Coupled Weather - Wildland Fire Modeling Case Studies

The following animations show coupled numerical weather prediction - wildland fire behavior model simulations of large wildfires simulated using the CAWFE modeling system.

2022 McKinney Fire

Ignition: 7/29/22 in Klamath NF

The McKinney Fire grew rapidly over its first 1.5 days, expanding over 50,000 acres in under 36 hrs, causing 4 fatalities, and producing deep convective clouds. Gusty convective downdrafts over mountainous terrain drove the fire rapidly to the east. Clouds obscured satellite detection of the fireline.
Cover, McKinney Fire
Animation - click here for mp4 of fire heat flux & near surface winds (106 Mb)

Animation - click here for mp4 of fire heat flux and updrafts/downdrafts (106 Mb)

2022 Mosquito Fire

Ignition: 9/30/22 near Foresthill, CA

Spreading along canyons containing forks of the American River, fire activity intensified producing deep pyrocumulus clouds. September 8 contained the largest day's growth, as the plume-driven southern flank expanded over 15,000 acres from afternoon into the night.

Mosquito cover page
Animation - click here for mp4 (255 Mb)

2021 Marshall Fire

Ignition: 12/30/21 near Boulder, CO

On 12/30/21, during a downslope windstorm, at least two wildfires were reported in Boulder County, Colorado. The Middle Fork Fire
ignited sometime after 10 a.m. north of the city of Boulder, near Middle Fork Road and Hwy 36, and was quickly extinguished.
The Marshall Fire, reported around 11 a.m., originated south of Boulder near Hwy 93 and Eldorado Springs Dr.
It spread quickly through grass, reaching the communities of Superior and Louisville in approximately an
hour, transitioning into an urban fire that consumed structures throughout the day. Its spread diminished with the
cessation of the downslope winds and transition to weak easterlies, increase in humidity, and finally, snowfall.

This CAWFE simulation shows the evolution of the Marshall Fire throughout 12/30, along with the fire extent (inset) derived from
active fire detection imagery (where red indicates active fire, brick red - previous active fire, blue - a water
body, and gray - cloud) near midnight local time. While the heat signature of burning grass on clay may diminish rapidly,
lingering active fire may indicate areas with the longer-burning structures.

As devastating as the Marshall Fire was, even greater losses may have been averted. This simulation includes the Middle
Fork Fire ignition, modeled "as if" it too had escaped. Located in a more consistently windy area north of Boulder, the
CAWFE simulation indicates the Middle Fork Fire might have grown even more rapidly, swooping into and across north Longmont.

Marshall and Middle Fork Fire (if escaped)
                  progression
Animation - click here for mp4 (80 Mb)

2020 Slater Fire

Ignition: 9/8/20 near Slater Butte lookout, Happy Camp, CA

The Slater Fire was one of hundreds to ignite during a strong easterly wind event impacting the western face of the Cascades and Sierras during Labor Day weekend 2020, culminating in over a million acres burned in CA, OR, and WA. Although driven by an easterly wind event, the fire's SE to NW path was shaped by strong, transient gusts in the lee of forested north-south ridges and flows through sheltered mountain valleys, burning from northern California into southern Oregon.

CAWFE simulation of Slater Fire

Animation - click here for mp4 (173 Mb)

2020 Creek Fire
Ignition: 9/4/20 near Shaver Lake, CA

In first four days after ignition, the Creek Fire expanded 20,000-50,000 acres per day while satellite active fire detection data showed sustained active burning, indicating consumption of large fuel elements.  Below is a simulation of the first day.Creek Fire VIIRS
                    and sfc winds


Animation - click here for mp4 (233 Mb)
2020 Creek Fire (continued)

Attributed to strong upcanyon winds in the San Joaquin River Valley, we find rapid growth driven in the first day by generation of an anticyclonic mesoscale vortex containing updraft cores (red) exceeding 25 m/s over the fire surrounded by a ring of compensating downdraft  (blue) that rapidly pushed winds north up the river valley.
sfc winds and
                    updraft - simulated Creek Fire

Animation - click here for mp4 (158 Mb)
2007 Witch Creek Fire
Ignition: 10/21/07 east of Ramona, CA

The Witch Creek Fire, followed by the McCoy and Guejito fire ignitions (included here), were part of a late October southern California outbreak driven by a strong Santa Ana wind event producing exceptional fire growth and damage. Below is a link to a simulation of the wind event and growth from ignition. A vertical cross section of potential temperature through the ignition location suggests strong winds near the ignition were due to pressure driven flow of stable air over low aspect ratio terrain.

Witch Creek
                      simulation and map

Animation - click here for mp4 (402 Mb)


2018 Carr Fire Whirl

Period: 7/26/18 Redding, CA

The Carr Fire, having been driven eastward and down toward the central valley by westerlies across the coastal range, created several fire whirls, among which was a large fire whirl with winds exceeding 100 mph when entering west Redding that was detected by radar. CAWFE simulations reproduce fire growth down into Redding, and, when the fire burns across the line where two airflows intersect - the westerlies blowing downslope from the west and dry air up the Sacramento Valley - multiple strong fire whirls spin up and travel through the built areas.



generation and sim of
                    Carr Fire fire whirl



Animation - click here for mp4 (96 Mb)
2020 East Troublesome Fire
Visualized period: 10/21/20 afternoon:  near Granby, CO

Three days after it was reported on Oct. 14, 2020, high winds and low humidity allowed the East Troublesome to spread to over 10,000 acres. From Oct. 20-23, it spread dramatically, with daily increases of 18,000-87,000 acres. Below is a simulation of the day of most rapid growth, Oct. 21, 2020.



East
                      Troublesome simulation and VIIRS

Animation - click here for mp4 (112 Mb)
2020 Calwood Fire
Active growth: 10/17/20 afternoon: near Boulder, CO

Following reports of an ignition near the Calwood community center, the Calwood fire ran nearly 10 km under gusty downslope winds in under 3 hr to Highway 36 along the Front Range, threatening WUI communities, until winds subsided as a weak cold front approached (from upper right).
Satellite active fire and CAWFE simulation of
                      Calwood fire

Animation - click here for mp4 (52 Mb)
2020 North Complex (Bear Fire)
Simulation period: 9/8/20 1 a.m. - afternoon 9/9/20   near Quincy, CA and Oroville, CA

On its way to becoming one of the largest fires in California history, the North Complex (composed of multiple fires, most of which were suppressed, but the Claremont/Bear fires merged) grew by over 210,000 acres on 9/8-9/9, driven by strong northeasterly winds. CAWFE simulations show these were concentrated in the river valley of the Middle Fork of the Feather River, with strong pulsing gusts present over the lower foothills above and near Oroville.
Fire maps and
                          CAWFE simulation image of North Fire

Animation - click here for mp4 (145 Mb)

2018 Woolsey Fire
Simulation period: 11/8/18-11/9/18

On the same day as the Camp Fire, ignitions on the Santa Susanna Field Laboratory site spread rapidly under strong Santa Ana winds to the south to the Ventura Freeway during this period, which it later crossed overnight, into the Santa Monica Mountains. This simulation shows a river of strong winds coming off the Santa Susanna Mountains to the northeast, generating pulses of winds particularly over the mountainous bridge connecting them to the Santa Monica Mountains. The fast spread and weaker heat flux reflects the fast-running fires of sparsely vegetated chaparral-covered terrain.
Woolsey - viirs image
                and sim

Animation - click here for mp4 (209 Mb)
2018 Thomas Fire
Ignitions: 12/4/18 6:26 PM and 7 PM near Santa Paula, CA

Two ignitions during a strong, long-duration Santa Ana wind event set off the Thomas Fire.  During the initial run, the two ignitions merged and the fire raced through Ventura county toward the ocean, driven by winds down the Santa Clarita River Valley and over the southern Sierra Nevada mountains. This period is characterized as a "wind-driven event".
Simulated extent of
                      Thomas Fire at
Figure T1. CAWFE simulation of the first day of the Thomas fire at midnight Dec. 5, 2017. Heat flux from fire (in W/m-2) is colored according to upper color bar. Wind speed arrows (in m s-1) point downstream and are colored according to the lower color bar at right.

Animation - click here for mp4 (247 Mb)
 2018 Thomas Fire (continued)

During later periods, the Santa Ana event waxed and waned, varying in where and when strong winds reached the surface.  In addition, the fire spread into the mountains north of the river valley, drawing itself up canyons and bowls sheltered from the winds.
CAWFE simulation of 12/8
                    Thomas fire winds and growth
Figure T2. CAWFE simulation of the Thomas fire on 12/8/17 at 4 PM PDT..
Heat flux from fire (in W/m-2) is colored according to upper color bar. Wind speed arrows (in m s-1) point downstream and are colored according to the lower color bar at right.


Animation - click here for mp4 (124 Mb)
2013 Rim Fire
Ignition: 8/17/13 near Yosemite, CA

The Rim Fire was a massive plume-driven wildfire that experienced days of over 37,000 and 51,000 acres of growth, despite relatively weak ambient winds.CAWFE
                    simulation of Rim Fire
Figure R1. CAWFE simulation of the 8/20/13-8/21/13 rapid expansion of the Rim Fire, initialized with the NIROPs fire map on late 8/20/13.
Heat flux from fire (in W/m-2) is colored according to upper color bar. Wind speed arrows (in m s-1) point downstream and are colored according to the lower color bar at right. The misty field indicates smoke concentration.
Animation - click here for mp4 (90 Mb)
2016 Chimney Tops 2 Fire
Ignition: Reported on 11/23/16 in Great Smoky Mountains National Park, TN

The Chimney Tops 2 Fire was one of several fires that burned in North Carolina and Tennessee during a very dry fall in the Appalachian Mountains.  While foehns (downslope windstorms) are well known in other regions, conditions created an extremely strong downslope wind event that drove a pre-existing fire down through the city of Gatlinburg, TN.
CAWFE
                      simulation of Chimney Tops 2 Fire

Figure CT1. CAWFE simulation of the day of rapid growth of the Chimney Tops 2 Fire in Great Smoky Mountains NP down into the town of Gatlinburg, TN (foreground).. Heat flux from fire (in W/m-2) is colored according to upper color bar. Wind speed arrows (in m s-1) point downstream and are colored according to the lower color bar at right.

Animation - click here for mp4 (47 Mb)
2018 Camp Fire
Ignition: 11/8/18 near Paradise, CA

On November 8, a strong Diablo wind event created strong winds over the Sierra Nevada Mountains, with locally strong winds near the Jarbo Gap and Feather River Canyon. 

Research simulations using CAWFE showed that extreme winds, created by a shear instability along the top of a shallow, near-surface stable layer (a phenomena that resembles backwards-breaking waves) brought strong winds crashing to the surface, driving the fire rapidly down the slope. (Fig. C1)



Figure C1. CAWFE simulation of the Camp Fire. The fire's heat flux is show in the upper color bar (in W m-2). Wind speed arrows (in m s-1) point downstream and are colored according to the color bar at right. Vectors are shown every 3 grid points.


Animation - click here for mp4 (59 Mb)
 2018 Camp Fire (continued)


This vertical cross section down the center of the fire shows the shear instability as rapidly spreading heavy air (lower potential temperatures) is lifted into slower moving air above it, creating the impression of retroflecting (backwards breaking) waves (Fig. C2).  As strong winds are crash down to the surface, they spread outward in scallops of strong winds that drove the fire rapidly down slope (Fig.C1, at left.)
Figure C2. CAWFE simulation of the Camp Fire. The fire's heat flux is show in the upper color bar (in W m-2). Wind speed arrows (in m s-1) point downstream and are colored according to the color bar at right. Vectors are shown every 3 grid points.

Animation - click here for mp4 (15 Mb)
2017 Redwood Valley Fire
Ignition: 10/8/17 near Potter Valley, CA

On October 8-9, 2017, fourteen large wildfires developed rapidly during a strong Diablo wind event in northern California including the Redwood Valley Fire. Diablo winds travelled south down the Sacramento Valley. The flow was pushed through gaps between ridges, creating narrow rivers of strong winds the peaks of which reached 30-40 m s-1 amidst areas where winds were weak or stagnant.
  CAWFE simulation of the Redwood Valley Fire
Figure R1. CAWFE simulation of the Redwood Valley Fire. The fire's heat flux is show in the upper color bar (in W m-2). Wind speed arrows (in m s-1) point downstream and are colored according to the color bar at right. Vectors are shown every 3 grid points.


The Redwood Valley Fire had two nearby ignitions on the west side of the Potter Valley (the grass green area in center of Fig. R1). Driven by a shallow river of strong winds, within hours, it crested a ridge and raced down through populated lots into the Redwood Valley.
Animation - click here for mp4 (52 Mb)
2017 Tubbs Fire
Ignition: 10/8/17 near Calistoga, CA
Coen, J. L., W. Schroeder, and B. Quayle, 2018: The generation and forecast of extreme winds during the origin and progression of the 2017 Tubbs Fire. Atmosphere, 9, 462. PDF

Here, we applied CAWFE to investigate the flow regime and underlying mechanisms associated with the extreme winds and fire behavior during the Tubbs Fire.
CAWFE simulation of Tubbs Fire
Figure. CAWFE simulation of the Tubbs Fire at 4:11 AM PDT. The fire's heat flux is show in the upper color bar (in W m-2). Wind speed arrows (in m s-1) point downstream and are colored according to the color bar at right. Vectors are shown every 3 grid points.

As Diablo winds travelled south down the Sacramento Valley and fanned out southwestward over Wine Country, their strength waxed and waned and their direction wavered, creating varying locations near fire origins where wind overrunning topography reached 30-40 m s-1.  The flow created peak wind speeds exceeding 40 m s-1 at the crest of some lesser hills. The flow drove the Tubbs Fire over 19 km in 3.25 h into urban areas of Santa Rosa, CA.

Animation - click here for mp4 (19 kb)
 
2014 King Fire
Ignition: 9/13/14 near Pollock Pines, CA
Coen, J. L., E. N. Stavros, and J. A. Fites-Kaufman, 2018: Deconstructing the King megafire. Ecological Applications. doi:10.1002/eap.1752.

The King Fire was ignited at 6:37 PM on Sept. 13, 2014, spread during a severe drought in the central Sierra Nevada mountain range in complex terrain covered by mixed conifer forests, which generates complex fuel beds shaped by drought, land management practices (e.g. forest cultivation and harvesting, fire suppression, and fuel mitigation), and burn scars from previous fires. The King fire grew 7 km to the northeast through the evening of Sept. 16 as nearby surface weather stations recorded weak to moderate south-south-westerly winds upon which weak diurnal circulations and gusts of 2-10 m s-1 were superimposed.

From 9:49 PM Sept. 16, when the fire was mapped by the National Infrared Operations (NIROPs) airborne imager, until 1:06 PM Sept. 17, when satellite active fire detection data detected the fire entering the Rubicon Canyon, the fire traveled north over rolling hills. In an afternoon run that was unanticipated in light of weak to moderate ambient winds, the fire grew over 16,200 ha (40,000 acres), racing approximately 25 km to the northeast over the next 11 h – an average spread rate of 2.3 km h-1 – following the canyon to its crest at Hell Hole Reservoir, where growth stalled.

CAWFE
                  simulation of King Fire
Figure. CAWFE simulation of the King Fire from 9:45 PM Sept. 16 to 4:42 AM Sept. 18. The simulated total heat flux in (colored according to color bar at right, in W m-2) is shown on the surface, along with wind vectors (plotted every 4th grid point) at 21 m above ground level. In the animation, each frame is one minute apart.

Animation - click here for mp4 (259 Mb)
2013 Yarnell Hill Fire
Ignition: 6/28/13 near Yarnell, Arizona. Simulation of 6/30/13
Coen, J. L. and W. Schroeder, 2017: Coupled Weather-Fire Modeling: from Research to Operational Forecasting. Fire Management Today. 75:39-45.
 
On June 30, 2013, 19 firefighters were killed during the Yarnell Hill fire, when a gust front from the northeast blew across the fire, changing its direction, and making it spread rapidly across where they were sheltered.

The animation depicts a CAWFE simulation of June 30 (370 m horizontal grid spacing), from 2 am - 8:15 PM local time. The fire is initialized in the model using the 3 AM VIIRS active fire detection map.  Each frame is 1 minute apart.
In the simulation, solar heating stirs up the boundary layer circulations throughout the day. Convection occurs in outer domains (not shown) to the northeast (upper right), creating high-based convective clouds as upper level air flows southeast over the Mogollon Rim. Rain falls into a very dry boundary layer,  creating a broad gust front that  reaches the south edge of the fire at frame 936. The fatality occurred around 4:45 PM.  Comparison with the fatality report suggest the simulated timing for the gust front reaching the northeast edge of the fire and the fatality site are within 15 minutes of occurrence.
CAWFE simulation of the
                  Yarnell Hill Fire
Figure. CAWFE coupled weather-wildland fire model simulation of the Yarnell Hill Fire. The color bar on the right indicates the heat flux (watts per square meter) from the fire, with more intensely burning areas in bright yellow and white, and less intensely burning areas in darker reds.A vector is shown each 4 model grid points.

Animation - click here for mp4 (5.9 Mb)

2012 Little Bear Fire
Ignition: 6/4/12 near Ruidoso, NM
Coen, J. L. and W. Schroeder, 2013: Use of spatially refined remote sensing fire detection data to initialize and evaluate coupled weather-wildfire growth model simulations. Geophys. Res. Lett. 40:5536-5541.

The Little Bear Fire was ignited by lightning strike in the Sierra Blanco Mountains of New Mexico. It burned 17,939 ha (44,330 ac) and 254 buildings and was the most destructive fire in New Mexico State history.

Animation - click here for mp4 (12.5 Mb)
2012 High Park Fire
Ignition: 6/7/12 near Fort Collins, CO
Coen, J. L. and W. Schroeder, 2015: The High Park Fire: Coupled weather-wildland fire model simulation of a windstorm-driven wildfire in Colorado's Front Range. J. Geophys. Res. Atmos. 120:131-146

The High Park fire is reported to have been ignited by lightning strike.  It grew rapidly during a Colorado Front Range downslope windstorm, destroying 259 homes and burning 87,284 acres.

HP
                  smoke

View: towards the north.  Fort Collins lies to the right, and Poudre Canyon is the northernmost boundary of this domain.  Each frame is a minute apart, the total animation covers the local time from 5:45 am 6/9/12 to 3:00 am 6/10/12. The misty field represents smoke, colored by concentration - higher concentrations are more opaque (linearly with concentration) and darker. The colors identifying the burning parts of the fire are the sensible heat fluxes released by the fire (see color bar to right, in W/m^-2).  Darker browns are lower fluxes.  The surface appears dark brown where fire has passed. Red arrows represent the near-surface horizontal wind speed (the length of the arrow) and direction (the arrows point downwind).

Animation - click here for mp4 (10 Mb)

2007 Esperanza Fire

Ignition: 10/26/07 near the Banning Pass, Cabazon, CA

Coen, J. L. and P. J. Riggan, 2014: Simulation and thermal imaging of the 2006 Esperanza wildfire in southern California: Application of a coupled weather-wildland fire model. International Journal of Wildland Fire 23, 755-770. 

The Esperanza fire was ignited on the upwind edge of the San Jacinto mountains during dry, windy Santa Ana conditions. The following simulations show the winds near the surface and fire growth. This work was the first to simulate simultaneously the evolving meteorological flow, fire behavior, and fire-induced flow for a landscape-scale naturally evolving fire.  It captures the rapid spread of the fire to the west-southwest driven by both Santa Ana winds and topographic effects, recreating the splitting of the fire, feathering at the leading edge, and other distinctive features.  For infrared imagery of this fire from research aircraft, see  http://fireimaging.com/ . The simulation was visualized using VAPOR  producing the animations below.

Sim of Esperanza
                    fire

View: towards the south.   Cabazon, CA, is in the foreground.   Each frame is a minute apart, the total animation covers the local time from 1:30 am 10/26/06 till 8 PM. The misty field represents smoke, colored by concentration - higher concentrations are more opaque (linearly with concentration) and darker.  The colors identifying the burning parts of the fire are inspired by the radiant temperature color bar at fireimaging.com - brighter colors like yellow reflect higher surface fire sensible heat fluxes (see color bar to right).  Darker browns are lower fluxes.  The surface appears dark brown where fire has passed. The boxiness to the fireline shows the atmospheric grid sizes, onto which the fire fluxes on the fire fuel cell scale (5x5 within each atmos cell) have been summed.


Animation - click here for mp4 (8.7 Mb)
2002 Big Elk Fire
Ignition: 7/17/02 near Pinewood Springs, CO

Coen, J. L., 2005: Simulation of the Big Elk Fire using coupled atmosphere-fire modeling. International Journal of Wildland Fire 14, 49-59.

This simulation shows several hours in the early period of the Big Elk Fire, a 4400 acre wildfire ignited by a tailpipe.  Fire behavior was extreme reflecting the extremely dry conditions throughout Colorado (including the lowest fuel moistures ever recorded in the area). Initial spread was rapid, moving up a south slope of ponderosa pine mixed with Douglas fir with crowning and torching into high density thin-stemmed lodgepole pine at upper elevations.  The red field shows where the air was warmed at least 10 degrees by the heat released from the fire.  The misty white field represent smoke, with denser areas representing higher concentrations.  The arrows show the wind speed (shown by the length of the arrows - longer arrows being stronger winds) and direction near the surface.   This case represents a relatively simple scenario, with no large-scale weather features - winds were driven primarily by solar heating of mountain slopes, producing weak afternoon upslope conditions during the active fire periods. 

Big
                  Elk fire simulation

Animation - click here for mp4 (23.9 Mb)


These simulations were visualized with VAPOR scientific visualization software.

Keywords:  wildfire model, fire behavior, forest fires, fire model, wildland fire model, wildfire prediction, fire growth, fire simulation