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ABSTRACT OF THE THESIS

The Effect of Turbulence on the Average Heat Transfer from a
Cylinder in Crossflow

by

Sean Peter Burns

Master of Science in Engineering
University of California, Irvine, 1993

Professor John LaRue, Chair

The effect of variation of the free-stream turbulent intensity and integral scale on
the heat transfer rate from a cylinder in crossflow is considered. The investigation
includes a review of previous work and provides new experimental measurements of
the average heat transfer rates.

The Reynolds number range of the present study is from 1.7-10° to 8.0-10* which
corresponds to the subcritical flow regime. The turbulent intensity, T'u, is varied from
0.25% to 7%, and the ratio of the integral length scale to cylinder diameter is varied
from 0.19 to 4.5.

The present experimental results with a background turbulent intensity of 0.25%
are, in general, between the resulting established correlations of Zukauskas and Ziugzda
(1985) and Hilpert (1933). For the Reynolds number range from 1.0 - 103 to 1.0 - 104
there is slightly better agreement with Hilpert (1933) but for the Reynolds num-
ber range from 1. 10* to 8.0 - 10¢ there is slightly closer agreement with Zukauskas
and Ziugzda (1985). The relationship between the average Nusselt number and the

Reynolds number, for the present data set, is found to be:

Nu =0.164 - R

xi



The presence of turbulence shows that increasing the turbulent intensity increases
the average heat transfer rate from the cylinder which is qualitatively similar to but
quantitatively different from previous results. For a Reynolds number of 1 - 103, as
the free-stream intensity is increased from 1% to 5%, there is a corresponding 5%
increase in the average Nusselt number. Previous experiments by Zukauskas and
Ziugzda (1985) and Boulos (1972) have found, for similar conditions, an increase
in the average Nusselt number of 20% and 15%, respectively. The reason for these
differences is not apparent from the present data set.

For the present experiment, the dependence of the average Nusselt number on the
ratio of the integral length scale to cylinder diameter is found to be less than the

nominal experimental uncertainty of +£4%.



