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Abstract Prediction of ecosystem responses to a changing climate is challenging at the landscape to
regional scale, in part because topography creates various habitats and influences ecosystem productivity in
complex ways. However, the effects of topography on ecosystem function remain poorly characterized
and quantified. To address this knowledge gap, we developed a framework to systematically quantify and
evaluate the effects of topographic convergence, elevation, aspect, and forest type on the long‐term
(1986–2011) average and interannual variability of remotely sensed ecosystem productivity. In a forested
watershed in the Rocky Mountains, spanning elevations from 1,800 to 4,000 m, we found a prevalent and
positive influence of topographic convergence on long‐term productivity. Interannual growing season
productivity was positively related to precipitation, with higher sensitivity in low elevation and highly
productive areas and lower sensitivity in convergent areas. Our findings highlight the influence of
topographic complexity on both long‐term and interannual variations of ecosystem productivity and have
implications for understanding and prediction of ecosystem dynamics at hillslope to regional scales.

1. Introduction

Human‐caused climate change is expected to result in more frequent and severe droughts in the 21st cen-
tury, with potential consequences on ecosystem resilience and functions (Allen et al., 2015), water supply
(Clow, 2010), and feedbacks to the atmosphere (Anderegg et al., 2019; Khanna et al., 2017). However, pre-
dicting ecosystem response to drought at landscape and regional scales remains challenging. Topography
interacts with broader‐scale climate regimes to create spatially heterogeneous fine‐scale environments and
their impacts on ecosystem function are complex and poorly understood. Systematic characterization and
assessment of topographic influences on ecosystem productivity are urgently needed in order to reliably pre-
dict ecosystem dynamics and biological refugia within the next generation of Earth System Models (ESMs)
(Fan et al., 2019; Fisher et al., 2017; McLaughlin et al., 2017).

Elevation, aspect, and ridge‐valley convergence are three fundamental axes that topography exerts direct or
indirect controls over the fine‐scale abiotic conditions that vegetation experience within similar regional cli-
matic regimes (Fan et al., 2019). By creating heterogeneous habitats that deviate from the regional climate,
topography directly influences the abiotic resources necessary for plant function (Dobrowski, 2011;
Moeslund, Arge, Bøcher, Dalgaard, Ejrnæs, et al., 2013). Elevation has long been recognized to be responsi-
ble for the systematic shifts in vegetation composition (Whittaker, 1967) and function (Goulden et al., 2012),
through orographic lift and atmospheric lapse rates (Körner, 2007). Further, incident solar angle associated
with hillslope aspects cause equator‐facing aspects to receive greater solar radiation (Bennie et al., 2008),
leading to higher surface temperatures. Both elevation and aspect can be directly incorporated into down-
scaled climate products at finer resolution to account for their potential influences (Dobrowski, 2011; Z.
Hoylman et al., 2019). However, at smaller spatial scales such as hillslopes where the elevation and aspect
per se do not fluctuate enough to cause variation in temperature or precipitation, the impact of microtopo-
graphy is rather poorly understood (Moeslund, Arge, Bøcher, Dalgaard, & Svenning, 2013).

Topographically driven hydrologic processes (e.g., lateral flows of soil water and groundwater along conver-
gence gradients from ridges to valleys) create drier hills and wetter valleys (Fan, 2015) and have emerged to
be an important mechanism mediating the spatial pattern of biomass (Swetnam et al., 2017), leaf area index
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(Bolstad et al., 2001; Hwang et al., 2009; Hwang et al., 2012), and drought‐induced tree mortality at
landscape scales (Schwantes et al., 2018; Simeone et al., 2018; Tai et al., 2017). Additionally, topographic
convergence tends to align with soil processes (such as weathering and transport) and properties (such as
texture and thickness), resulting in higher water storage capacity and further contributing to higher water
availability in valleys (Famiglietti et al., 1998; Mackay, 2001; Moeslund, Arge, Bøcher, Dalgaard, Ejrnæs,
et al., 2013; Rasmussen et al., 2011; Troch et al., 2015). Across the landscape, systematic variations of
water availability driven by topographic convergence could result in a covarying spatial pattern of
productivity along the ridge‐valley gradient (Figure 1a), where valleys promote greater biomass and leaf
area in water limited ecosystem (blue line in Figure 1a) through additional water supply (Hwang
et al., 2009, 2012; Mackay, 2001; Mackay & Band, 1997; Swetnam et al., 2017; Thompson et al., 2011). In
energy‐limited ecosystems, biomass and leaf area may become smaller towards valleys (red line in
Figure 1a), through reduced exposure to solar radiation or waterlogging of plant roots (Fan et al., 2019).
Consequently, we expect the correlation between long‐term productivity (e.g., accumulated biomass/leaf
area) and topographic convergence to be positive where productivity is limited by water and negative
where limited by energy (Figure 1b).

When the ecosystem is limited by water, topographic convergence could buffer ecosystem sensitivity to pre-
cipitation through increased water supply or increase the sensitivity through higher water demand. On one
hand, plants in valleys may be more buffered from drought and have lower sensitivity to precipitation (blue
line in Figure 1c), due to additional water supply through lateral hydrologic flow (Tai et al., 2018). On the
other hand, plants in wet valleys tend to accumulate high biomass and/or leaf area from high productivity
and have higher water demand and faster depletion of soil water during drought (Jump et al., 2017;

Figure 1. Conceptual framework evaluating topographic influences on the long‐term mean ecosystem Gross Primary
Productivity (GPP) and the sensitivity to precipitation (β). We hypothesized topographic convergence to positively
correlate with productivity in water‐limited ecosystems (blue line in panel a) and negatively correlate with productivity
in energy‐limited ecosystems (red line in panel a). We also expected the influence of convergence onGPP to shift from
positive to negative along a hydroclimate gradient from arid to humid (b). Ecosystem sensitivity to precipitation can be
quantified as the regression slope between annual GPP and precipitation (β in panels c and d). β will be positive
in arid ecosystems (c) and negative in humid ecosystems (d). To assess the relative importance of convergence mediated
water supply andGPP mediated water demand (e), we expected a negative correlation between convergence and β
when valleys having lower sensitivity (less positive or more negative β) to precipitation (blue bar in panel e). When
sensitivity increased with higher water demand (more positive or less negative β), we expected positive correlations
between sensitivity andGPP(green bar in panel e).
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Tai et al., 2019), resulting in higher sensitivity to precipitation decline (green line in Figure 1c). When there
is too much water, increased water supply might further reduce productivity (blue line in Figure 1d),
whereas increased water demand might help release the anoxia stress and mediate productivity decline
(green line in Figure 1d). Whether topographic convergence could buffer or aggravate vegetation from
climatic water stress remains a large uncertainty in predicting ecosystem response to drought at landscape
scales (Tague et al., 2019). Using the regression slope between productivity and precipitation (β in
Figures 1c and 1d) to characterize ecosystem sensitivity to climatic water supply, the relative importance
of water supply versus water demand could be assessed. A negative correlation between β and
convergence (blue bar in Figure 1d) suggested convergent valleys have lower sensitivity to precipitation. A
positive correlation between β and long‐term productivity (green bar in Figure 1d) indicates places
supporting higher productivity have higher sensitivity to precipitation.

Emergent vegetation patterns across the landscape can be readily observed from remote sensing and offered
useful diagnostic tools to examine influence of physical and ecological processes (Hwang et al., 2009, 2012;
Thompson et al., 2011). Physiologically meaningful products such as vegetation optical depth and
solar‐induced florescence have been used globally to understand ecosystem sensitivity to changing environ-
ment (Guan et al., 2015; Konings et al., 2017; Sun et al., 2018). But these products are typically limited to
coarse spatial resolutions that cannot fully resolve hillslope‐scale processes (Lutz et al., 2010; Millar
et al., 2007). Landsat satellites provide three decades record with global coverage at a 30‐m resolution and
offer promising means to elucidate hydrological processes and ecosystem dynamics (Fan et al., 2019;
Goulden & Bales, 2019; Z. H. Hoylman et al., 2018; Z. Hoylman et al., 2019; Liu et al., 2019).

In this study, we synthesized existing literature into a framework (Figure 1) that systematically quantifies
topographic influence on ecosystem productivity and the relative importance of abiotic water supply and
biotic water demands on ecosystem response to climatic water supply. We demonstrated this framework
using multiple Landsat‐derived indicators of productivity, in a forested watershed with steep topoclimate
gradients spanning the lower and upper elevation limits of forest in the Rocky Mountains. Specifically, we
ask, (1) how does topographic convergence relate to the long‐term ecosystem productivity (Figure 1b)?
(2) How does topographic influence on water supply interact with productivity mediated water demand in
affecting ecosystem sensitivity to climate (Figure 1e)? And (3) where does topographic convergence matter
the most for productivity and its sensitivity to climate, and do those areas occupy a significant portion of
the watershed? Answers to these questions will improve our understanding of ecosystem function mediated
by hillslope hydrological processes and provide empirical evidence informing the representation of hydrol-
ogy in next generation of ESMs (Fan et al., 2019; Swenson et al., 2019).

2. Materials and Methods
2.1. Study Area

The study area is a forested watershed encompassing the Boulder Creek Critical Zone Observatory
(Figure 2), located to the east side of the Continental divide and west of Boulder, Colorado. This watershed
has an elevation gradient from 1,800 to 4,000 m above sea level (asl), with a mean elevation of 2,800 m asl.

Figure 2. Maps of the study watershed a and its dominant ecosystem types (b). Red circle in (a) represents the location of
Niwot Ridge eddy covariance flux tower, AmeriFlux: US‐NR1 (https://ameriflux.lbl.gov/sites/siteinfo/US‐NR1#doi).
Areas not covered by vegetation are shown in white.
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The area of the entire watershed is 270 km2, with 61.2 km2 area covered by
open water, permanent snow, and urban development. Mean annual pre-
cipitation ranges from 400 mm/yr to 1,200 mm/yr across elevation gradi-
ents. Mean growing season air temperature ranges from 1°C to 16°C, and
themean annual air temperature ranges from−4°C to 10°C (PRISM data).
The watershed is dominated by vegetation communities that largely fol-
low elevation gradients: Ponderosa Pine (Pinus ponderosa), Lodgepole
Pine (Pinus contorta), and a mix of subalpine fir (Abies lasiocarpa),
Engelmann spruce (Picea engelmannii).

2.2. Remotely Sensed Metrics for Ecosystem Productivity

To characterize vegetation productivity from remote sensing imagery, we
used Normalized Difference Vegetation Index (NDVI), Near‐infrared

Reflectance of Vegetation (NIRv), and a Landsat‐derived Gross Primary Production (GPP) data set.
Although NDVI has been criticized for its limited physiological interpretation (Magney et al., 2019; Smith
et al., 2019), it quantifies the amount and greenness of vegetation and has been correlated with leaf area
index (Carlson & Ripley, 1997), evaportranspiration (Glenn et al., 2010; Goulden et al., 2012), and gross pri-
mary production (Gamon et al., 1995; Robinson et al., 2018; Tucker et al., 2001). NDVI has also been used as
the benchmark of more physiologically relevant products such as vegetation optical depth (Li et al., 2017).
NIRv, calculated as the product of NDVI and NIR reflectance, relates directly to the number of NIR photons
reflected by plants and strongly correlates with GPP (Badgley et al., 2017, 2019). It also minimizes the effects
of soil contamination and variable viewing geometry on satellite‐derived spectra. The Landsat derived
16‐day GPP product (UMT_GPP) (Robinson et al., 2018) has been used in a recent work to understand eco-
system climate sensitivity in western United States (Z. Hoylman et al., 2019). UMT_GPP was based on the
MODIS light‐use efficiency GPP algorithm but replaced with finer resolution input data and spatially con-
tinuous and temporal regular Landsat NDVI composites developed using a smoothing and climatology dri-
ven gap filling approach (Robinson et al., 2017). We used all three GPP proxies to assess consistencies and
disagreements that might arise from product differences.

We gathered NDVI and NIRv from Landsat 5 surface reflectance data using Google Earth Engine (Gorelick
et al., 2017) at a 30 m resolution for the period 1986–2011 (until Landsat 5 was out of service). We did not use
Landsat 7 to extend the study period, because homogenization between the two satellites is often required
(Goulden & Bales, 2019) and might introduce additional uncertainty. A cloud removal algorithm was
applied to each image to remove pixels that had a cloud likelihood score of 10% or higher (Zhu et al., 2015).
Negative values were also excluded. Although UMT_GPP has longer record, we focused on the period
1986–2011 to be consistent with NDVI and NIRv. Further, since NIRv and NDVI are subjected to snow cover
on the ground and intercepted by canopy during winter time and our study area is strongly influenced by
snow, we focused on the snow‐free period of 1 July to 30 September (Burns et al., 2015). A varying growing
season length with elevation (Goulden et al., 2012) was not considered, limited by the temporal resolution
and data gaps of Landsat imagery. For every year during the period 1 July to 30 September, mean, median,
75 percentile, andmaximum values were calculated for NIRv, NDVI, and UMT_GPP.We identified the most
representative statistics (mean, median, 75 percentile, or maximum) by comparing against the mean
growing season GPP measured from an eddy covariance flux tower (Niwot Ridge, AmeriFlux: US‐NR1),
extracted from tier 1 FLUXNET 2015 (Pastorello et al., 2017) and selected the statistics achieving the highest
Pearson correlation (bold numbers in Table 1). We then calculated 75 percentile NIRv, maximumNDVI, and
mean UMT_GPP during July–September for each year, generating three annual time series of ecosystem
productivity at every 30 m pixel.

2.3. Topography and Climate Data

A digital elevation model (DEM) at 30‐m resolution was downloaded from National Elevation Data Set.
Indices of aspect and topographic wetness index (TWI) were computed from DEM. TWI combines upslope
accumulated area and local slope and has been widely used as a proxy for water availability induced by
lateral drainage (Famiglietti & Wood, 1994; Hwang et al., 2012; Tai et al., 2017), although the correlation
strength can vary depending on antecedent moisture conditions (Western et al., 1999). A 30‐m resolution
map of dominant ecosystem types was extracted from National GAP Land Cover Data (Lowry et al., 2007),

Table 1
Pearson Correlation Between Statistics (Mean, Median, 75 Percentile, and
Maximum) of Vegetation Metrics and Tower Measured GPP During July–
September for the Period 1999–2011

Median Mean Max 75 percentile

NIRv 0.71 0.80 0.76 0.83
NDVI 0.36 0.36 0.62 0.43
UMT_GPP 0.51 0.60 0.52 0.48

Note. Bold numbers are the statistics with highest correlation to tower
GPP and used to represent growing season productivity for each grid cell.
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to identify four forest dominated ecosystems in study watershed: ponderosa, mixed conifer, lodgepole, and
spruce‐fir forests. Monthly precipitation and temperature at a spatial resolution of 4 km were obtained from
the Parameter‐elevation Relationships on Independent Slopes (PRISM) data set (Daly et al., 2008) during the
period 1984–2011. We also used climatic water deficit (CWD), calculated as potential evapotranspiration
minus actual evapotranspiration based on Penman‐Monteith approach and Thornthwaite‐Mather climatic
water‐balance model (Abatzoglou et al., 2018). Precipitation, temperature, and CWD were aggregated to
annual mean or sum on a water‐year basis (October–September). Although winter precipitation is likely
important source of tree water supply in snow‐dominated environment (Martin et al., 2018), we resorted to
annual precipitation based on previous research in the study area (Adams et al., 2014; Hu, Moore, Burns,
et al., 2010). Further, we compared the amount of variance in GPP explained by annual versus winter preci-
pitation and found remotely sensed GPP indices were better explained by annual precipitation (supporting
information Figure S1). Both PRISM and CWD data sets have a resolution of 4 km, and different grid cells
showed similar interannual variations over time, although their absolute magnitude shifted with elevation
(Figure S2). We averaged all 4 km grid cells falling within the watershed and used the watershed‐wide mean
climate in the following analysis. Further, we repeated the analysis using distributed climate series at 4 km
resolution and found similar result using watershed‐wide climate series (Figure S3).

2.4. Analysis

For every pixel, we calculated the long‐term average productivity during 1986–2011, based on three remotely

sensed indicators of vegetation productivity (noted as NIRv, NDVI , and UMT¯GPP, respectively). Further,
we performed linear regressions between productivity and precipitation for every 30 m pixel using 26 years
of record (1986–2011). We also explored fitting segmented regression between productivity and precipitation
and found little improvement over linear regression. Thus, linear regression was used in the following ana-
lysis. Both productivity metrics and precipitation were standardized to z‐scores (subtracted the mean and
divided by standard deviation), allowing direct comparisons across locations, regardless of units and magni-
tudes (Z. Hoylman et al., 2019; Konings et al., 2017). We used the regression slope as a measure of ecosystem
sensitivity to climatic water supply, with higher values indicating greater sensitivity. This simple metric pro-
vides the first‐order characterization of vegetation response to precipitation and has been applied in several
recent studies (Anderegg et al., 2018; Baldocchi et al., 2019; Z. Hoylman et al., 2019; Konings et al., 2017).
Following the practice in a previous study (Z. Hoylman et al., 2019), we did not remove regressions with
insignificant slope coefficients (i.e., p‐values > 0.05) in order to preserve pixels with slopes close to 0 (insen-
sitive pixels). To corroborate our results, we repeated the same analysis using CWD, which accounted for
both climatic water supply and demand. Further, since annual temperature and precipitation were weakly
correlated in our study area (Pearson's r = 0.24, Table S1), we also ran regressions using both temperature
and precipitation as predictors to evaluate their separated effects.

We used Spearman correlation to assess the influence of topographic convergence on the long‐term mean
and sensitivity of productivity. Tominimize the potential influence of confounding factors such as ecosystem
types, elevation, and aspect, we discretized the entire watershed into four dominated forests (ponderosa,
mixed conifer, lodgepole, and spruce‐fir). Within each ecosystem type, we further divided the data into 10
percentiles based on elevation, and two categories of aspect: 135° ~ 315° and −45° ~ 135° measured clock-
wise from north (SW and NE hereafter). Within bins of the same ecosystem and similar elevations and
aspects, we correlated TWI and mean productivity to evaluate the influence of convergence on long‐term
productivity (Figures 1a–1c). We also correlated sensitivity with TWI and with mean productivity, respec-
tively, to assess the relative importance of water supply versus water demand (Figures 1c and 1d). We eval-
uated if the correlation is significantly different from zero using one‐sample t test. We also evaluated if the
strength of correlation varied with elevation using linear regressions. Spatial data processing and statistical
analyses were carried out in R (R Core Team, 2015).

3. Results
3.1. Long‐Term Ecosystem Productivity

The long‐term mean of ecosystem productivity was spatially heterogeneous, based on different remote sen-
sing metrics of NIRv, NDVI, and UMT_GPP (Figures 3a–3c). Broadly, productivity increased from low to

high elevation and from SW to NE aspects (Figures 3d–3f). Ponderosa had much lower NDVI and
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UMT¯GPP , likely due to the typical canopy openness of ponderosa pine forests. Within ecosystems,
ponderosa productivity increased with elevation, particularly on SW facing aspects (red triangles and red

dashes in Figures 3d–3f ). Lodgepole also had increasing productivity with elevation, although UMT¯GPP
showed no significant trend (p = 0.05). In spruce‐fir forest, NDVI and UMT_GPP decreased with

elevation, while NIRv showed slight increase with elevation.

3.2. Influence of Topographic Convergence on Long‐Term Ecosystem Productivity

Across different elevation, aspect, and ecosystem types, TWI was positively correlated with productivity
(Figure 4), except for a few patches of spruce‐fir and ponderosa. The correlation strength declined with ele-
vation in the lower elevation range and increased with elevation in the higher elevation range.

3.3. Interannual Sensitivity of Productivity to Precipitation

Over the 26 years of record used in this analysis, we found that productivity was positively related to preci-
pitation for most pixels, based on all three metrics (Figures 5a–5c). The sensitivity (β) declined as elevation
increased but remained positive (Figures 5d–5f), except for NIRv in two spruce‐fir patches. The influence of

Figure 3. Maps of the long‐term average of growing‐season productivity for the period 1986‐2011 based on remotely
sensed metrics of NIRv (a), NDVI (b), UMT_GPP (c). Areas not covered by vegetation, and with more than 10% of
missing data were filtered and shown in gray. (d)–(f ) The scatterplots of NIRv (d), NDVI (e), and UMT_GPP (f ) versus
elevation. The y‐axis represented the mean productivity for different bins of forest types (color), elevation, and aspect
(symbol). Symbol size is proportional to the number of 30 m pixels within each bin. Regression lines were shown for each
forest type (color) and aspect group (solid for NE aspect and dashed for SW aspect) when p‐value < 0.05.
Black solid line is the regression for all data points.

Figure 4. Spearman correlation between TWI and productivity versus elevation within different patches of ecosystem
type (color), elevation, and aspect (dots vs. triangle), based on remotely sensed metrics of NIRv (a), NDVI (b), and
UMT_GPP (c). Symbol size was proportional to the number of 30 m pixels within each bin. Significant correlations
(p < 0.05) were shown as solid symbols and insignificant correlations (p > 0.05) were shown as open symbols. Trend lines
denote a significance level of p < 0.05. Line colors represent different ecosystem types, solid lines represent NE
aspect, and dashed lines represent SW aspect. Black solid lines represent regression across all data points.
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aspect and ecosystem types appeared small compared to elevation. These findings were robust after account-
ing for temperature or using climatic water deficit to derive sensitivity (Figure S4).

3.4. Influence of Topographic Convergence on Ecosystem Sensitivity to Precipitation

Across different ecosystems, elevations, and aspects, the correlation between TWI and sensitivity to precipi-
tation (β) was significantly lower than zero (p = 0.05), with the only exception of UMT_GPP (blue boxes in
Figure 6). The correlation between long‐term productivity and βwas significantly higher than zero (p= 0.05)
(green boxes in Figure 6). Comparing the relative importance of TWI versus long‐term productivity on β,
long‐term productivity had stronger correlation in most landscape patches (Figure 6), although the spatial
pattern varied by remote sensing metrics (Figure S5).

Figure 5. Maps of ecosystem sensitivity to precipitation (β) derived using NIRv (a), NDVI (b), UMT_GPP (c) to annual
precipitation (P) for the period 1986–2011. Areas not covered by vegetation, and with more than 10% of missing data were
filtered and shown in gray. (d)–(f ) The sensitivity of NIRv (d), NDVI (e), and UMT_GPP (f ) to precipitation versus
elevation. Sensitivity was defined as the regression slope between productivity and precipitation, denoted as βNIRv, P,
βNDVI, P, and βUMT GPP, P, respectively. They‐axis represented the mean sensitivity of patches with same or
similar forest types (color), elevation, and aspect (symbol). Symbol size was proportional to the number of 30 m pixels
within each bin. Regression lines were shown for each forest type (colored lines) and aspect group (solid for NE aspect
and dashed for SW aspect) whenp‐value < 0.05. Black solid line is the regression for all data points.

Figure 6. Boxplot of Spearman correlation between sensitivity to precipitation (β) and TWI (light blue boxes) and the
correlation between β and long‐term productivity (green boxes), using NIRv (a), NDVI (b) and UMT_GPP (c).
The correlation was calculated within patches of same ecosystem types and similar elevations and aspect groups.
One‐samplet‐test was used to evaluate if the correlation was significantly different from 0, with ***p < 0.01.
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3.5. Areas Influenced by Topographic Convergence Across the Watershed

Across the watershed, ~96% of forested area showed significant correlation (p < 0.05) between TWI and

long‐term productivity (GPP) (Figure 7, gray bar); 76% area demonstrated significant correlation between

TWI and sensitivity (β) (Figure 7, blue bar); and 80% area had significant correlation between GPP and β
(Figure 7, green bar). TWI showed stronger influence on β for 36% of the area while GPP had stronger con-
trol of β in 60% of the landscape (hatched bars in Figure 7).

4. Discussion

Interaction between hydrological and ecological processes at watershed scales has been examined for
decades (Z. H. Hoylman et al., 2018; Z. Hoylman et al., 2019; Hwang et al., 2009, 2012; Mackay, 2001;
Mackay & Band, 1997; Swetnam et al., 2017) and are becoming increasingly critical for predicting ecosystem
response to novel environments and anticipated future drought (Clark et al., 2015; Fan et al., 2019). In this
study, we synthesized previous evidences into a framework that quantifies the influence of topography on
the long‐term ecosystem productivity and expanded upon previous work by assessing the relative impor-
tance of abiotic water supply and biotic water demand on the temporal variations of ecosystem productivity
to climatic water supply. This framework can be transferable to different time scales and different measures
of ecosystem productivity. This framework was demonstrated in a semiarid, forested watershed with steep
topoclimate gradients andmultiple forest types to better understand the relative importance of different con-
trols on ecosystem productivity across the landscape. Based on multiple remotely sensed metrics, we found
strong evidence supporting the positive influence of topographic convergence on long‐term productivity for
~96% of forested area (Figures 4 and 7). Growing season productivity was higher in years with higher preci-
pitation and the sensitivity strongly decreased with elevation (Figure 5). Ecosystem sensitivity to precipita-
tion was lower in convergent areas and higher in areas with higher long‐term productivity (Figure 6). While
these results were robust, we also discussed disagreements among different remote sensing metrics and
highlighted opportunities for future work.

Figure 7. Areal fractions of the forested areas within the watershed that demonstrated significant (p < 0.05) spearman
correlations between topographic convergence and long‐term productivity r(TWI, GPP) (gray bar), between
topographic convergence and sensitivity r(TWI, β) (blue bar), and between long‐term productivity and sensitivity r(GPP, β)
(green bar). Areal fractions were reported as the average of fractions derived using different remote sensing metrics of
ecosystem productivity. Hatched blue bar represented areal fraction of patches with stronger influence of TWI than GPP,
and hatched green bar represented areal fraction of patches with stronger influence of GPP than TWI.
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4.1. Topographic Signature on the Long‐Term Mean of Ecosystem Productivity

Vegetation patterns systematically varied with topographic gradients. Ecosystem productivity was higher in
higher elevations with NE aspects (Figure 3) and convergent areas (Figure 4). This is consistent with pre-
vious studies using NDVI (Hwang et al., 2012), enhanced vegetation index (Z. H. Hoylman et al., 2018),
and Lidar‐derived aboveground biomass (Swetnam et al., 2017). These evidences suggested the prevalent
influence of water availability on plant productivity and biomass accumulation at watershed scales.
Similarly, water availability best explained tree height in a global analysis (Klein et al., 2015). In high eleva-
tion spruce‐fir forests, NDVI and UMT_GPP decreased, while NIRv increased with elevation. This could
reflect the different properties of vegetation captured by various remote sensing metrics. While NDVI and
UMT_GPP reflected the amount of vegetation on the ground, NIRv minimized the effects of vegetation
amount and captured the photosynthetic activity per unit vegetation cover (Badgley et al., 2017). It is possi-
ble that in these spruce‐fir forests, photosynthetic activity increased with elevation, while vegetation cover
decreased with elevation.

The influence of topographic convergence on productivity varied with elevation (Figure 4). Its influence
declined with elevation in ponderosa pine forest, likely due to the gradual release of water limitation with
elevation (Körner, 2007). We initially hypothesized productivity to be negatively influenced by convergence
in high elevations due to anticipated energy limitation close to tree line (Figure 1b). However, this was not
supported. Correlations between productivity and TWI were mostly positive and became stronger with ele-
vation in spruce‐fir (Figure 4). Spruce‐fir productivity was higher in NE aspect and convergent areas that are
likely to be wetter and in warmer, lower elevations. This might suggest these forests were limited by both
energy (Bigler, 2016; Bonan, 2015; Kane et al., 2014; Whittaker, 1967) and water (Hu, Moore, Burns, et al.,
2010; Hu, Moore, Riveros‐Iregui, et al., 2010; Trujillo et al., 2012). Another possible explanation could be
higher nutrient on NE aspects and convergent areas supported higher productivity (Moeslund, Arge,
Bøcher, Dalgaard, Ejrnæs, et al., 2013; Smith et al., 2017; Weintraub et al., 2015, 2017).

4.2. Topographic Influence on Ecosystem Sensitivity to Climatic Water Supply

We found ecosystem productivity was positively related to precipitation (Figure 5), negatively related to air
temperature and climatic water deficit (Figure S4). This highlights the importance of annual water supply on
growing season productivity and is consistent with a previous study in the upper elevation of the watershed
showing photosynthesis could be limited by water in late growing season (Hu, Moore, Burns, et al., 2010).
However, a recent continental study based on annual net primary productivity (NPP) showed energy limita-
tion in our study area (Z. Hoylman et al., 2019). The disagreement might be attributed to our focus on grow-
ing season GPP in this current study. Plants are more likely to be limited by water in late growing season and
by energy in early season or winter time. Another possible explanation could be the algorithms used to derive
GPP from Landsat NDVI and climate products (Robinson et al., 2018), which includes temperature‐driven
GPP functions that might have led to overly strong sensitivity to temperature. Simple linear regressions
showed UMT_GPP responded positively to temperature (Figure S4i) while both NIRv and NDVI, which do
not rely on temperature‐sensitivity functions, responded negatively (Figure S4g,h). Similarly, regression
using Niwot Ridge tower data demonstrated positive slope for precipitation and negative slope for
temperature.

Although different remote sensing metrics produced slightly different estimates, we found significant evi-
dences that convergent areas had lower sensitivity to precipitation, mostly in low elevations (blue boxes in
Figure 6). This supported the hypothesis that plants in valleys receive higher water supply and experience
less productivity decline when precipitation is low, through lateral flow or soil water storage (Z. Hoylman

et al., 2019; Tai et al., 2018, 2019). Areas with higher GPP had higher sensitivity to precipitation (green boxes
in Figure 6), consistent with the expectation that greater productivity accumulate and translate into higher
biomass, leaf area, and higher water demand and result in faster depletion of water storage during drought

(Jump et al., 2017; Tai et al., 2019). Comparing the relative importance, GPP appeared to have stronger cor-
relation with sensitivity than TWI (Figure 6) and a larger fraction of the watershed was prevalently influ-

enced by GPP than TWI (hatched bars in Figure 7), suggesting the stronger influence of biotic water
demand compared to abiotic water supply. These findings fell in line with the phenomena that has reported
places supporting higher leaf area tend to have higher tree mortality (Goulden & Bales, 2019; Jump
et al., 2017).
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r (TWI, β) and r (GPP, β) did not demonstrate systematic spatial patterns across the watershed as r (TWI,

GPP) (Figure S5, Figure 4). This might be an indication of the complex interactions of various abiotic and
biotic factors underlying ecosystem sensitivity to precipitation (β), in addition to TWI‐mediated water supply

and GPP‐mediated water demand. For example, trees growing on ridge tops might develop deeper roots that
allow them to tap into water stored in bedrock (Fan et al., 2017), making them more resistant rather than
more sensitive to drought. Quantifying interspecific and intraspecific variations of plant physiological traits
across gradients of abiotic environments of water table, nutrient supply, and evaporative demand remains
research priority, in order to understand how they combine to influence ecosystem‐level response to drought
(Cosme et al., 2017; Hirota & Oliveira, 2020; Oliveira et al., 2019).

4.3. Methodological Considerations

Although our results were generally consistent among different remotely sensed productivity indictors and
climate variables, there are a number of caveats that warrant further investigations. First, we selected remote
sensing metrics that were best correlated with productivity observed from an eddy covariance tower located
in the upper range of the study watershed. It is possible that the optimal indices at tower site might not be
representative at other sites. Second, although our conceptual framework is generally applicable to both
water and energy‐limited environment, our case study was focused in a semiarid watershed with water lim-
itation during growing season. It is worth noting that different results might be arrived when applying our
conceptual framework to other systems, and modification or rejection of our initial hypothesis might be
needed. Third, we used annual time scales in our case study, whereas subannual or multiyear time scales
might be invoked when applying to different systems. Annual climate may not be the optimal time scale
when ecosystems are more responsive to short‐term events such as storms (Tromp‐van Meerveld &
McDonnell, 2006; Zscheischler et al., 2014) or multiyear droughts (Goulden & Bales, 2019).

5. Conclusions

We demonstrated a framework of joint topography‐climate‐vegetation analysis to characterize and quantify
the influence of hydrological and ecological processes underlying vegetation dynamics across heterogeneous
landscapes. The conceptual framework provides a set of testable hypotheses and can be easily transferrable
to other systems or temporal scales. Results from a case study revealed quantitative disagreements when
using different remote sensing products and highlighted the need to combine multiple lines of evidences
to derive robust conclusions. We conclude that topographic convergence is closely related to ecosystem func-
tion through processes mediating resource availability and plant water demand and will likely be important
in determining ecosystem dynamics to future climate conditions. Our study adds to the growing body of lit-
erature leveraging globally available remote sensing to identify hydrological refugia in the face of a changing
climate and answers a broader call for comprehensive evaluation of terrain structure on vegetation distribu-
tion and functions (Fan et al., 2019).

Data Availability Statement

All data used in this study were publicly available online. Eddy covariance data were extracted from
FLUXNET2015 (https://fluxnet.org/data/fluxnet2015‐dataset/). Climate data were downloaded from
PRISM (https://prism.oregonstate.edu/) and TerraClim (http://www.climatologylab.org/terraclimate.html).
Landsat data were downloaded from Google Earth Engine (https://earthengine.google.com/).
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