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ABSTRACT

The ability to solve the global shallow-water equations with a conforming, variable-resolution mesh is

evaluated using standard shallow-water test cases. While the long-term motivation for this study is the cre-

ation of a global climate modeling framework capable of resolving different spatial and temporal scales in

different regions, the process begins with an analysis of the shallow-water system in order to better understand

the strengths and weaknesses of the approach developed herein. The multiresolution meshes are spherical

centroidal Voronoi tessellations where a single, user-supplied density function determines the region(s) of

fine- and coarse-mesh resolution. The shallow-water system is explored with a suite of meshes ranging from

quasi-uniform resolution meshes, where the grid spacing is globally uniform, to highly variable resolution

meshes, where the grid spacing varies by a factor of 16 between the fine and coarse regions. The potential

vorticity is found to be conserved to within machine precision and the total available energy is conserved to

within a time-truncation error. This result holds for the full suite of meshes, ranging from quasi-uniform

resolution and highly variable resolution meshes. Based on shallow-water test cases 2 and 5, the primary

conclusion of this study is that solution error is controlled primarily by the grid resolution in the coarsest part of

the model domain. This conclusion is consistent with results obtained by others. When these variable-resolution

meshes are used for the simulation of an unstable zonal jet, the core features of the growing instability are

found to be largely unchanged as the variation in the mesh resolution increases. The main differences between

the simulations occur outside the region of mesh refinement and these differences are attributed to the ad-

ditional truncation error that accompanies increases in grid spacing. Overall, the results demonstrate support

for this approach as a path toward multiresolution climate system modeling.

1. Introduction

A defining feature of the global atmosphere and

ocean circulations is their broad range of temporal and

spatial scales. The climate of the atmosphere is de-

termined by both global patterns of motion, O(104) km,

as well as, for example, boundary layer processes with

O(1021) km characteristic scales (Klein and Hartmann

1993). Similarly, the climate of the ocean is controlled

by both basin scales of motions, O(104) km, and sub-

mesoscale processes with O(1021) km scales (Boccaletti

et al. 2007). As is typical of nonlinear systems, the broad

range of climate-relevant spatial scales in the atmosphere

and ocean is highly interacting; the O(104) km global

scales modify and are modified by the O(1021) km local

scales. In terms of simulating the atmosphere and ocean

climate systems, the strong interaction across scales
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implies that an accurate representation of the smallest

scales is a prerequisite for the robust simulation of the

largest scales.

As a result of the broad scale interaction, the nu-

merical simulation of the climate system is particularly

challenging. For example, we do not presently have the

computational resources to globally resolve all the scales

associated with fundamental processes in the atmo-

sphere and ocean, for example, clouds and ocean eddies

(Randall and Bony 2007). This unfortunate reality will

remain true for decades to come. The corollary is that

the numerical simulation of the global climate system is,

and will likely always remain, an underresolved en-

deavor.

Given the importance of small-scale processes such as

clouds and ocean eddies in the climate system, numerical

models are obligated, either through direct simulation or

parameterization, to account for how these processes

modify and are modified by the larger scales. Due to the

constraint presented by today’s computational resources,

climate models are almost always relegated to the latter

option of parameterization. Parameterizing a process is

significantly more challenging than directly simulating

that same process. When conducting a direct simulation,

the interaction across scales is naturally accommodated.

When parameterizing a process, we need to know a priori

how the larger (resolved) scales act to regulate the smaller

(unresolved) parameterized process and, in turn, how the

parameterized process acts in an aggregate sense to

modify the largest scales. In effect, an accurate parame-

terization requires a significantly greater understanding of

the underlying physics than does the direct simulation of

that same process.

The pitfall of parameterization has led to what might

be considered the defining tenet of global climate

modeling: increasing model resolution allows for less

parameterization and, thereby, a more accurate simu-

lation of the observed climate system. Faced with the

daunting challenges posed by global climate modeling,

the community has embarked on at least three research

paths to address this challenge. The first approach is that

of global ultra-high-resolution climate system modeling

(McClean et al. 2011). In this approach, high-resolution

climate system models are paired with the world’s most

advanced high-performance computing systems to con-

duct climate simulations at unprecedented resolution.

The underlying premise is that as the model resolves

more and more of the scales of interests, less of the

system is left unresolved and, thus, fewer of the systems

require parameterization. This approach is very much in

the theme of traditional climate modeling but at very

high resolution and, as a result, benefits from the de-

cades of experience that this activity has obtained. The

main disadvantage of this approach is that the presently

unresolved parts of the spectrum are resolved at a pain-

fully slow rate. Reducing the horizontal grid spacing by

a factor of 2 typically requires a factor of 23 increase in

computing resources, where latitude, longitude, and time

account individually for a factor of 2. Thus, moving from

a global 50-km mesh like those presently used for high-

resolution Intergovernmental Panel on Climate Change

(IPCC) atmosphere simulations to a global 4-km mesh

that would be required for convection-permitting atmo-

sphere simulations will entail an increase in computing

resources of approximately 212, or about 4000 times the

present-day computing capacity. And this, of course,

neglects the substantial increase in vertical resolution that

will also be required.

To circumvent the tyranny of global, high-resolution

climate modeling, a second approach based on limited-

area climate modeling has been explored over the last two

decades (Giorgi and Mearns 1991; McGregor 1997; Wang

et al. 2004). This approach employs a high-resolution

mesh placed only over the area of interest. Since the

area of interest generally spans only a small portion

of the sphere (e.g., the continental United States), the

computational demands are significantly reduced as

compared to global high-resolution modeling. As a re-

sult of being more computationally accessible, it is much

easier to explore the physical processes that might be

relevant to regional climate dynamics and regional cli-

mate change (e.g., Diffenbaugh et al. 2005). The disad-

vantage of the limited-area approach is the requirement

to impose one-way, noninteractive lateral boundary

conditions. These lateral boundary conditions can be

obtained from reanalysis data or coarse-grain global

climate simulations. The imposition of lateral-boundary

conditions can lead to inconsistencies in the physics and

dynamics of the limited-area models [see Wang et al.

(2004) for a review]. Physical inconsistencies can arise

when the global and regional models use different

physical parameterizations (e.g., McGregor 1997, his

Fig. 4). Dynamical inconsistencies can arise from the

lack of well-posedness of the lateral boundary condi-

tions (Oliger and Sundström 1978; Staniforth 1997) and

a mismatch between the solution of the global and re-

gional models in the nesting region (Davies 1976;

Marbaix et al. 2003; Harris and Durran 2010). These

inconsistencies can result in the regional and global

simulations diverging toward different climate states

(Jones et al. 1995). Physical inconsistencies can be

ameliorated by using the same physical parameteriza-

tions in both the global and regional models (McGregor

1997; Lorenz and Jacob 2005). Dynamical inconsis-

tencies can be mitigated by overwriting the global model

solution with the regional model solution after every
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time step (Lorenz and Jacob 2005; Inatsu and Kimoto

2009).

The third option being pursued is that of multiscale

modeling. While this method has been investigated

primarily in the atmosphere modeling (Grabowski

2001), a preliminary exploration of this approach in

ocean modeling is under way (Campin et al. 2011). As

the name suggests, this approach couples models at

different scales to create a full simulation. Efforts to

date have focused primarily on coupling global, coarse-

grain models of the atmospheric dynamics with em-

bedded high-resolution models of cloud and radiation

processes. As a result, the multiscale approach signifi-

cantly reduces the need for physical parameterizations

by resolving those processes directly via truncated

large-eddy simulations (Khairoutdinov and Randall

2001). Multiscale approaches are constructed on the

premise that there exists a scale separation that can be

exploited in the modeling of the physical system. Es-

sentially, this approach assumes that the finescale

processes act on temporal and spatial scales that are

sufficiently far away from the coarse-grain processes

such that the fine and coarse scales can be coupled

without a representation of the intervening scales. The

extent to which this assumption is valid for the atmo-

sphere and ocean systems remains unclear.

In this contribution, we start what we hope will be

a fourth line of research to address the computational

challenges in modeling the climate system. This ap-

proach, which we informally refer to as a multiresolution

approach, is essentially a merging of the traditional

global climate modeling approach with the regional

limited-area approach. As will be discussed below, in

our multiresolution approach we maintain a global

modeling framework in the sense that we simulate the

entire spatial extent of the atmosphere and/or ocean

systems within a single model, yet we allow for arbitrary

regions of local mesh refinement.

In the sense that this method maintains a global, con-

forming mesh, it is similar to the stretched-grid or con-

formal mapping approaches that have been explored

over the last two decades (Fox-Rabinovitz et al. 1997;

Déqué et al. 2005; Fox-Rabinovitz et al. 2006). Since the

stretched-grid approaches require the mesh to be de-

formed through a continuous mapping (i.e., the mesh is

topologically unchanged as the resolution is changed),

the increase in resolution in one region must necessarily

come at the expense of decreasing resolution in another

region. Stretched-grid approaches are also limited in their

ability to place enhanced resolution in more than one

region. The multiresolution approach developed below is

not based on a continuous deformation of a mesh, does

not require that the increase in resolution in any region

come at the expense of resolution elsewhere, and is not

limited to resolution increases in only one region. The

stretched-grid approach does highlight a primary chal-

lenge of any method that includes a wide range of spatial

scales, namely the lack of access to scale-aware physical

parameterizations. We revisit this challenge, along with

the other challenges that multiresolution approaches

must address, in the last section of the paper.

As illustrated in Fig. 1, the multiresolution approach

allows for the grid resolution in one or more regions to be

significantly higher than the grid resolution in other re-

gions. This can be accomplished in one of two ways. First,

a variable density function could be employed to re-

distribute a fixed number of grid points, causing the same

effects as from a stretched-grid approach. Second, using

a set of grid points, an arbitrary number of refinement

nodes can be added into the grid, causing refinement only

in the area of interest, without hindering the results in

other areas. We have the ability to directly simulate

processes, such as clouds and ocean eddies, in the re-

gion(s) of high resolution while parameterizing those

same processes in the region(s) of low resolution. This

multiresolution approach is built upon two key compo-

nents: a conforming, variable-resolution mesh with ex-

ceptional mesh-quality characteristics and a finite-volume

method that maintains all of its conservation properties

even when implemented on a highly nonuniform grid.

The first of the two pillars upon which this multi-

resolution approach is built is spherical centroidal

Voronoi tessellations (SCVTs). Voronoi tessellations

have a long history in the sciences, probably because

Voronoi-like polygons are commonly found in nature

(Barlow 1974). In climate modeling, Voronoi-like tes-

sellations were introduced by Sadourny et al. (1968) and

Williamson (1968) due to their uniformity and isotropy

in tiling the surface of the sphere.1 Neither Sadourny nor

Williamson refer to their grids as Voronoi tessellations,

but both appeared to use Voronoi tessellations as their

base mesh. Even over the last decade there has been

much ambiguity with respect to the terminology used to

describe these meshes (see Ju et al. 2011). More recently,

Voronoi-like meshing of the sphere has found signifi-

cant success in global atmosphere modeling (Heikes and

Randall 1995; Thuburn 1997; Ringler et al. 2000; Ringler

and Randall 2002; Randall et al. 2002; Tomita et al. 2005;

Weller and Weller 2008). In each of these examples, the

1 Voronoi tessellations have been reinvented many times over in

the past 150 yr. The first systematic treatment of what we now call

Voronoi tessellations was given by Dirichlet (1850). Voronoi

(1908) generalized the work of Dirichlet to arbitrary dimensions.

These tessellations have been given many different names by their

reinventors (see Ju et al. 2011).
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use of Voronoi-like tessellations is motivated through

their ability to produce high-quality meshes of uniform

resolution while at the same time eliminating problem-

atic grid singularities associated with other meshing

approaches. While we certainly agree and appreciate

this motivation, recent work suggests that Voronoi dia-

grams are equally valuable for the generation of variable

resolution meshes. As will be discussed fully in section 2,

by adding the centroidal constraint to the construction

of the Voronoi tessellations, we can produce a very reg-

ular, high quality, variable-resolution meshing of the

sphere. A centroidal Voronoi tessellation differs from

the generic Voronoi tessellation by requiring that the

generating points (grid points) are the centroids (cen-

ters of mass) of the corresponding Voronoi regions. This

seemingly minor requirement that grid points be the

centers of mass of the Voronoi grid cell results in meshes

of remarkably high quality even when the mesh resolu-

tion changes (Gersho 1979; Du et al. 1999).

The second pillar of this approach is the finite-volume

scheme that we pair with the variable-resolution SCVTs

to produce robust simulations of rotationally dominated

geophysical flows. A hallmark of robust finite-volume

techniques used in global atmosphere and ocean models

has been their ability to constrain the spurious growth of

nonlinear quantities, such as potential enstrophy and

total energy (Arakawa 1966). While a more nuanced

view of the importance of conserving nonlinear quanti-

ties has emerged over the last decade (Thuburn 2008),

anecdotal evidence has continually shown that there is

FIG. 1. Four members of a family of meshes constructed from (4). Each mesh uses 2562 grid points and only differs

in the setting of the parameter g to produce ratios in local grid resolution between the fine- and coarse-mesh regions

of (top left) 1, (top right) 2, (bottom left) 4, and (bottom right) 16.
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value in developing numerical schemes that respect

certain underlying constraints imposed by the continu-

ous system. This is a particularly challenging task when

the underlying mesh is not uniform (e.g., see Perot 2000;

Bonaventura and Ringler 2005; Stuhne and Peltier 2006;

Ham et al. 2007; Kleptsova et al. 2009). The recent con-

tributions from Thuburn et al. (2009, hereafter T09) and

Ringler et al. (2010, hereafter R10) detail a finite-volume

approach that allows for the conservation of nonlinear

quantities, even when the underlying mesh is highly

variable. One purpose of this contribution is a full char-

acterization of this scheme’s performance on variable-

resolution meshes.

Our goals for this contribution are modest in the sense

that we only wish to characterize the ability of this ap-

proach to simulate the shallow-water system with multi-

resolution meshes. Such a characterization is, in our view,

a prerequisite to performing variable-resolution simula-

tions of the full atmosphere and ocean systems. We

choose to begin with the analysis of the shallow-water

system due to its proven usefulness as a simplified proxy

of the 3D primitive equations. To this end, in section 2 we

provide a brief overview of the SCVTs, their properties,

and how these meshes are generated. In section 3 we

provide a brief summary of the underlying numerical

method used in our multiresolution approach with spe-

cial attention toward the method’s properties when the

mesh is nonuniform. Results from a few of the standard

shallow-water test cases are shown in section 4 where the

focus is on geostrophic balance, conservation properties,

and solution error as a function of mesh size and mesh

refinement. In section 5 we compare the results obtained

herein with previously published results. The multi-

resolution approach that we begin to develop here is not

without its own set of challenges. In section 6 we highlight

the challenges that will have to be overcome if this ap-

proach is to make substantive contributions to the field of

global and regional climate modeling.

2. Properties and generation of SCVTs

A full review of SCVTs and their potential benefits in

global climate system modeling is provided in Ju et al.

(2011) and Ringler et al. (2008). Our discussion here is

restricted to the most salient aspects of SCVTs with

a focus on the practical aspects of the meshes. The

analysis that yields these practical results is not dis-

cussed but is referenced for those interested in a better

understanding the mathematical underpinning of this

mesh generation technique.

Voronoi diagrams can be specified as follows. We are

given a domain V 2 Rd and a set of distinct points

fxig
n

i51
� V. In this study we assume that V spans the

surface of the sphere. For each point xi, i 5 1, . . . , n,

the corresponding Voronoi region Vi, i 5 1, . . . , n, is

defined by

Vi 5 fx 2 Vjkx 2 xik,kx 2 xjk

for j 5 1, . . . , n and j 6¼ ig, (1)

where k�k denotes the geodesic distance measured along

the surface of the sphere. Clearly, Vi \ Vj 5 Ø for i 6¼ j,

and [n
i51Vi 5 V so that fVig

n

i51
is a tessellation of V; that

is,[n
i51Vi spans V with a nonoverlapping mesh. We refer

to fVig
n

i51
as the Voronoi tessellation or Voronoi dia-

gram of V associated with the point set fxig
n

i51
. In the

nomenclature of Voronoi diagrams, a point xi is called a

generator and a subdomain Vi is referred to as the Voronoi

region or Voronoi cell. Each generator is uniquely asso-

ciated with a single Voronoi region. For our purposes,

generator points are equivalent to grid points and Voronoi

regions are equivalent to grid cells. If the domain V 2 Rd

spans all or part of the surface of the sphere, then we refer

to the mesh as a spherical Voronoi tessellation.

A spherical Voronoi tessellation becomes a spherical

centroidal Voronoi tessellation when the generators are

also centers of mass of the corresponding Voronoi region.

Given a density function r(x) $ 0 defined on V, for any

region V�V, the standard mass center x* of V is given by

x* 5

ð
V

xr(x) dxð
V

r(x) dx
. (2)

This center-of-mass calculation will always result in an

x* that lies inside the surface of the sphere. To constrain

the generator points to lie on the unit sphere, x* is ra-

dially projected onto the surface of the unit sphere. In

general, the x* for each grid cell does not correspond to

a grid point xi of that cell. Only when x* [ xi is the

spherical Voronoi tessellation also a spherical centroidal

Voronoi tessellation.

In practice, finding an SCVT given any SVT is a rel-

atively straightforward, iterative process based on Lloyd’s

algorithm (Du et al. 1999). Given a set of xi, we first find

the corresponding Vi and compute xi* for each Vi. In

general, xi* 6¼ xi, so we simply move generators to be the

centroids with xi 5 x
i
* and repeat the process. The iter-

ative procedure continues until x
i
* and xi are deemed

to be sufficiently close based on, say, the L2 or Linf

norms. For a more detailed discussion of this iterative

procedure, restrictions on r, the guarantees related to

convergence, and the optimality of the resulting mesh,

see, for example, Du et al. (1999), Du et al. (2003), or
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Ringler et al. (2008). While we are only interested here

in the extension of CVT to SCVT, the CVT approach

can be generalized to any manifold or surface; see Du

et al. (2003).

The power of an approach based on SCVTs resides in

the freedom to specify r(x) and, thereby, control the

local grid resolution and local grid variation with a high

degree of precision. If we pick any two Voronoi regions

and arbitrarily index them with i and j, then the con-

jecture is

dxi

dxj

’

"
r(xj)

r(xi)

#1/(d912)

, (3)

where d9 is the dimension of the manifold on which the

tessellation is constructed, r(xi) is the density function

evaluated at xi, and dxi is a measure of the local mesh

spacing in the vicinity of the xi. Similarly for r(xj) and dxj.

While (3) remains an open conjecture for d9 $ 2, its val-

idity has been supported through many numerical studies.

In our grid generation examples below, we demonstrate

the accuracy of (3) and provide evidence for our assertion

that we have precise control on the relative mesh spacing

in different parts of V through the choice of r. Equation

(3) becomes even more powerful when paired with

Gersho’s conjecture. Asymptotically and for a fixed den-

sity function, as the number of generators becomes larger

and larger, Gersho’s conjecture (Gersho 1979) states that

the tessellation becomes more and more regular in the

sense that, locally, the tessellation converges to a replica-

tion of a polytope. In other words, Gersho’s conjecture

states that if the number of generators n is large enough

and one focuses on a small enough region, then a cen-

troidal Voronoi tessellation appears to be a uniform

mesh involving congruent polytopes. The regular hexa-

gon provides a confirmation of the conjecture in two di-

mensions for the constant density case (Newman 1982).

The rigorous application of Gersho’s conjecture to

tessellating the surface of the sphere fails since we know

that no regular single polytope can be used to tessellate

the sphere (Saff and Kuijlaars 1997). Yet the spirit of

Gersho’s conjecture does carry over to the sphere; for

a given density function, as the number of generators is

increased, the resulting meshes are composed, propor-

tionally, of more hexagons that converge uniformly to-

ward regular hexagons. Both Ju et al. (2011) and Ringler

et al. (2008) demonstrate this in a variety of settings.

In summary, the utility of SCVTs resides in their

ability to precisely control grid resolution through the

specification of the density function as described in (3)

and the guarantee that the meshes will become more

regular as the number of grid points is increased.

3. Example SCVTs

The simulations discussed below will employ meshes

sampled from a three-parameter density function ex-

pressed as

r(xi) 5
1

2(1 2 g)
tanh

b 2 kxc 2 xik
a

� ��
1 1

�
1 g, (4)

where xi is constrained to lie on the surface of the unit

sphere. This function results in a relatively large value of

r within a distance b of the point xc, where b is measured

in radians and xc is also constrained to lie on the surface

of the sphere. The function transitions to relatively small

values of r across a radian distance of a. The distance

between xc and xi is computed as kxc 2 xik5 cos21(xc � xi)

with a range from 0 to p.

The density function is constructed such that it has

a maximum value of 1 and a minimum value of g, where

g . 0. Based on (3), we know that the mesh spacing in

the high-resolution region, dxf, and the mesh spacing in

the low-resolution region, dxc, will be related as

dxf

dxc

’ g1/4. (5)

For this study, we fix b 5 p/6 and a 5 p/20. For rea-

sons that will be clear below, we specify the location of xc

to coincide with the center of the orographic feature

present in shallow-water test case 5 (Williamson et al.

1992, hereafter W92). Our focus will be on the impact of

g, that is, the impact of the relative resolution between

the fine-mesh region and the coarse-mesh region. Figure 1

shows meshes that were generated with 2562 grid points

based on g values of (1)4, (½)4, (1/4)4, and (1/16)4. We refer

to these meshes as the X1, X2, X4, and X16 meshes

since the fine-mesh and coarse-mesh resolutions vary

by ratios of 1, 2, 4, and 16, respectively. The simula-

tions discussed below will also use an X8 mesh that is

not shown in Fig. 1. The X1–X16 meshes are generated

with 2562, 10 242, 40 962, 163 842, and 655 362 grid

points. As a result of this choice of grid points, the X1

meshes are very similar to other Voronoi-like meshes

that are derived from the recursive bisection of the

icosahedron. We made this choice in order to facilitate

comparison of the error norms computed below to

error norms already found in the published literature.

Table 1 summarizes the resolutions of all of the meshes

used in this study.

Figure 2 shows the distribution of the mesh resolution

measured in the vicinity of each grid cell as a function of

geodesic distance from xc. At each grid cell we define the

local grid resolution dxi as
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dxi 5
1

ni

�
n

i

j51
kxj 2 xik, (6)

where xj are the across-edge neighbors of grid cell i (see

Fig. 3). Here, dxi represents the average distance be-

tween grid point xi and all of its nearest neighbors. Also

shown in Fig. 2 is the theoretical estimate of the local

mesh resolution for the X1, X2, X4, X8, and X16 meshes

based on (3).

Figure 2 confirms that the theoretical estimate of the

local grid resolution is remarkably accurate; the mesh

spacing as computed from the meshes essentially falls on

top of the theoretical estimate.

4. Summary of numerical method

This study focuses on the nonlinear shallow-water

equations expressed as

›h

›t
1 $ � (hu) 5 0 and (7)

›u

›t
1 hk 3 u 5 2g$(h 1 b) 2 $K, (8)

where h represents the fluid layer thickness and u rep-

resents the fluid velocity along the surface of the sphere.

The absolute vorticity h is defined as k � ($ 3 u) 1 f

and the kinetic energy K is defined as juj2/2. At all points

on the surface of the sphere, the vector k points in the

local vertical direction and we require k � u 5 0 at all

points. The three parameters in the system are gravity g;

Coriolis parameter f; and bottom topography b.

For our application, a more appropriate form of the

continuous equations is expressed as

›h

›t
1 $ � F 5 0 and (9)

›u

›t
1 qF?5 2g$(h 1 b) 2 $K, (10)

where F 5 hu, F? 5 k 3 hu and h 5 hq where q is the

total potential vorticity.

A numerical method used to model the shallow-water

system is discussed at length in T09 and R10. In T09, an

analysis of the linearized version of (7) and (8) is con-

ducted in order to derive a numerical method that is able

to reproduce stationary geostrophic modes found in the

continuous system, even when the numerical method is

implemented on variable-resolution meshes such as

those shown in Fig. 1. In R10, the analysis is extended

to the nonlinear shallow-water equations shown in (9)

and (10) in order to derive a method that conserves the

total energy and potential vorticity while allowing for a

physically appropriate amount of potential enstrophy

dissipation. While the analyses and derivations in both

T09 and R10 are for any mesh that is a Voronoi tes-

sellation, the numerical simulations presented in both

of those papers only evaluate the method when im-

plemented on a quasi-uniform mesh.

The numerical scheme is a standard finite-volume

method with a C-grid staggering, as shown in Fig. 3. The

TABLE 1. Approximate mesh resolutions (km) of the fine- (dxf) and coarse-mesh (dxc) regions of the global domain for the X1–X16

meshes as a function of the number of grid points.

No. of grid points X1 (dxf, dxc) X2 (dxf, dxc) X4 (dxf, dxc) X8 (dxf, dxc) X16 (dxf, dxc)

2562 (480, 480) (282, 537) (196, 737) (169, 1293) (163, 2419)

10 242 (240, 240) (141, 169) (98, 368) (85, 648) (81, 1222)

40 962 (120, 120) (70, 134) (49, 184) (42, 324) (40, 611)

163 842 (60, 60) (35, 67) (25, 92) (21, 162) (20, 305)

655 362 (30, 30) (16, 32) (12, 48) (10, 78) (9, 148)

FIG. 2. Distribution of the local mesh resolution as a function of

geodesic distance from the center of the fine-mesh region. The x

axis measures the distance along the great circle arc between the

center of the fine-mesh region xc and every grid point xi. The y axis

measures the local mesh resolution in the vicinity of each xi grid cell

based on (6). Each open circle represents one cell on the X1, X2,

X4, X8, or X16 meshes. Also shown for each mesh is the theoretical

estimate of mesh resolution as a function of distance from xc based

on (4) with b 5 p/6, a 5 p/20, and g varies as described in (5).
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thickness field is defined on the Voronoi cells while all

vorticity-related fields, such as relative vorticity, abso-

lute vorticity, and potential vorticity, are defined on the

Delaunay triangles. The discrete thickness equation is

obtained by simply supplying a discrete approximation

to the divergence operator (see Fig. 3 in R10). As with

all C-grid methods, only the component of velocity in

the direction normal to the thickness finite-volume cell

is prognosed. To derive this normal-component velocity

equation, the inner product of ne (shown in Fig. 3) and

(10) is computed at each edge location. The resulting

discrete system of equations is then expressed as

›hi

›t
5 2[$ � Fe]i and (11)

›ue

›t
1 F?e q̂e 5 2f$[g(hi1 bi) 1 Ki]ge, (12)

where Fe 5 heue represents the mass flux across the edge of

a Voronoi cell and F?e represents the mass flux across the

edge of each Delaunay cell. The discrete approximations

of the divergence and gradient operator are shown in R10

and Fig. 3. In (11) and (12), the yet-to-be-defined fields are

Ki, he, q̂
e
, and F?e . These fields are defined following R10

without exception. Also following R10, we use the antici-

pated potential vorticity method (Sadourny and Basdevant

1985) to dissipate the potential enstrophy.

The culmination of the derivations in T09 and R10 is

a numerical method that conserves the total energy to

within a time-truncation error, conserves the total po-

tential vorticity to within a machine round-off error, and

dissipates the potential enstrophy at a rate that depends

on a single parameter. This derivation was carried out

for a general Voronoi mesh; the results in section 5 are

intended to confirm this analysis.

5. Results

Through the use of three shallow-water test cases, we

confirm the derivations in T09 and R10 related to the

system energetics, geostrophic balance, and potential

vorticity dynamics. Shallow-water test case 5 (SWTC5)

and shallow-water test case 2 (SWTC2) from W92 are

used primarily to confirm the abilities of the numerical

methods to mimic conservation properties and maintain

geostrophic balance, respectively. A final test case, the

barotropic instability test case, is used to illustrate

the method’s ability to allow prototypical structures of

the atmosphere and ocean to enter and exit mesh tran-

sition zones (Galewsky et al. 2004, hereafter G04).

Along the way, we compute L2 error norms of the

thickness field hi in order to better understand how the

solution error varies with the amount of mesh variation.

The L2 norm is computed as

L2 5
fS[(hi 2 hr

i )2]g1/2

fS[(hr
i )

2]g1/2
. (13)

The field hr
i is the reference solution that has been cal-

culated at or interpolated to xi positions. The reference

solution represents either an analytic solution or, if an

analytic solution is not available, a high-resolution so-

lution. The function S[ f ] computes the area-weighted

average of f over the entire sphere.

Twenty-five simulations are conducted for each test

case, thus filling the [grid points 3 mesh variation] ma-

trix shown in Table 1. Every simulation in every test case

is conducted with the exact same executable with the

exact same parameter settings. The spatial discretization

discussed above is paired with a fourth-order Runge–

Kutta time-stepping method using a time step of dt 5

25 s. Each simulation employs the anticipated potential

vorticity method with the upwind-bias parameter u set

to dt/2 [see Sadourny and Basdevant (1985), Eq. (8)].

All simulations are conducted with 64-bit floating point

arithmetic.

FIG. 3. Shown is the variable staggering for the finite-volume

scheme. Mass, surface topography, and KE are defined at the

center of each Voronoi cell. The normal component of the velocity

field ue is defined at the midpoint of line segments connecting cell

centers. All vorticity-related fields, such as the relative, absolute,

and potential vorticities, are defined at the vertices of the Voronio

cells. The derived fields ĥe, q̂e and F?e , must be reconstructed at each

velocity point in order to evolve the velocity field forward in time.
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a. SWTC5

As explained in the introduction, our long-term goal is

the creation of full-physics, multiresolution models of

the global atmosphere and ocean systems. Our motiva-

tion for evaluating this approach in the shallow-water

system is to identify, to the extent possible, the strengths

and weaknesses in an idealized setting. We begin the

analysis with SWTC5 because it offers an analog to what

we hope to accomplish in more realistic settings. SWTC5

contains a single feature (orography) that is completely

responsible for the transient evolution of the system.

While the orography is large scale, it is localized and, in

that sense, is conducive to local mesh refinement. To

greater and lesser extents, all of the meshes depicted in

Fig. 1 and Table 1 enhance the resolution in the vicinity

of the orography.

SWTC5 prescribes an analytic set of initial conditions

of the large-scale geostrophic flow that would be in

steady state, if not for the presence of an orographic

feature. The orographic feature is centered at xc and

extends p/9 radians in latitude and longitude. Recall

that the variable-resolution meshes developed in section

3 are also centered at xc and extend the fine-mesh region

a distance of p/6 radians; the fine-mesh region includes

all of the orography.

The analytic initial condition is mapped to the discrete

model by sampling W92’s Eq. (95), with the appropriate

constants for SWTC5, at Voronoi grid points (i.e., xi lo-

cations) to determine the initial thickness fields. The

initial ue field is obtained by determining the stream-

function via Eq. (92) from W92 at Delaunay grid points

(i.e., xy locations), then computing ue as k 3 $c. Even

though errors in ue are present at t 5 0, this approach

guarantees that the discrete divergence is identically zero

at t 5 0.

As a result of the orography, the geostrophically bal-

anced zonal flow impinges on the mountain at t 5 0,

resulting in the radiation of gravity and Rossby waves as

the flow adjusts to the presence of the orographic fea-

ture. The interaction between the zonal flow and the

orography leads to a strong nonlinearity, which is why

this test case is chosen to assess the numerical method’s

conservation properties.

We begin with a qualitative assessment of SWTC5 by

showing in Fig. 4 the fluid height field, hi 1 bi, at day 15

for the X1, X2, X4, and X16 meshes using 40 962 cells.

Broadly, the simulations are identical to those depicted

in Fig. 4. Since the flow is characterized by large-scale

Rossby waves that are well resolved by the full suite of

meshes using 40 962 cells, we would expect the simula-

tions to be qualitatively similar. The coarse grid reso-

lution in regions far removed from the orography is

clearly seen in Fig. 4. Note that while the simulation with

the 40 962/X16 mesh ranges in resolution from 40 km in

the vicinity of the orography to 611 km elsewhere, there

is no hint of noise in the mass field, even through the

mesh transition zone.

Two quantities are conserved to the round-off error

in every simulation: the area-weighted global sum of

thickness and the volume-weighted potential vorticity.

Specifically, we find

›

›t
V 5

›

›t
�
N

i

i51
hiAi 5 0 and (14)

›

›t
�
N

y

y51
q

y
h

y
A

y
5 0, (15)

to within round-off error in all simulations, where the

quantity V represents the total fluid volume.

To evaluate the energetics of the system, the total

energy is computed following R10’s Eq. (70) as

E 5 �
e

Ae

ĥeu2
e

2

#
1 �

i
Ai ghi

1

2
hi 1 bi

� �� �
2 Er.

"
(16)

In the computation of total energy, the unavailable po-

tential energy Er with the form

Er 5 �
i

gHi Ai

Hi

2
1 bi

" #
, (17)

where

Hi 5

�
i

Ai(hi 1 bi)

�
i

Ai

2 bi, (18)

has been subtracted; hereafter, references to ‘‘total

energy’’ imply ‘‘total available energy.’’ The term Er

represents the potential energy of the fluid at rest.

Figure 5 demonstrates the degree to which total en-

ergy is conserved in the simulations. The figures show

log
10
j[E(t) 2 E(0)]j/E(0) over the 15-day integration for

the X1, X2, X4, X8, and X16 meshes with 40 962 grid

points. Figure 5 measures the extent to which the sum of

the available potential energy and kinetic energy is con-

served. At day 15, all solutions conserve total energy to

within 1.0 3 1028 relative to the total energy present at

t 5 0; this is orders of magnitude better than is required

when considering the dissipation mechanisms present in

the real atmosphere and ocean (Thuburn 2008).

The total energy is conserved in the physically ap-

propriate manner; the nonlinear Coriolis force neither
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creates nor destroys kinetic energy and the exchange of

energy between its potential and kinetic forms is equal

and opposite. We evaluate the degree to which the

nonlinear Coriolis force is energetically neutral by com-

puting the time it would take for the nonlinear Coriolis

force to double the kinetic energy in the system. With

40 962 grid points, the time required for the nonlinear

Coriolis force to double the kinetic energy is approxi-

mately 104 yr for all meshes. This finding is consistent with

Fig. 4 of R10.

The other important component in the total energy

budget is the conservative exchange of energy between

its potential and kinetic forms. The potential and kinetic

energy equations each have a source term. These source

terms are equal and opposite [see, e.g., Eqs. (15) and

(16) of R10]. We evaluate the source term for the kinetic

and potential energy following Eqs. (65) and (67), re-

spectively, from R10. Since these rhs sources are alge-

braically equivalent in the discrete system, we expect

a very high degree of cancellation between the sources.

All 25 simulations show that the time scale for doubling

the kinetic energy of the system due to the imper-

fect cancellation of the kinetic energy (KE) and po-

tential energy (PE) sources terms to be approximately

1010 yr. This is essentially machine precision round-off

error.

In regard to conservation, the final quantity of interest

is potential enstrophy. Figure 6 shows log
10
j[R(t) 2

R(0)]j/R(0), where R is the global-integrated potential

enstrophy defined as

FIG. 4. The fluid height, hi 1 bi, at day 15 for SWTC5. Starting at the upper left and moving clockwise, the results

from the X1, X2, X16, and X4 meshes using 40 962 cells are shown. The black oval denotes the location of the

orography. The figures are generated by filling each Voronoi cell with a single color; i.e., there is no interpolation due

to rendering. This allows the far-field grid resolution to be seen in the X4 and X16 simulations.
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R 5
1

V
�
N

y

y51
q2

yh
y
A

y
2 Rr. (19)

Just as energy has an unavailable reservoir, potential

enstrophy has an unavailable reservoir that is equal to the

amount of potential enstrophy that exists when the fluid is

at rest. This unavailable reservoir Rr is removed from the

computation in order to obtain a more representative

evaluation of potential enstrophy conservation.

Figure 6 shows the relative change in globally aver-

aged potential enstrophy for the X1, X2, X4, X8, and

X16 meshes with 40 962 nodes. At day 15, the relative

changes in globally averaged potential enstrophy vary

between 1024 and 1022.5 for the X1 and X16 meshes,

respectively. In these simulations, the X1 and X2 simu-

lations show a monotonic decrease on globally averaged

potential enstrophy, while the X8 and X16 simulations

show a monotonic increase in globally averaged poten-

tial enstrophy. The X4 simulation fluctuates about its

initial globally averaged value. Clearly the amount

of potential enstrophy dissipation provided by the an-

ticipated potential vorticity method needs to vary with

mesh resolution; this is discussed further in section 7.

In terms of formal L2 global error norms, previous

works using local mesh refinement with the shallow-

water system all find that the solution error is relatively

unchanged when adding resolution in a specific region

[e.g., Weller et al. (2009), hereafter W09; St-Cyr et al.

(2008), hereafter S08; Chen et al. (2011), hereafter C11;

see next section for a full discussion]. Stated alterna-

tively, previous work has found that the solution error is

primarily controlled by the coarse region of the mesh

when using static mesh refinement. To test if this is the

case in our simulations, we plot the global L2 error norm

for each of the 25 simulations as a function of coarse-

mesh resolution in Fig. 7. Since SWTC5 does not have a

known analytic solution, error norms are computed with

respect to a T511 global spectral model (Swarztrauber

1996). For TC5 at T511, the global spectral model requires

a scale-selective =4 dissipation of 8.0 3 1012 m4 s21 in order

to prevent the accumulation of energy and potential ens-

trophy at the grid scale.

Figure 7 shows that the solution error is controlled by

the mesh resolution in the coarse region. All of the sim-

ulations show the same convergence rate of approxi-

mately 1.5. Note that we have plotted these errors norms

on a log–log scale to emphasis the primary finding that the

L2 error is controlled by the coarse-mesh resolution. If we

parse the results more closely, we find that the variable-

resolution meshes provide a small, but measurable, im-

provement in solution error, that is, adding degrees of

freedom in the vicinity of the orography, while holding

FIG. 5. The Log10 of the relative change in available total energy for SWTC5 as a function of

time for the X1, X2, X4, X8, and X16 meshes with 40 962 grid points. All results are plotted with

an identical color scheme with a maximum of 5975 m and a minimum of 5025 m.
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the coarse-mesh resolution fixed, results in a small re-

duction in the error norm.

b. SWTC2

Having confirmed the ability of the numerical model to

simulate transient flows in a robust manner with SWTC5,

we now use SWTC2 to measure the method’s ability to

maintain a large-scale geostrophic balance. SWTC2 pre-

scribes an analytic set of initial conditions that form an

exact, steady-state solution to (9) and (10). The analytic

initial conditions are mapped to the discrete model by

sampling Eq. (95) from W92 at Voronoi grid points (i.e., xi

locations) to determine the initial thickness fields. As with

SWTC5, the initial ue field is obtained by determining the

streamfunction via Eq. (92) from W92 at Delaunay grid

points (i.e., xy locations), then computing ue as k 3 $c.

Any deviation of the numerical solution from its initial

conditions is considered to be numerical error.

While SWTC5 offers a plausible reason for mesh re-

finement, no comparable reason is present in SWTC2.

The motivation for evaluating our multiresolution method

using SWTC2 is not to demonstrate the approach’s util-

ity, but rather to measure the cost of mesh refinement.

Maintaining large-scale balance is an important property

of any numerical model of the atmosphere or ocean.

SWTC2 provides the opportunity to precisely measure,

through the L2 error norm, the impacts of mesh refine-

ment on maintaining geostrophic balance.

Following our finding in SWTC5 that the global error

is controlled by the coarse-mesh resolution, Fig. 8 plots

the global L2 error for all 25 simulations against the

resolution in the coarse-mesh region. As found with

SWTC5, essentially all of the variation in the L2 error in

the simulations is controlled by the coarse-resolution

grid spacing. For a given coarse resolution, the solution

error increases by approximately a factor of 2 between

the X2 and X16 meshes. In contrast, the solution error

for the X1 mesh is approximately a factor of 10 smaller,

regardless of the coarse-mesh resolution.

Each grid point in the X1 mesh is uniquely associated

with a node produced when generating a mesh through the

recursive bisection projection of an inscribed icosahedron2

(Heikes and Randall 1995). This method results in a par-

ticularly uniform distribution of grid points, resulting in

FIG. 6. The Log10 of the relative change in available potential enstrophy for SWTC5 as

a function of time for the X1, X2, X4, X8, and X16 meshes with 40 962 grid points. In the X1 and

X2 simulations the globally averaged potential enstrophy is decreasing in time, while in the X8

and X16 simulations the globally averaged potential enstrophy is increasing in time. In the X4

simulation the globally averaged potential enstrophy fluctuates about its initial value.

2 While the X1 meshed is topologically equivalent to a mesh

produced through the recursive bisection projection of an inscribed

icosahedron, the actual positions of the nodes on the unit sphere

differ because in our system we move the nodes so that the re-

sulting mesh is an SCVT.
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a relatively small solution error. This special distribution

of nodes is lost when producing the variable-resolution

meshes. As a result, we incur a relatively large cost, in

terms of global error, by choosing to move away from the

special quasi-uniforms meshes, but incur very little addi-

tional cost by increasing the extent of the mesh variation.

The rate of convergence for SWTC2 is not uni-

form. Meshes with minimum grid resolutions above

100 km show a convergence rate of approximately 1.9

with respect to the coarse-mesh resolution. As the

minimum resolution of the mesh becomes smaller and

smaller, the rate of convergence becomes smaller. The

likely culprits for this reduction in convergence rate are

the following: deficiencies in the structure of the grids,

deficiencies in the manner in which we compute the error

norms, and deficiencies in the numerical model. We have

been unable to definitely rule out any of these possibili-

ties and continue to seek the underlying cause of this is-

sue. We fully expect that second-order convergence rate

to continue indefinitely as resolution increases.

c. Barotropically unstable zonal jet

The final test case to be discussed concerns the growth

of a barotropic instability on a zonally symmetic zonal

jet (G04). To generate the initial conditions for this test

case, we derive a streamfunction from G04’s Eq. (2).

This streamfunction is sampled at vertex locations and

the initial ue field is computed analogous to SWTC2 and

SWTC5. The initial thickness field is computed based on

G04’s Eq. (3) and we include the height perturbation

shown in G04’s Eq. (4).

Figure 9 shows the relative vorticity field at day 6 for

the X1, X2, X4, X8, and X16 meshes with 655 362 cells.

The fine-mesh region is coincident with the center of each

panel. In addition, the envelope of the growing barotropic

instability is roughly coincident with the fine-mesh region

at day 6, with parts of the wave system entering and ex-

iting the fine-mesh region at this point in time.

Conducting test cases based on instabilities that grow

on a zonally symmetric base state is particularly chal-

lenging for our modeling system. Specification of the test

case is zonally symmetric and the instability is triggered

by a small-amplitude perturbation. The meshes used in

this study are not zonally symmetric and, as a result, lead

to truncation error projecting onto nonzero zonal wave-

numbers. This truncation error serves as an additional

trigger for the instability and can lead to wave growth

that is either too fast or not in the correct location. As

the resolution is increased, the amplitude of the spurious

forcing by truncation error diminishes and the instability

is solely controlled by the perturbation contained in the

initial conditions.

In addition, the growth of the unstable waves depends

strongly on the type and strength of the subgrid-scale

FIG. 7. The L2 error of the thickness field at day 15 for SWTC5 shown for the X1, X2, X4, X8,

and X16 meshes as a function of grid resolution found in the coarse-mesh region. Lines rep-

resenting first- and second-order convergence rates are also shown.
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closures that are either implicit in the underlying nu-

merical formulation or explicitly added to the numerical

models. For example, the X1 panel in Fig. 8 agrees very

closely with panel D in Fig. 17 of Ii and Xiao (2010), but

is significantly different than panel D in Fig. 9 of G04.

This is because the simulations presented here and in Ii

and Xiao (2010) do not use any explicit closure, whereas

G04 uses hyperdiffusion on the rhs of the momentum

equation.

The strong correspondence of our X1 simulations with

panel D in Fig. 17 of Ii and Xiao (2010) indicates that the

X1 simulation is broadly representative of the instability

when simulated in a minimally or undamped system.

Our primary purpose here is to understand how the use

of variable-resolution meshes alters the growth of the

barotropic instability.

First, if we focus on the deep, tilted trough just to the

right of center in each panel along with the ridge–

trough–ridge system just upstream to the west, we find

that these dominant features are present in all simula-

tions with the same amplitude and phase. The X2 sim-

ulation is qualitatively equivalent to the X1 simulation

in all respects. In addition, the X8 simulation is quali-

tatively equivalent to the X4 simulation in all respects.

The X4 simulation differs from the X2 simulation only

along the edges of the panels that correspond to the

center of the coarse-mesh regions. The primary difference

between these two groups of simulations is that the X4–

X8 simulations produce an additional ridge in the up-

stream wave. The X16 simulation is qualitatively different

from the other simulations in all regions other than the

fine-mesh region. The X16 simulation produces a rela-

tively strong ridge–trough system in the coarse-mesh re-

gion that is not present in the other simulations. It is

important to note that the fine-mesh resolutions of the X8

and X16 simulations are essentially the same at approxi-

mately 10 km, yet the coarse-mesh resolutions of these

same two simulations differ by a factor of 2 (see Table 1).

The X16/655 362 simulation is more similar to the X1/

40 962 simulation (not shown) than to any of the other

simulations with 655 362 nodes. Since the coarse resolu-

tion of the X16/655 362 simulation is comparable to the

X1/40 962 simulation, this finding is consistent with Figs. 7

and 8, which demonstrate that the accuracy of the simu-

lation is controlled primarily by the resolution in the

coarse-mesh region.

6. Comparison to previous results

Our introduction emphasized that there are several

approaches to regional climate simulation that are

being actively explored. Given the diversity of existing

approaches and the novelty of the approach discussed

herein, an obvious question is how the results obtained

FIG. 8. The L2 error of the thickness field at day 12 for SWTC2 shown for the X1, X2, X4, X8,

and X16 meshes as a function of grid resolution found in the coarse-mesh region. Lines rep-

resenting first- and second-order convergence rates are also shown.
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in the previous section compare to other published

results.

Unfortunately, the literature is sparse with respect to

the evaluation of regional modeling approaches using

the standard shallow-water test cases. For example,

while full-physics, 3D, regional climate simulations

employing the limited-area modeling approach have

been conducted over the last two decades, we have

been unable to find any results where the limited-area

method has been evaluated by using the standard

shallow-water test cases. With regard to the stretched-

grid and conformally mapped grid approaches, we are

also unable to find evaluations of the methods within

the context of the shallow-water modeling system. We

note that the situation is exactly the opposite with re-

spect to numerical methods evaluated using global,

quasi-uniform meshes in the shallow-water system; in

this case, the literature is extremely rich. But the

comparison of the numerical scheme proposed here,

when paired with quasi-uniform meshes, has already

appeared in R10. Furthermore, the literature that does

exist is primarily focused on dynamic adaptivity, whereas

our focus is on static adaptivity. In what follows, we

compare our multiresolution simulations to previously

published findings presented in three manuscripts: W09,

S08, and C11.

FIG. 9. Each panel depicts the relative vorticity field at day 6 for a barotropically unstable jet

using 655 362 cells. The panels differ only in the mesh used in the simulation. The vertical

extent of each panel covers the Northern Hemisphere. The horizontal extent covers all lon-

gitudes starting at 2908 such that the fine-mesh region is approximately centered in each panel.

The color scales are identical for every panel and saturate at 61.0 3 1024.
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The cleanest and most useful comparison of our results

is with W09. W09 focuses on static mesh refinement,

employs a finite-volume approach based on Atmo-

sphere Field Operation and Manipulation (AtmosFOAM;

Weller and Weller 2008), and utilizes variable-resolution

meshes based on Voronoi tessellations, Delaunay tri-

angles, and quadrilateral polygons. In addition, the

spatial locations of the mesh refinement used in W09

and herein are the same; both place mesh refinement in

the vicinity of the orographic feature present in SWTC5

(e.g., see Fig. 4 in W09). One difference between our

work and W09 is the extent of mesh refinement; we

employ meshes that vary in resolution by a factor of 16,

whereas W09 uses meshes that vary in resolution by a

factor of 2. We also explore meshes with approximately

5 3 105 cells, whereas W09 uses meshes of significantly

lower resolution with 1 3 104 cells. In terms of accuracy,

the results presented in Figs. 7 and 8 show error norms

that are approximately a factor of 5 more accurate than

in W09 for SWTC5 and SWCT2, respectively. While

Fig. 7 shows that the error is controlled almost entirely

by the coarse-mesh resolution with a small gain re-

ceived for adding more degrees of freedom in the fine-

mesh region, W09 find that errors increase slightly for

all meshes when extra resolution is added around the

mountain.

S08 evaluate two numerical methods within the con-

text of dynamically adaptive mesh refinement. One

method uses a high-order, spectral element method,

while the other uses a standard finite-volume method.

S08 conduct SWTC2 experiments with static mesh re-

finement, resulting in a mesh that varies in resolution by

a factor of 4 in grid spacing, with a coarse-mesh grid

spacing of approximate 250 km. The extent of the re-

fined region is 308 in latitude and 458 in longitude and

covers approximately 3% of the surface of the sphere.

This region of grid refinement is placed at two latitudes

(308 and 458N) and the simulation error norms are

compared to the errors from global simulations with no

mesh refinement. The two numerical methods perform

markedly differently in SWTC2 with mesh refinement.

Mesh refinement with the spectral element method re-

duces the global error by 30% regardless of where the

refined region is positioned, whereas mesh refinement

with the finite-volume method increases the global error

by between 60% and 300% with the amount of the in-

crease sensitive to the location of the refined region. S08

contains no discussion with regard to how a refinement

over an arbitrary 3% of the sphere can lead to a 30%

reduction in global error in SWTC2. Our multi-

resolution simulations of SWTC2 fall in between the

results in S08. In terms of absolute accuracy, the global

error norms that we present for SWTC2 are marginally

lower than the errors produced by the finite-volume

method in S08, but are nearly a factor of 10 larger than

the errors produced by the spectral element method in

S08. When the flow is infinitely differentiable, as is

SWTC2, spectral element methods are hard to match in

terms of global error. The advantage that spectral ele-

ment methods have on infinitely smooth flows is largely

lost when discontinuities in the flow or forcing are

present, such as in SWTC5. Since S08 only evaluate

SWTC5 with static, quasi-uniform meshes and dynami-

cally adapting meshes, it is not possible to make a close

comparison to our results. We do note that our results are

very much consistent with those of S08 when making

a comparison of the global errors based on quasi-uniform

meshes. With a uniform grid resolution of approximately

240 km, we obtain a normalized global error of approxi-

mately 1.0 3 1023, whereas S08 show normalized errors

of approximately 7.5 3 1024 and 2.0 3 1023 when

using the spectral element and finite-volume methods,

respectively.

The recent results of C11 are also focused on dynamic

adaptivity. Similar to S08, C11 evaluates SWTC2 with

static mesh refinement and SWTC5 with dynamic mesh

refinement. The numerical method used in C11 is a mul-

timoment method that utilizes both a cell-average equa-

tion (similar to finite-volume methods) and a large

number of point values (similar to spectral element

methods). For SWTC2, C11 statically refines over a re-

gion that spans 158 in latitude and 22.58 in longitude. The

grid spacings in the coarse- and fine-mesh zones are ap-

proximately 120 and 15 km, respectively. Similar to S08,

C11 places the refinement in arbitrary regions. C11 finds

that using a refined mesh leads to an increase in error

norms by between 5% and 35% as compared to the un-

refined mesh. Qualitatively this result is consistent with

our finding that the global error is controlled by the

coarse-mesh resolution. C11 evaluate SWTC5 with static,

quasi-uniform meshes and dynamically adapting meshes,

thus making a close comparison of the results difficult. We

do note that when comparing errors based on the uniform

meshes, our results are consistent with those of C11; on

a mesh with a resolution of approximately 240 km, we

obtain a normalized global error of 1.0 3 1023 whereas

C11 obtain a normalized global error of 5.0 3 1023.

The above comparison to W09, S08, and C11 focuses

on each method’s ability to minimize the global error in

the shallow-water test case suite. In this comparison, the

results obtained herein compare respectably to pre-

viously published results. At the same time, in our

opinion the global error tells only a part of the story. The

fact remains that long-term, robust solutions that are

analogous to climate simulations are far more sensitive

to conservation properties of the numerical scheme than
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to absolute accuracy. In terms of the conservation of

mass and tracers, the finite-volume schemes presented in

W09, S08, and C11 are all conservative. The spectral

element scheme in S08 does not conserve mass or tracer

substance. In terms of conserving potential vorticity,

potential enstrophy, or total energy, none of the schemes

presented in W09, S08, or C11 has a formal guarantee on

conservation or boundedness. Furthermore, no anecdotal

evidence comparable to Figs. 5 and 6 is presented in W09,

S08, or C11 that would better illuminate each of the nu-

merical method’s character with respect to conservation.

In this respect, the numerical scheme presented in T09,

R10, and evaluated herein appears to be unique.

7. Discussion

Using a suite of shallow-water test cases, we evaluate

the numerical scheme presented in T09 and R10 when

implemented on variable-resolution meshes. We pro-

duce a set of variable-resolution meshes (see Fig. 1 and

Table 1) with grid-resolution spacing varying from

quasi-uniform (X1) to highly variable (X16). The sim-

ulations are conducted over a range of mesh sizes from

2562 to 655 362 nodes.

The analysis included in T09 indicates that the nu-

merical scheme evaluated herein supports geostrophic

balance, even on variable-resolution meshes. Since SWTC2

provides a set of initial conditions in exact, nonlinear geo-

strophic balance, it provides an excellent means for eval-

uating the analysis in T09. We find that regardless of the

mesh variation, geostrophic balance is maintained in the

numerical simulations.

The analysis included in R10 indicates that the nu-

merical scheme should maintain all its conservation

properties on variable-resolution meshes. We use SWTC5

with its large transient forcing at t 5 0 to measure the

conservation of mass, energy, potential vorticity, and po-

tential enstrophy. We find that both mass and potential

vorticity are conserved to machine precision. Normalized

total available energy is conserved to within 1.0 3 1028

over the standard 15-day integration period. We evaluate

the spurious sources of energy stemming from the non-

linear Coriolis force and exchanges of energy between its

kinetic and potential forms by measuring the time re-

quired for these spurious sources to double the globally

averaged kinetic energy. Consistent with the findings from

R10 using quasi-uniform meshes, we find doubling times

to be on the order of 104 yr, regardless of the variation in

the mesh resolution.

The numerical scheme uses the anticipated potential

vorticity method developed in Sadourny and Basdevant

(1985) and explored further in R10. This numerical tech-

nique allows for the generation of physically appropriate

levels of potential enstrophy dissipation without dissi-

pating kinetic energy. The simulations with SWTC5

show changes in globally averaged potential enstrophy

between 1024 and 1022.5 for the X1 and X16 meshes,

respectively. In some of those simulations (X1 and X2)

the globally averaged potential enstrophy decreased

over time. In other simulations (X8 and X16), the globally

averaged potential enstrophy increased over time. We

conducted all of our simulations with the same pa-

rameter setting, u 5 dt/2 [see Sadourny and Basdevant

(1985), their Eq. (8)]. This parameter was chosen arbitrarily

and, in retrospect, somewhat naı̈vely. We have confirmed

that different choices for u can lead to monotonically

decreasing values of globally averaged potential ens-

trophy in any of the simulations presented here. Instead

of engaging in an ad hoc tuning exercise for u, we plan to

implement the scale-aware formulation of the antici-

pated potential vorticity method developed in Q. Chen

et al. (2011).

The rate of convergence for SWTC5 is approximately

1.5 with respect to the coarse-mesh resolution (see Fig. 7).

This rate of convergence is consistent across all meshes

used in this study, regardless of the ratio between the

minimum and maximum resolutions. This rate of con-

vergence is consistent with that found in T10 using quasi-

uniform meshes. The rate of convergence for SWTC2 is

not uniform. Meshes with minimum grid resolutions

above 100 km show a convergence rate of approximately

1.9 with respect to the coarse-mesh resolution (see Fig.

8). Meshes with minimum grid resolutions less than

100 km show a continual reduction in the convergence

rate as the minimum grid resolution deceases. We have

analyzed the mesh quality, the manner in which we

compute the error norms, and the numerical algorithm

in an attempt to identify this shortcoming. We are un-

comfortable with this reduction in convergence rate and

will continue to seek its source.

We have carefully compared the results obtained

herein to the works of Weller et al. (2009), S08, and C11

(see section 6). We find that the conservation properties

demonstrated herein have not been demonstrated else-

where. In this sense, the results produced in section 5 are

notable. In terms of the global normalized L2 error

norms obtained from SWTC2 and SWTC5, we find that

our results are competitive in the sense that we obtain

error norms that are both smaller and larger than those

found in these other works.

We find that the mesh resolution in the coarse-mesh

region is the primary factor controlling solution error.

Figures 7 and 8 show that for SWTC5 and SWTC2, re-

spectively, nearly all of the variation in the global L2

error norm can be explained by the coarse-mesh reso-

lution. This should not be surprising because in terms of
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reducing the solution error, grid refinement is most ad-

vantageous when the solution in one part of the domain

contains structures with relatively large derivatives and

the solution in another part of the domain contains

structures with relatively small derivatives. Under this

circumstance, it is plausible to reduce the solution error

by a judicious rearrangement of a fixed number of grid

cells. This situation is certainly not present in SWTC2

and, at least for this numerical scheme, is not sufficiently

strong in SWTC5. As a result, the increase in solution

error that accompanies the coarsening of the mesh in the

coarse-mesh region exceeds any reduction in the solution

error that accompanies the refinement in the fine-mesh

region. The larger error in the coarse-mesh region is

propagated to all other regions, including the fine-mesh

region, via advection and wave phenomena.

Fortunately, our motivation for exploring grid re-

finement is not a formal reduction in solution error.

Rather, our motivation is to employ multiresolution

meshes so that certain phenomena like clouds or ocean

eddies can be resolved in certain regions of interest. In

this respect, Figs. 7 and 8 are very promising. These

figures indicate that we can specify the resolution in the

coarse-mesh region(s) by determining what is an ac-

ceptable level of accuracy. From that starting point, we

can increase the resolution in the region(s) of interest in

order to simulate new phenomena while knowing that

we will not degrade the formal accuracy of the solution.

In practice we expect that the resolution of the coarse-

mesh region(s) will be chosen to match typical IPCC-

class resolutions and the fine-mesh region(s) will be

chosen based on the phenomena to be simulated and the

availability of computational resources. While we rec-

ognize that conclusions based on the idealized simula-

tions discussed above must be regarded as tentative, we

see no reason not to pursue this multiresolution tech-

nique in more realistic systems.

We also evaluate the method using a standard baro-

tropic instability test case. Similar to SWTC2, this test

case specifies a zonally symmetric zonal jet that is in exact

nonlinear geostrophic balance. Unlike SWTC2, this jet is

barotropically unstable. The test case specifies a small

perturbation in the height field at t 5 0 that triggers the

instability. None of the meshes used in this study are

zonally symmetric. As a result, the truncation error pro-

jects onto nonzero zonal wavenumbers and acts as an

additional trigger for the barotropic instability. As shown

in Fig. 9, the impacts of the truncation on the growth and

position of the instability increase with mesh variation.

For the suite of meshes with 655 362 nodes, we find the

X1, X2, X4, and X8 simulations to be qualitatively simi-

lar. The outlier is the X16 simulation that compares more

closely to an X1 simulation with 40 962 nodes.

We only examine one parameter in our three-parameter

density function shown in (4). The suite of meshes shown

in Fig. 1 is produced by varying g, the parameter that

controls the relative mesh spacing between the fine and

coarse regions. Another critical parameter that needs to

be examined carefully is a, the parameter that controls

the width of the transition zone between the fine and

coarse regions. As a gets smaller, the width of the tran-

sition zone is reduced, the mesh transition becomes more

abrupt, and the local mesh distortion is increased. This, in

turn, leads to an increase in truncation error and a re-

duction in the accuracy of the simulation. We expect that

future studies will identify an ‘‘optimal’’ rate of mesh

variation that balances the conflicting desires to minimize

a and maintain local accuracy.

While we motivate this work based on the challenges

encountered in global climate modeling, the application

of this approach extends beyond the domain of climate

simulation. For example, numerical weather prediction

faces most of the same daunting challenges as global

climate modeling, especially with regard to our inability

to directly simulate all of the important spatial and tem-

poral scales in the system. With the gap between atmo-

sphere climate models and numerical weather models

closing, we expect that the multiresolution approach de-

veloped here will find applications in both arenas.

Given the tentative progress demonstrated above, it is

appropriate to consider the overarching challenges that

will need to be overcome before a robust multiresolution

approach to climate system modeling is successful. In our

view, the creation of a robust approach to multiresolution

climate system modeling requires success on two fronts:

an accurate simulation of resolved scales of motion on an

underlying mesh that varies in resolution and the creation

of scale-aware parameterizations.

While we demonstrated some ability with respect to

the model stability and formal accuracy of our simula-

tions on variable resolution meshes, substantial challenges

remain on several fronts. In particular, we have not yet

addressed issues related to transport and wave propaga-

tion through mesh transition zones. With respect to the

transport of tracer constituents, we expect that the recent

high-order transport schemes (Skamarock and Menchaca

2010; Skamarock and Gassmann 2011; Ii and Xiao 2010)

along with a new analysis of flux limiters (Mittal and

Skamarock 2010) should be sufficient to maintain the

tracer field structure and amplitude through highly vari-

able mesh transition zones.

Issues related to wave propagation are likely to be

more difficult to address. One of the main motivations

for this approach is to allow phenomena, including wave

dynamics, to be better resolved in certain portions of the

domain. By construction, a part of the wavenumber
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spectrum resolved in the fine-mesh region will not be

resolved in the coarse-mesh region. As these high-

wavenumber waves propagate out of the fine-mesh re-

gion, special care will be required to ensure that these

waves exit into the coarse mesh region in a sensible

manner. Since we view this as the major outstanding

challenge within the context of accurately simulating

resolved scales, our efforts will be directed to this

problem immediately.

Developing scale-aware parameterizations for the

atmosphere and ocean will be a much harder endeavor.

While the venerable closures for clouds in the atmo-

sphere (Arakawa and Schubert 1974) and eddies in the

ocean (Gent and McWilliams 1990) have been remark-

able in their success over the last decades, neither has

been generalized across spatial and/or temporal scales

(Randall et al. 2003; Gent 2011).

Both limited-area domain and stretched-grid simula-

tions have had to address the lack of access to scale-aware

parameterizations, that is, parameterizations that func-

tion appropriately across a wide range of spatial and

temporal scales without ad hoc tuning. Those conducting

full-physics simulations on stretched grids are more

acutely aware of this problem simply due to the fact

that these deficiencies are manifest in a single, global

simulation. One remedy pursued by the stretched-grid

community has been to compute all physical parameter-

izations on a quasi-uniform mesh of intermediate reso-

lution (Fox-Rabinovitz et al. 2006). While this remedy

certainly removes biases in parameterizations due to their

lack of scaling, the approach is antithetical to our moti-

vation. Our motivation for this multiresolution ap-

proach is founded on the principle that there is scientific

value in directly resolving (i.e., not parameterizing) cer-

tain processes in certain regions. As a result, remedies

found in the stretched-grid community only highlight the

extent of the challenges ahead of us.

In the short term, say over the next 3–5 yr, we expect

that careful choices in the positioning of the mesh

transition zone(s) along with ad hoc scaling of closure

parameters across mesh transition regions will allow the

approach developed here to produce scientifically valuable

results. In turn, we expect that this modeling approach can

be used as a test bed for the evaluation of proposed pa-

rameterizations that are intended to be scale aware. Over

the long term, the broad success of this modeling approach

depends upon the development of a full suite of scale-

aware parameterizations.

This modeling approach could potentially benefit all

physical components included in global climate and

weather prediction system models, including the atmo-

sphere, ocean, land ice, sea ice, and land surface com-

ponents. Given the broad applicability of this approach,

we have codified the technique through the creation of

the Model for Prediction Across Scales (MPAS) project.

The purpose of the MPAS project is to produce a suite of

models based on a common conceptual and algorithmic

foundation. The project has already produced this

shallow-water model as well as prototype global atmo-

sphere and ocean models based on the primitive equa-

tions. Since the numerical method evaluated above

forms the core for both the primitive-equation atmo-

sphere and ocean models, this contribution serves as

a scoping exercise for the identification of the successes

and challenges in developing global primitive-equation

models based on a multiresolution approach.
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