temporal domain using the test set over
the period 2005–2006 (Fig. 1a). Our model estimated GPP fairly well
(R2=0.74, pb0.0001; RMSE=1.99 g C m−2 day−1), although it
slightly under- and overestimated GPP values greater and less than
3 g C m−2 day−1, respectively. By contrast, the MODIS GPP product
estimatedGPP for theAmeriFlux siteswithaRMSEof 2.43 g C m−2 day−1

(y=0.50x+1.01, R2=0.58, pb0.0001; Fig. 1b). The R2 and RMSE of our
model were 28% higher and 18% lower than those of the MODIS GPP
product, respectively.
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We then validated the model in the spatial domain using leave-
one-out cross-validation. The cross-validation also showed that our
model estimated GPP fairly well (Fig. 4). The model performance
varied with site and biome type. Our model had a higher performance
for forest ecosystems and croplands than shrublands, savannas, and
grasslands. We averaged observed and predicted 8-day GPP for each
site, and then plotted mean predicted GPP against observed GPP
(Fig. 5). The cross-validation showed that our model estimated GPP
fairly well at the site level (y=0.73x+1.07, R2=0.69, pb0.0001;
RMSE=1.19 g C m−2 day−1) although the slope and R2 were lower
and the RMSE was higher than those of the validation in the temporal
domain, respectively. The cross-validation also showed that our
model estimated GPP remarkably well at the biome level (y=0.86x+
0.48, R2=0.91, pb0.0001; RMSE=0.33 g C m−2 day−1).

The validation of the model in both temporal and spatial domains
showed that the performance of our model is encouraging, given the
diversity in ecosystem types, age structures, fire and insect dis-
turbances, andmanagement practices. Our approach extensively used
eddy covariance flux tower data involving typical U.S. ecosystem and
climate types. Our study demonstrated that our empirical approach
has great potential for upscaling flux tower GPP data to continental
scales across a variety of biomes.
Fig. 6. Monthly GPP (g C m−2 mo−1) for the contermin
3.2. Gross primary production

3.2.1. Seasonal patterns
Our 8-day GPP estimates were highly constrained by eddy flux data,

and provided a spatially and temporally continuousmeasure of GPPwith
high spatial and temporal resolutions for the conterminous U.S., which
made it possible to examine the patterns, magnitude, and interannual
variability ofGPP across theU.S. Our estimates showed thatGPP exhibited
large spatial variability and strong seasonal fluctuations (Fig. 6). The
seasonal patterns ofGPPand its spatial variability reflected the controlling
effects of climate conditions. In the springmonths, the Southeast and the
Gulf Coast significantly assimilated carbon with GPP values reaching
∼100–250 g C m−2 mo−1 as the growing season started in early to mid-
spring in these regions. The Pacific Coast is dominated by evergreen
forests, and these ecosystems also assimilated carbon due to mild
temperatures and moist conditions during the spring (Anthoni et al.,
2002). TheMediterranean regions in California also assimilated carbon in
the spring because of a surplus of precipitation and relatively warm
temperatures (Ma et al., 2007; Xu & Baldocchi, 2004). By contrast, the
Upper Great Lakes region and the northernGreat Plains are dominated by
croplandswithmost cropsplantedbetweenApril and June (Shroyer et al.,
1996), whereas the New England region and the northern portion of the
ous U.S. from January through December in 2005.
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Upper Great Lakes region are dominated by temperate–boreal transi-
tional forests. The relatively late greenup in these regions led to low GPP.

In the summermonths, the eastern U.S., the Coastal Pacific Northwest,
and some regions in California exhibited high GPP values (∼250–
450 g C m−2 mo−1) owing to favorable temperature and soil moisture
conditions, while the vast majority of western landscapes, including the
Great Basin, the Colorado Plateau, and the western Great Plains exhibited
much lower GPP values due to spare vegetation and precipitation deficits.

In the fall months (September–November), the GPP values of the
Southeast and the Gulf Coast substantially decreased relative to those
in the summer because vegetation began to senesce and days became
shorter in these regions. The spatial patterns and magnitude of GPP
were similar to those of the spring. The Upper Great Lakes region and
theGreat Plains had very lowGPP values due to the harvesting of crops.

In the wintermonths (December–February), themajority of the U.S.
had little or no photosynthesis as the canopies ofmost ecosystemswere
dormant. Some regions in the Pacific Coast, California, the Gulf Coast,
and the Southeast slightly assimilated carbon because of the dominance
of evergreen forests andmild temperatures (Anthoniet al., 2002;Clark et
al., 1999; McGarvey et al., 2004;Waring & Franklin, 1979). For example,
Douglas-fir, a major species in the Pacific Northwest and California, is
known to be highly plastic and able to photosynthesize in winter when
temperatures are above the freezing point (Xiao et al., 2008).

Fig. 7 showed the trajectories of the spatially averaged and
integrated 8-day GPP for each biome from February 2000 to December
2006. Deciduous forests and croplands had the largest intra-annual
Fig. 7. Spatially averaged and integrated 8-day GPP for each biome across the
conterminous U.S. over the period 2001–2006. (a) Spatially averaged 8-day GPP
(g C m−2 day−1). (b) Spatially integrated 8-day GPP (Tg C day−1).
variability in spatial averagedGPP, followedbymixed forests; evergreen
forests and savannas had intermediate intra-annual variability; grass-
lands and shrublands had the least variability (Fig. 7a). The temporal
variability of spatially integratedGPP (or spatial total) also showed clear
dependence on biome (Fig. 7b). Collectively, the terrestrial ecosystems
substantially assimilated carbon and had a peak spatial total of 50–
55 Tg C day−1. Taken separately, croplands had the highest intra-
annual variability in spatially integrated GPP, with a peak spatial total of
25–30 Tg C day−1, followed by deciduous forests; evergreen forests,
mixed forests, savannas, and grasslands had intermediate intra-annual
variability in spatially integrated GPP; shrublands had the least
variability. Both spatially averaged and integrated GPP showed inter-
annual variability for each biome.

3.2.2. Annual fluxes
We calculated annual GPP for each year over the period 2001–2006

from our 8-day GPP estimates, and then calculated the average annual
GPP over the 6-year period (Fig. 8). Annual GPP varied considerably over
space, andexhibited a large spatial gradient fromthe east to thewest. The
Gulf Coast, the Southeast, the coastal Pacific Northwest, and a part of the
Pacific Southwest had high annual GPP (∼1500–2000 g C m−2 yr−1);
the Midwest and the Northeast had intermediate values (∼1200–
1500 g C m−2 yr−1), and themajority of the western half of the country
including the Southwest, the western Great Plains, and the Rocky
Mountain regionhadGPPvalues generally lower than500 g C m−2 yr−1.

We estimated a total gross carbon uptake of 7.06 Pg C yr−1 for the
conterminous U.S. over the period 2001–2006. A quantitative break-
down of the 6-yr average annual GPPmap by regions (Table 2) showed
that the North Central and South Central regions had the highest GPP,
followed by the Southeast, the Rocky Mountain region, and the
Northeast; the Pacific Northwest and the Pacific Southwest had the
lowest GPP. The spatially averaged annual GPP of the U.S. was
∼1100 g C m−2 yr−1 (Table 2). Regionally, the Southeast had the
highest spatially averaged annual GPP, followed by the Northeast and
the South Central regions; the North Central region, the Pacific
Northwest, and the Pacific Southwest had intermediate values; the
Rocky Mountain region had the lowest spatially averaged annual GPP.

A quantitative breakdown of the 6-yr average annual GPP by
biomes (Table 3) showed spatially integrated annual GPP varied with
biome. Croplands had the highest spatially integrated annual GPP;
shrublands had lowest annual GPP; other biomes including evergreen
forests, deciduous forests, mixed forests, savannas, and grasslands had
intermediate annual GPP. Spatially averaged annual GPP also varied
with biome (Table 3). Deciduous forests had the highest spatially
averaged annual GPP, followed by evergreen forests, mixed forests,
croplands, and savannas; grasslands had intermediate values; shrub-
lands had the lowest values.

We compared our annual GPP estimate with annual GPP estimate
from the MODIS GPP product (MOD17A3; Running et al., 2004) for
2005 (Fig. 9). Both estimates showed a large spatial gradient from the
east to the west: the Southeast had the highest annual GPP; the
Midwest had intermediate annual GPP, while the Rocky Mountain
region had the lowest GPP. Both estimates showed that annual GPP is
∼300 g C m−2 yr−1 in the Rocky Mountain region. Annual GPP is also
very similar in the New England region and the Upper Peninsula of
Michigan. However, large discrepancies were observed between our
estimate and the MODIS GPP product. Our estimate exhibited larger
spatial variability than the estimate from the MODIS GPP product.
Moreover, compared to our estimate, the MODIS GPP product
substantially underestimated GPP in some regions, particularly the
Midwest and the coastal Pacific Northwest where ecosystems are
highly productive. For example, our annual GPP for the croplands in
the Midwest is ∼1200–1500 g C m−2 yr−1, while the MODIS annual
GPP is only ∼700 g C m−2 yr−1. In many areas in the Southeast, our
annual GPP estimate is ∼1500–2000 g C m−2 yr−1, while the MODIS
annual GPP is only ∼1000–1500 g C m−2 yr−1.



Fig. 8. Average annual GPP (g C m−2 yr−1) of the conterminous U.S. over the period 2001–2006. The gray lines indicate state boundaries. The black lines indicate boundaries of
geographical regions: Northeast (NE), Southeast (SE), North Central (NC), South Central (SC), Rocky Mountain (RM), Pacific Northwest (PNW), and Pacific Southwest (PSW).
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The large discrepancies in annual GPP between our estimate and the
MODIS GPP product can be attributed to the following reasons. First, the
MODIS GPP product was developed using an algorithm optimized for
global applications andmeteorological fieldswith coarse resolution (1 by
1.25°) and large uncertainties (Zhao et al., 2006), and thereby likely
contributed to the smaller spatial variability of MODIS GPP and affected
the accuracy of theMODISGPP estimates. Second, themaximum light use
efficiency (εmax) is an essential parameter of the LUE model used to
develop the MODIS GPP product. The εmax is only 0.68 g C MJ−1 for
croplands in the MOD17 algorithm (Heinsch et al., 2003), which is likely
too low for croplands and results in substantial underestimation of
cropland GPP. Zhang et al. (2008) showed that MODIS annual GPP for an
irrigated cropland in Chinawas only about 20–30% of annual GPP derived
from eddy covariance flux measurements, and attributed the substantial
underestimation of cropland GPP to the underestimation of εmax in the
MOD17 algorithm. Third, our estimate was highly constrained eddy flux
data, while some geographical regions and biomes are underrepresented
by the AmeriFlux network, which could affect the accuracy of our
estimates. For example, we merged savannas (tree cover 10–30%) and
woody savannas (tree cover 30–60%) together in the development of the
model because no sites representing typical savannas with tree cover
below 30%were available, which could lead to significant overestimation
of GPP for areas that were classified as savannas (tree cover 10–30%).

Global annual GPP has been estimated to be 120 Pg C yr−1 using 18O
measurements of atmospheric CO2 (Ciais et al., 1997) and 110 Pg C yr−1
Table 2
Spatially averaged (spatial mean) and integrated (spatial total) annual GPP over the period
Central (SC), Rocky Mountain (RM), Pacific Northwest (PNW), and Pacific Southwest (PSW

GPP NE NC SE

Spatial mean (g C m−2 yr−1) 1604.20 1212.55 2033.91
Spatial total (Pg C yr−1) 0.67 2.00 1.00
from2001 to 2003 using theMODISGPP product (Zhao et al., 2005). Our
estimates suggested that the terrestrial ecosystems in the conterminous
U.S. accounted for 5.9–6.5% of the global annual GPP, while its land area
accounts for ∼5.4% of the global land area. Our estimate of U.S. annual
GPP was higher than other estimates. For example, the average annual
GPP over the period 2001–2006 derived from MODIS GPP product
(Running et al., 2004) was ∼6.2 Pg C yr−1. Our estimate was about 14%
higher than the MODIS GPP estimate. Potter et al. (2007) estimated
annual NPP between 2.67 and 2.79 Pg C yr−1 over the period 2001–
2004 using MODIS data and the NASA-CASA model. Our estimate was
also higher than that estimated by Potter et al. (2007) assuming that
NPP is about half of GPP (Lloyd & Farquhar, 1996; Waring et al., 1998).

Our predictive model has advantages over empirical or process-
based ecosystem models. Most ecosystem models are dependent on
site-level parameterizations that are used as default parameters for a
much broader spectrum of vegetation types and conditions, whichmay
limit the accuracy of model simulations over large areas (e.g., Prince &
Goward, 1995; Running et al., 2004; Xiao et al., 2009). By contrast, our
model was highly constrained by eddy flux data from a number of
towers encompassing a range of ecosystem and climate types, and may
lead to model parameters that are more representative of the full
spectrum of vegetation and climate types and thereby more accurate
estimates of carbon fluxes at regional scales. Moreover, our model
consisted of rule-based, multivariate linear regression models, and is
easier to understand and implement. Our model could substantially
2001–2006 for each region: Northeast (NE), North Central (NC), Southeast (SE), South
).

SC RM PNW PSW US

1457.97 438.20 1007.35 927.77 1103.92
1.93 0.81 0.36 0.29 7.06



Table 3
Spatially averaged (spatial mean) and integrated (spatial total) annual GPP over the period 2001–2006 for each vegetation type: evergreen forests (EF), deciduous forests (DF),
mixed forests (MF), shrublands (Sh), savannas (Sa), grasslands (Gr), and croplands (Cr).

GPP EF DF MF Sh Sa Gr Cr All

Spatial mean (g C m−2 yr−1) 1431.26 1774.74 1447.31 303.78 1500.96 589.24 1500.38 1103.92
Spatial total (Pg C yr−1) 0.85 0.83 0.67 0.33 0.63 0.83 2.92 7.06
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reduce computational complexity compared to many ecosystem
models. On the other hand, however, our model also has disadvantages
over ecosystem models. Our model is an empirical approach, and does
not involve ecosystem processes such as photosynthesis and nitrogen
cycling. Moreover, our model did not explicitly consider some factors
Fig. 9. Annual GPP (g C m−2 yr−1) for the conterminous U.S. for 2005. (a) Our

Fig. 10. Annual GPP anomalies (g C m−2 yr−1) and annual precipitation anomalies (mm) for
the 6-year period from 2001 to 2006, and the anomalies of annual precipitation were relative
Climate Group, 2004).
influencingGPP such as nitrogen availability, stand age, and disturbance
history that may be explicitly simulated in process-based ecosystem
models (e.g., Aber et al., 1997). All these model differences contributed
to the discrepancies in annual GPP estimates between our empirical
approach and ecosystem models.
estimate. (b) The MODIS GPP product (MOD17A3; Running et al., 2004).

the conterminous U.S. for 2002 and 2006. The anomalies of annual GPP were relative to
to the 30-year period from 1971 to 2000 taken from the PRISM climate database (PRISM



Fig. 11. Impact of the Biscuit Fire (N2000 km2) in Oregon on annual GPP in 2004.
(a) Burned area. (b) The dots represent fire detections from Terra MODIS and Aqua
MODIS MODIS (USDA Forest Service MODIS Active Fire Mapping Program, http://
activefiremaps.fs.fed.us). (c) Burn severity based on the difference normalized burn ratio
(dNBR; Lutes et al., 2004) from Landsat Thematic Mapper (TM) data acquired before and
immediately after the fire. (d) Annual GPP anomalies in 2003 (g C m−2 yr−1).
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3.2.3. Interannual variability
TheU.S. annualGPP varied between 6.91 and 7.33 Pg C yr−1 over the

period2001–2006. The years 2002, 2004, and2006had lowerGPPvalues
relative to 2001, 2003, and 2005. Annual GPP exhibited positive and
negative anomalies for each year, and the spatial patterns of these
anomalies also varied from year to year (Fig. 10). The annual GPP
anomalies were likely due to climate variability, disturbances, and
management practices. Moderate to severe drought affected over 50% of
the country in both years, including the Southwest, the Great Plains, the
Gulf Coast, and the coastal Southeast, particularly Texas and Oklahoma
(U.S. Drought Monitor, http://www.drought.unl.edu). The annual
precipitation of these two years was 467 and 458 mm for the U.S.,
respectively — lower than the 30-year mean annual precipitation
(480 mm) taken over the PRISM climate database. Our GPP anomaly
maps showed large negative GPP anomalies in many of the drought-
affected regions. Notably, large negative GPP anomalies occurred in the
Great Plains in 2002 and 2006. Our results further demonstrated severe
drought could substantially affect ecosystem carbon fluxes (Xiao et al.,
2009).

At landscape to regional scales, annual GPP also exhibited large
anomalies. For example, our results showed that theBiscuitfire inOregon
led to largenegativeGPP anomalies in theburned area (Fig. 11). The2002
Biscuit Fire was among the largest forest fires in modern U.S. history,
encompassing N2000 km2 primarily within the Rogue–Siskiyou National
Forest (RSNF) in southwest Oregon (Campbell et al., 2007; Thompson et
al., 2007). Largefires suchas theBiscuit Fire damagedbothoverstory and/
or understory vegetation, leading to a reduction inGPP and largenegative
GPP anomalies in the region in 2003, which may result in net carbon
release into the atmosphere. Numerous wildfires occurred over the
western half of the country due to dry weather and high winds, burning
1.5–4.0×104 km2 of forests from 2000 to 2006 (U.S. Fire Administration,
http://www.usfa.dhs.gov). The drought along with wildfires likely led to
the negative GPP anomalies in the western half of the U.S.

Our results also showed hurricanes could reduce GPP and lead to
large negativeGPP anomalies (Fig. 12). For example, Hurricane Katrina
occurred in late August 2005 affected over 2×104 km2 of forest
across Mississippi, Louisiana and Alabama, with damage ranging from
downed trees, snapped trunks and broken limbs to stripped leaves
(USDA Forest Service, http://www.srs.fs.usda.gov). Forest inventories
indicated that the potential timber losses from Hurricane Katrina
amounted to roughly 1.2×108 m3 (USDA Forest Service, http://www.
srs.fs.usda.gov). Our results showed large negative GPP anomalies in
2006 in the Gulf Coast region severely affected by Hurricane Katrina
(Fig. 12). The reduction in GPP and increased Re resulting from
increased litter could lead to substantial carbon release into the
atmosphere (Chambers et al., 2007).
4. Conclusions

We used a regression tree approach and remotely sensed data from
MODIS to upscale AmeriFlux GPP data to the continental scale and to
produce a GPP dataset with 8-day temporal resolution and 1 km spatial
resolution for the conterminous U.S. over the period 2000–2006. Our
results demonstrated thatour empirical approachhas great potential for
upscaling eddy flux GPP data to large areas across multiple biomes. Our
GPP estimates provided a spatially and temporally continuous measure
of gross primary production for the conterminous U.S. Our estimates
also provided an alternative, independent dataset from the MODIS GPP
product and simulations with biogeochemical models. Our GPP
estimates were highly constrained by flux tower data from towers
encompassing a large range of ecosystem and climate types as well
as disturbance history. Our approach can be applied to the entire
North America, other geographic regions including Europe, Southeast
Asia, and South America, or to the global scale, and to produce
continuous GPP estimates over continents or the globe. This approach
can also be used to upscale other fluxes including evapotranspiration to
large areas.

Our GPP estimates exhibited large spatial variability and strong
seasonal variations, which reflected the controlling effects of climate
conditions and vegetation distributions. We estimated a total gross
carbon uptake of 7.06 Pg C yr−1 for the conterminous U.S. over the
period 2001–2006. Annual GPP varied substantially with geographical
region and biome type. Our results also showed that the U.S. annual GPP
varied between6.91 and7.33 Pg C yr−1 over the6-year period. Extreme
climate events (e.g., drought) and disturbances (e.g., fires and
hurricanes) reduced annual GPP at regional scales and could have a
significant impact on the U.S. net ecosystem carbon exchange. The
interannual variability of GPP was mainly caused by these extreme
climate events (e.g., drought) and disturbances (e.g., fire, hurricane).
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