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a b s t r a c t

A C-grid staggering, in which the mass variable is stored at cell centers and the normal
velocity component is stored at cell faces (or edges in two dimensions) is attractive for
atmospheric modeling since it enables a relatively accurate representation of fast wave
modes. However, the discretization of the Coriolis terms is non-trivial. For constant Coriolis
parameter, the linearized shallow water equations support geostrophic modes: stationary
solutions in geostrophic balance. A naive discretization of the Coriolis terms can cause geo-
strophic modes to become non-stationary, causing unphysical behaviour of numerical
solutions. Recent work has shown how to discretize the Coriolis terms on a planar regular
hexagonal grid to ensure that geostrophic modes are stationary while the Coriolis terms
remain energy conserving. In this paper this result is extended to arbitrarily structured
C-grids. An explicit formula is given for constructing an appropriate discretization of the
Coriolis terms. The general formula is illustrated by showing that it recovers previously
known results for the planar regular hexagonal C-grid and the spherical longitude–latitude
C-grid. Numerical calculation confirms that the scheme does indeed give stationary geo-
strophic modes for the hexagonal–pentagonal and triangular geodesic C-grids on the
sphere.

! 2009 Elsevier Inc. All rights reserved.

1. Introduction

Atmospheric and oceanic flows are balance-dominated on large scales. Accurate representation of balance in numerical
models requires an accurate representation of the fast acoustic and inertio-gravity waves that are the mechanism for adjust-
ment towards balance. A C-grid, in which the mass and pressure variables are stored at cell centers and normal velocity com-
ponents are stored at cell faces (or cell edges in two dimensions), allows a relatively accurate representation of the fast waves
provided the Rossby radius is well resolved [1,18,9] and so is often favored by atmospheric modelers.

The drawback of the C-grid is its handling of the Coriolis terms: the Coriolis term at any face requires a value of the tan-
gential velocity at that face, which must therefore be approximated using a suitable weighted average of normal velocity
components from nearby faces. The ability of the resulting scheme to capture wave propagation accurately can be sensitive
to the details of the stencil and weights used for this averaging [27,8,25,26].

The present work is motivated by the possibility of using a hexagonal–pentagonal geodesic grid with a C-grid staggering
for global atmospheric modeling. Geodesic grids (both hexagonal and triangular versions, though not necessarily with C-grid
staggering) were proposed in the late 1960s [28,21,7,14], and there is now renewed interest because the nearly homoge-
neous and isotropic grid avoids pole problems and is expected to permit good performance on massively parallel computer
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architectures [11,24,23,10,19,13,20,4,15,22]. However, despite the promise of such grids, initial studies of wave propagation
for the linearized f-plane shallow water equations using a perfectly regular hexagonal C-grid revealed a potential problem:
with the most obvious discretization of the Coriolis terms, geostrophic modes, which should have zero frequency, in fact
have non-zero frequencies, with the largest being of the same order as the Coriolis parameter f [16]. Thuburn [26] and, inde-
pendently, Klemp and Skamarock (unpublished report) showed how to modify the discretization of the Coriolis terms on the
regular hexagonal f-plane C-grid to ensure stationary geostrophic modes. However, they left open the question of how to
extend this construction to the distorted hexagons and the pentagons of the spherical geodesic grid. This extension is the
topic of the present paper.

Although motivated by one particular grid, our procedure for constructing a discretization of the Coriolis terms is, in fact,
applicable to a wide variety of grid structures. To define the class of permitted grids consider the dual grid. The vertices of the
dual grid coincide with the cell centers of the original or primal grid, the dual grid cell centers correspond to primal grid ver-
tices, and each dual edge crosses exactly one primal edge. Our procedure is applicable to grids having the property that dual
edges are orthogonal to primal edges. The allowed grids include arbitrary Delaunay triangulations and Voronoi diagrams
(e.g. [3]), as well as quadrilateral grids based on orthogonal coordinate systems such as longitude–latitude and conformal
cubed sphere (e.g. [17]). Unstructured versions of such grids, called unstructured orthogonal grids, have been applied, for
example, to coastal and shelf modelling [5,6], though without explicitly addressing the issue of stationarity of geostrophic
modes.

To keep clear the wide applicability of our construction of the Coriolis terms, we present it in Section 2 below for the lin-
earized constant f shallow water equations in a general framework. In Section 3 we show that the proposed scheme main-
tains energy conservation. In Section 4 we illustrate how our procedure works for several example grid structures. The
derivation gives insight into previous results showing sensitivity of Rossby wave propagation to the handling of the Coriolis
terms on a longitude–latitude spherical C-grid [27]. The construction presented here will also be applicable to a wide variety
of other grids, including conformal cubed sphere and arbitrarily structured and adaptively refined grids.

2. Derivation of coriolis term weighting factors

The rotating shallowwater equations, linearized about a state of rest with constant mean geopotential U0, may be written

@U
@t

þU0d ¼ 0; ð1Þ

@u
@t

þ fk% uþrU ¼ 0: ð2Þ

Here u is the horizontal velocity vector, k is the unit vertical vector, f is the Coriolis parameter, r is the horizontal gradient
operator, and d ¼ r & u is the velocity divergence. The geometry is two-dimensional, but may be planar or some curved sur-
face such as the surface of a sphere.

In this paper we will restrict attention to the case of constant Coriolis parameter f, allowing us to focus on the require-
ment that geostrophic modes should be stationary. Although, for a spherical planet, variations in f are inherently associated
with the spherical geometry, in fact there is no mathematical inconsistency in taking f to be constant in a curved geometry.
We will exploit this fact in order to test our approach in Section 4.

The key insight needed to motivate the derivation below comes from the linearized vorticity equation (obtained by taking
k & r% (2))

@n
@t

þ fd ¼ 0; ð3Þ

where

n ¼ k & r % u ð4Þ

is the relative vorticity. For geostrophic modes the divergence vanishes, implying that the vorticity tendency must vanish;
thus, geostrophic modes must be stationary. We wish to develop numerical schemes that have an analogue of this property
that vanishing divergence implies steady vorticity. This will be achieved by ensuring that the divergence that appears in the
discrete vorticity equation is consistent with the divergence that appears in the discrete mass equation.

Now consider a C-grid discretization of (1) and (2). Fig. 1 shows part of a polygonal grid. The cells, vertices and edges are
numbered arbitrarily; this numbering will be used to give concrete examples illustrating the general formulas derived be-
low. The geometrical quantities needed to define a C-grid scheme and for the derivation below are shown in Fig. 2. These are
le the length of primal edge e; de the length of dual edge e;Ai the area of primal cell i, and AðvÞ

v the area of dual cell v. (For this
last quantity, the superscript label (v) indicates that the area is associated with a vertex of the primal grid, while the sub-
script index v indicates which vertex.) The prognostic variables are the geopotential stored at cell centers (or, better, re-
garded as cell averages) Ui, and the normal component of velocity stored at cell edges ue (Fig. 3). In order to remove the
ambiguity in the sign of ue we define a unit normal vector ne at each edge that points in the direction of positive ue

(Fig. 2). We also define an indicator function ne i: when edge e is an edge of cell i ne i ¼ 1 if ne is an outward normal of cell
i and ne i ¼ '1 if ne is an inward normal of cell i.
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Fig. 1. Schematic showing part of an arbitrary polygonal grid. Cells, edges and vertices are each numbered with unique but otherwise arbitrary indices; this
numbering will be used to give concrete examples illustrating more general formulas.
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Fig. 2. Schematic showing the geometrical information needed to define a C-grid scheme on an arbitrary polygonal grid: primal edges are shown by
continuous lines and dual edges by dashed lines; le is the length of primal edge e; de is the length of dual edge e; Ai is the area of primal cell i; AðvÞ

v is the area
of dual cell v; ne is the unit normal at edge e indicating the direction corresponding to positive ue.
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Fig. 3. Schematic showing the locations of the prognostic variablesUi and ue , as well as the natural location for diagnosing the relative vorticity n at vertex 1.
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In the derivation that follows we will need some notation to describe the connectivity of the grid. The notation used is
summarized in Table 1.

The discrete form of the mass equation is

@Ui

@t
þU0di ¼ 0; ð5Þ

where di, the discrete divergence in cell i, is defined in a natural way via the divergence theorem:

Aidi ¼
X

e2ECðiÞ
ne ileue: ð6Þ

The discrete momentum equation is

@ue

@t
þ fu?

e ' 1
de

X

i2CEðeÞ
ne iUi ¼ 0; ð7Þ

where the discrete gradient is given by a natural centered difference approximation. As usual on a C-grid, the awkward part
of the discretization is how to approximate the Coriolis terms, since we require the velocity component u?

e in the direction
'k% ne orthogonal to the normal component that naturally resides at edge e.

We assume that u?
e is given by some weighted combination of the normal velocities at the edges surrounding the two

cells either side of edge e:

deu?
e ¼

X

e02ECPðeÞ
wee0 le0ue0: ð8Þ

Inspired by Arakawa and Lamb’s scheme [2] for a longitude–latitude grid, we include the length factors le and de in this for-
mula in the expectation that this will lead to simplifications later. (We also anticipate that the extension to the full nonlinear
case will work in terms of mass fluxes – Ringler et al., manuscript submitted to Journal of Computational Physics.) Our task
now is to find suitable weights wee0 such that the Coriolis terms give no net source or sink of energy and geostrophic modes
are stationary. It is physically reasonable to setwee ¼ 0 for all e, so that ue does not contribute to u?

e . The requirement that the
Coriolis terms be energy conserving also implies wee ¼ 0 (see (39) below). We therefore build in this assumption from the
start. For the grid shown in Figs. 1–3, for example, u?

1 is given by a weighted combination of u2;u3;u9;u8;u10;u11, and u12.
Now seek a discrete analogue of the vorticity equation. On a C-grid the relative vorticity nv is naturally defined at vertices

via Stokes’ theorem applied to a dual cell:

AðvÞ
v nv ¼

X

e2EVðvÞ
deuete v : ð9Þ

Here we have introduced another indicator function te v , which is equal to 1 when vertex v is at the left end of edge e (i.e. in
the direction k% ne) and equal to '1 if vertex v is at the right end of edge e. This indicator function ensures that counter-
clockwise circulation about vertex v contributes positively to the vorticity at vertex v. For the grid shown in Figs. 1–3, for
example, t1 1; t9 1 and t8 1 would all equal 1 because u1;u9 and u8 all contribute positively to the circulation about vertex 1.
This definition of nv depends on the orthogonality of primal and dual edges, since it requires the normal velocity at a primal
edge to equal the tangential velocity at the corresponding dual edge.

Using the definitions (9) and (8) and the discrete momentum equation (7), the vorticity tendency is given by

AðvÞ
v

@nv
@t

¼
X

e2EVðvÞ
de

@ue

@t
te v ¼ '

X

e2EVðvÞ
fdeu

?
e te v þ

X

e2EVðvÞ
te v

X

i2CEðeÞ
ne iUi ¼ 'f

X

e2EVðvÞ

X

e02ECPðeÞ
wee0 le0ue0 te v : ð10Þ

(It may be verified that each Ui that appears does so twice, once with a plus sign and once with a minus sign. Thus all con-
tributions involving U cancel, giving a discrete analog of the identity r%rU ( 0.) If we demand that a discrete analogue of
(3) should hold then the right hand side of (10) should equal

Table 1
Summary of notation used to describe the grid connectivity.

Edges of cell i ECðiÞ
Edges incident on vertex v EVðvÞ
Cells either side of edge e CEðeÞ
Cells surrounding vertex v CVðvÞ
Vertices of cell i VCðiÞ
Vertices at the ends of edge e VEðeÞ
Edges of a cell pair meeting at edge e ECPðeÞ ¼ [i2CEðeÞECðiÞ
Edge pair meeting at a vertex v of cell i EVCðv ; iÞ
Edges meeting at vertex v that each share
a cell with edge e EVEðv ; eÞ
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'fAðvÞ
v dðvÞv ð11Þ

for some discrete analogue of the divergence dðvÞv at vertex v.
In order for geostrophic modes to be stationary the vertex divergence dðvÞv must vanish whenever the cell divergence di

vanishes for all cells i. A natural way to impose this requirement is to demand that dðvÞv be given by a remapping of di:

AðvÞ
v dðvÞv ¼

X

i2CVðvÞ
Ri vAidi ð12Þ

for some weights Ri v . These weights may be thought of as residing at cell corners (Fig. 4). We have some freedom in the
choice of weights, but they must satisfy

X

v2VCðiÞ
Ri v ¼ 1 ð13Þ

in order to preserve the global integral of divergence:
P

vA
ðvÞ
v dðvÞv ¼

P
iAidi.

Substituting (6) in (12) and combining with (10) and (11) gives
X

i2CVðvÞ
Ri v

X

e2ECðiÞ
ne ileue ¼

X

e2EVðvÞ

X

e02ECPðeÞ
wee0le0ue0 te v : ð14Þ

We require this to hold for arbitrary values of the cell edge normal velocities. First consider an edge e0 and a vertex v of cell i
such that vertex v is not at one end of edge e0 (for example, edge e0 ¼ 1 and vertex v ¼ 8 of cell i ¼ 3 in Figs. 1–4). The con-
tribution to the left hand side of (14) involving velocity ue0 is

Rivne0 ile0ue0 ; ð15Þ

while the contribution to the right hand side is
X

e2EVCðv;iÞ
wee0 le0ue0 te v : ð16Þ

(In our example EVCð8;3Þ is the edge pair {8,10}. Edge 1 contributes to the vorticity tendency at vertex 8 through its con-
tribution to u?

8 and u?
10, while it contributes to the divergence at vertex 8 through R3 8 times its contribution to the divergence

in cell 3.) Equating the contributions (15) and (16) gives
X

e2EVCðv;iÞ
wee0 te v ¼ Ri vne0 i: ð17Þ

Now consider an edge e0 and a vertex v that is at one end of edge e0 (for example, edge e0 ¼ 1 and vertex v ¼ 1 in Figs. 1–4).
The contribution to the left hand side of (14) involving velocity ue0 is

X

i2CEðe0 Þ

Ri vne0 ile0ue0 ; ð18Þ

while the contribution to the right hand side is

R31

R21

R11
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R24
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Fig. 4. Schematic showing the locations of the weights Ri v that define the vertex divergence in terms of the cell divergence.

J. Thuburn et al. / Journal of Computational Physics 228 (2009) 8321–8335 8325



X

e2EVEðv;e0 Þ
wee0 le0ue0 te v : ð19Þ

(In our example EVEð1;1Þ is the edge pair {8,9}. Edge 1 contributes to the vorticity tendency at vertex 1 through its contri-
bution to u?

8 and u?
9 while it contributes to the divergence at vertex 1 through R3 1 times its contribution to the divergence in

cell 3 and R1 1 times its contribution to the divergence in cell 1.) Equating the contributions (18) and (19) gives
X

e2EVEðv;e0 Þ
wee0 te v ¼

X

i2CEðe0 Þ
Ri vne0 i: ð20Þ

For any given e0, the Eqs. (17) and (20) constitute a system of linear simultaneous equations for the weightswee0 given the Ri v .
The linear system contains a single equation for each vertex v associated with the cells on either side of edge e0. In our exam-
ple, the edge e0 ¼ 1 gives rise to 7 equations for 7 unknowns:

w8 1 þw9 1 ¼ 'R1 1 þ R3 1;

'w10 1 'w8 1 ¼ R3 8;

w11 1 þw10 1 ¼ R3 9;

'w12 1 'w11 1 ¼ R3 10;

'w2 1 þw12 1 ¼ R3 2 ' R1 2;

w3 1 þw2 1 ¼ 'R1 3;

'w9 1 'w3 1 ¼ 'R1 4: ð21Þ

For the general case, let us write the linear system compactly as

Aw ¼ R; ð22Þ

where w is the vector of unknown weights, R is the vector of right hand sides, and A is the coefficient matrix. In fact this
system of equations is singular. If we add together all the equations in the system for a given e0 we find that eachwee0 appears
exactly twice, once with te v ¼ 1 and once with te v ¼ '1 so that the total left hand side vanishes, i.e.

cTA ¼ 0; ð23Þ

where c is a column vector whose elements are all equal to 1. Therefore, the system can have a solution only if a certain
solvability condition is satisfied. The solvability condition is obtained by taking cT times (22), implying cTR ¼ 0, in other
words the sum of all the right hand sides should also equal zero:

X

i2CEðe0 Þ

X

v2VCðiÞ
Ri vne0 i ¼ 0: ð24Þ

Using (13), this reduces to
X

i2CEðe0 Þ

ne0 i ¼ 0; ð25Þ

which is indeed satisfied. The singular nature of the linear system, and the fact that the solvability condition is satisfied, are
easily verified for the example (21) by adding the component equations.

Because the solvability condition is satisfied, the linear system not only has a solution, but has a non-unique solution;
because A is singular there exists a ~w satisfying A ~w ¼ 0, and we may add any multiple of ~w to a solution w of (22) to obtain
another solution.

This non-uniqueness means we have the freedom to introduce one further constraint into each system of linear equa-
tions. We will choose a constraint that causes the system of linear equations for a given e0 to split into two independent sub-
systems, with the property that each subsystem involves w’s and R’s from only one of the cells either side of edge e0. This
splitting is essential to allow an energy conserving scheme to be found. To split the system, replace (20) by two equations
of the form

wee0 te v ¼ ðRi v ' ae0 i vÞne0 i; ð26Þ

one equation for each cell i either side of edge e0. In each case the relevant e is defined by the fact that e0 and e are edges of cell
i that meet at vertex v. The ae0 i v are some constants that are to be determined, subject to some constraints discussed below;
for each linear system four a’s appear, two in each subsystem. For example, the system (21) splits into the two subsystems

w8 1 ¼ R3 1 þ a1 1 3;

'w10 1 'w8 1 ¼ R3 8;

w11 1 þw10 1 ¼ R3 9;

'w12 1 'w11 1 ¼ R3 10;

w12 1 ¼ R3 2 ' a1 2 3; ð27Þ
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involving edges and R’s only from cell 3, and

'w2 1 ¼ 'R1 2 þ a1 2 1;

w3 1 þw2 1 ¼ 'R1 3;

'w9 1 'w3 1 ¼ 'R1 4;

w9 1 ¼ 'R1 1 ' a1 1 1; ð28Þ

involving edges and R’s only from cell 1.
In order to recover (20) from the components into which it has been split, we require

X

i2CEðe0 Þ

ae0 i vne0 i ¼ 0 ð29Þ

for each e0 and v 2 VEðe0Þ.
Now we have one more equation than unknown in each subsystem: one equation for each vertex v of cell i, and one un-

known wee0 for each edge e of cell i except for e ¼ e0. Thus each subsystem will have a solution only if it satisfies its own
solvability condition. Again, the solvability condition is obtained by summing the individual equations in the subsystem
to obtain

X

v2VCðiÞ
Ri v '

X

v2VEðe0Þ
ae0 i v ¼ 0: ð30Þ

Using (13), this reduces to
X

v2VEðe0Þ
ae0 i v ¼ 1: ð31Þ

Thus, the four a values associated with edge e0 must be related to each other by (29) and (31). The simplest choice that sat-
isfies these constraints is to set

ae0 i v ¼ 1=2 ð32Þ

for all e0; i 2 CEðe0Þ and v 2 VEðe0Þ. We will show in Section 3 that this choice also makes the scheme energy conserving, and,
moreover, is the only such choice. This choice will be used in the examples discussed in Section 4.

For each edge e0, Eqs. (17) and (26) now form a closed linear subsystem for the wee0 with e 2 ECðiÞ that has a unique solu-
tion. In fact the solution for wee0 may be found explicitly by summing (17) and (26) over the vertices between edge e0 and
edge e:

wee0 te v2 ¼
X

v
Ri v ' ae0 i v1

 !
ne0 i ¼

X

v
Ri v ' 1=2

 !
ne0 i; ð33Þ

where the vertex v1 is the first vertex encountered in traversing from edge e0 to edge e, v2 is the last vertex encountered, and,
in the final expression, the a’s have been set to 1/2. The summay be taken either clockwise or counterclockwise around cell i;
the solvability condition (30) ensures that the same answer is obtained either way. For example, for the grid shown in Figs.
1–4, if we evaluate w7 4 by summing counterclockwise around cell 2 we would take v1 ¼ 5 and v2 ¼ 7 to obtain

w7 4 ¼ R2 5 þ R2 6 þ R2 7 ' 1=2: ð34Þ

3. Energy conservation

For the continuous equations (2) the Coriolis force does no work and therefore makes no net contribution to the energy
budget. It is highly desirable that a numerical scheme should have an analogous property.

We may form a discrete kinetic energy equation for the linearized system by taking AðeÞ
e ue times (7) and summing over

edges. Here, the superscript ðeÞ indicates that the area AðeÞ
e is associated with an edge, while the subscript index e identifies

which edge (Fig. 5). The contribution from the Coriolis terms will vanish provided
X

e

AðeÞ
e ueu?

e ¼ 0; ð35Þ

i.e. provided

X

e

AðeÞ
e ue

de

X

e02ECPðeÞ
wee0 le0ue0 ¼ 0; ð36Þ

where the sums over e are over all edges on the grid.
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The contribution involving ueue0 will vanish provided

AðeÞ
e le0
de

we e0 þ
AðeÞ
e0 le
de0

we0 e ¼ 0; ð37Þ

i.e. provided

le0de0

AðeÞ
e0

wee0 þ
lede

AðeÞ
e

we0 e ¼ 0: ð38Þ

In planar geometry the orthogonality of primal and dual edges implies AðeÞ
e ¼ lede=2. In curved geometry we can used this

relation to define AðeÞ
e , making a very good approximation to the actual kite-shaped area associated with edge e.1 Assuming

this choice, energy conservation by the Coriolis terms then requires

wee0 þwe0 e ¼ 0: ð39Þ

Using the explicit expression (33) for the weights derived in Section 2, we find

wee0 þwe0 e ¼
X

v
Ri v ' ae0 i v1

 !
ne0 ite v2 þ

X

v
Ri v ' ae i v2

 !
ne ite0 v1 : ð40Þ

It may easily be verified that ne0 ite v2 þ ne ite0 v1 must always vanish. Therefore the Coriolis terms will be energy conserving
provided

ae0 i v1 ¼ ae i v2 : ð41Þ

The choice ae i v ¼ 1=2 for all e, i and v, certainly satisfies this constraint as well as the constraints (29) and (31) of Section 2.
In fact it can be shown that for any grid ae i v ¼ 1=2 for all e, i and v is the only such choice. Application of the constraint

(41) for different edges and vertices of any cell i leads to the conclusion that all a’s associated with cell i must take the same
value. The constraint (31) then implies that that value must equal 1/2.

4. Examples

4.1. Planar square grid

The simplest possible C-grid comprises a grid of square cells on a plane. Let the cell width be d, so that le ¼ d and de ¼ d for
all edges e. The simplest and most symmetrical choice is to set Ri v ¼ 1=4 for the four vertices v of each cell i, so that each cell
contributes one quarter of its divergence to each of its four vertices. To be concrete, consider the cell, edge and vertex num-
bering shown in Fig. 6. Taking e0 ¼ 1, formula (33) gives

'w2 1 ¼ R1 1 ' 1=2 ¼ '1=4; w3 1 ¼ R1 1 þ R1 2 ' 1=2 ¼ 0; w4 1 ¼ R1 1 þ R1 2 þ R1 4 ' 1=2 ¼ 1=4; ð42Þ

  
 

2
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A1
(e)

A8
(e)

A9
(e)

Fig. 5. Schematic showing the areas AðeÞ
1 ;AðeÞ

9 , and AðeÞ
8 associated with edges 1, 9, and 8. The area associated with edge 1 comprises the two triangles either

side of edge 1.

1 Derivation of the full energy budget shows that the global kinetic energy must be defined as
P

eledeU0u2
e =2. This may be interpreted in various ways. One

can regard U0u2
e =2 as the kinetic energy density associated with an area AðeÞ

e ¼ lede twice that suggested in the text. Alternatively, one can regard U0u2
e =2 as half

the kinetic energy density (since it includes only the normal velocity component and not the tangetial component) associated with an area AðeÞ
e ¼ lede=2.
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for the contributions of u1 to u?
2 , u?

3 , and u?
4 , with similar expressions for the other weights relating the edges of cell 1. In

terms of the more familiar notation where u signifies the eastward velocity component and v the northward component,
we obtain the most obvious discretization, in which v at a u point is given by the average (with weights 1/4) of the nearest
four v values and u at a v point is given by the average of the nearest four u values. It is well known that the f-plane dis-
persion relation for this discretization does have x ¼ 0 as a root, confirming that its geostrophic modes are indeed
stationary.

As an aside, we note that a higher order discretization of the Coriolis terms has been proposed by Dobricic [8]. Although
the Dobricic scheme does not fit within the framework permitted by our analysis, because it uses a larger stencil, it does give
stationary geostrophic modes on a square planar grid. However, as is evident from [27] and Example 4.3 below, care will be
needed when extending that scheme to a longitude–latitude grid in spherical geometry.

4.2. Planar regular hexagonal grid

Now consider a perfectly regular hexagonal C-grid in planar geometry, with numbering as in Fig. 7. Let the distance be-
tween neighboring cell centers be d, so that le ¼ d=

ffiffiffi
3

p
and de ¼ d for every edge e. The simplest and most symmetrical choice

is to set Ri v ¼ 1=6 for the six vertices v of every cell i, so that each cell shares its divergence equally among its six vertices.
Using the numbering in Fig. 7, Eq. (33) then gives

w2 1 ¼ R1 1 ' 1=2 ¼ '1=3; 'w3 1 ¼ R1 1 þ R1 2 ' 1=2 ¼ '1=6; w4 1 ¼ R1 1 þ R1 2 þ R1 4 ' 1=2 ¼ 0;
'w5 1 ¼ R1 1 þ R1 2 þ R1 4 þ R1 5 ' 1=2 ¼ 1=6; w6 1 ¼ R1 1 þ R1 2 þ R1 4 þ R1 5 þ R1 6 ' 1=2 ¼ 1=3; ð43Þ

for the contributions of u1 to u?
2 ;u

?
3 ;u

?
4 ;u

?
5 , and u?

6 , with similar expressions for the other weights relating the edges of cell 1.
Taking into account the weighting by de and le0 in (8), it may be verified that these weights agree with those given by [26] and
by Klemp and Skamarock (unpublished report). Those authors confirmed that these weights do indeed give stationary geo-
strophic modes on the f-plane.

1

2

3
1

4

2

4

3

1

5

6
6

5

Fig. 7. Schematic showing the cell, edge and vertex numbering, and unit normal vectors at cell edges, for part of a regular hexagonal grid.
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3

1

4

2

43

1

Fig. 6. Schematic showing the cell, edge and vertex numbering, and unit normal vectors at cell edges, for part of a square grid.
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4.3. Longitude–latitude grid on the f-sphere

The derivation presented here is motivated by the need for discretizations in spherical geometry. However, allowing f to
vary with latitude would provide a propagation mechanism for Rossby waves, obscuring the issue of whether the slow
modes are accurately represented. We therefore introduce the idea of the ‘‘f-sphere”: the geometry is spherical, but the Cori-
olis parameter is set to a constant. This allows us to capture the effects of the spherical geometry on the grid structure, but
within a system that still supports stationary geostrophic modes, as we show next.

To find the dispersion relation for the continuous linearized shallow water equations on the f-sphere, first form the vor-
ticity and divergence equations by taking k & r%(2) and r& (2):

@n
@t

þ fd ¼ 0; ð44Þ

@d
@t

' fnþr2U ¼ 0: ð45Þ

Now eliminate n and d using the mass continuity equation (1) to obtain

@3U
@t3

þ f 2
@U
@t

'U0r2 @U
@t

¼ 0: ð46Þ

This equation supports normal mode solutions with U proportional to the spherical harmonic Yn
mðk; sin/Þ, where k is longi-

tude and / is latitude, with frequency x satisfying the dispersion relation

x x2 ' f 2 ' nðnþ 1ÞU0=a2
" #

¼ 0; ð47Þ

where a is the Earth’s radius. Here n must be a natural number. For n ¼ 0 only the x ¼ 0 root is physically realizable, cor-
responding to the trivial geostrophic mode U ¼ const, n ¼ d ¼ 0. For n > 0 there are linearly independent spherical harmon-
ics for integer m 2 f'n; . . . ;0; . . . ;ng, and for each such m all three roots of (47) are realizable; the x ¼ 0 root corresponds to
a geostrophic mode and the non-zero roots to inertio-gravity modes.

Now consider a C-grid discretization on a longitude–latitude grid with uniform longitude spacing Dk and uniform latitude
spacing D/. The lengths of the eastern and western cell edges and the distances between centers of neighboring cells at the
same longitude are all equal to aD/. The lengths of the northern and southern cell edges and the distances between centres
of neighboring cells at the same latitude are proportional to the cosine of the relevant latitude. If we assume that the non-
zero Ri v are all equal to 1/4, as on the planar square grid, then (33) leads to the following discretization of the component
momentum equations:

@u
@t

' f
1

cos/
v cos//

k

þ 1
a cos/

dkU ¼ 0; ð48Þ

@v
@t

þ f uk
/
þ 1

a
d/U ¼ 0: ð49Þ

Here, u and v are the usual eastward and northward velocity components, dk and d/ are the C-grid centered difference
approximations to @=@k and @=@/, and an overline indicates an equally-weighted two-point average, with the superscript
indicating the spatial direction of the average. Note how the cos/ terms appear within the averages involved in the fv term.

Direct numerical calculation of the normal modes for this scheme, following the method of [27] but with f constant, con-
firms that the geostrophic modes are stationary. Interestingly, the more naive discretization that omits the cos/ factors from
the average of v is also found to support stationary geostrophic modes. However, as [27] showed, when f takes its usual
north–south variation proportional to sin/, inclusion of the cos/ factors leads to good behavior of the entire Rossby mode
spectrum, whereas omission of the cos/ factors causes many Rossby modes to be badly misrepresented in terms of fre-
quency and structure.

This result shows the importance of consistency of the mass and vorticity budgets, and hence the relevance of our der-
ivation, even for non-constant f. It also shows that accurate representation of the Coriolis terms is non-trivial, and can have
major consequences, even for what would appear to be the most straightforward case of a quadrilateral grid based on an
orthogonal coordinate system. Thus, our derivation is also relevant to the Yin–Yang grid (e.g. [12]) and the conformal cubed
sphere grid (e.g. [17]), among others.

4.4. Hexagonal–pentagonal geodesic grid on the f-sphere

On the hexagonal–pentagonal geodesic grid, the primal and dual edge lengths vary from edge to edge and so (33) does not
reduce to any simpler formula. The weightswee0 must be calculated for each edge pair; they may either be tabulated or recal-
culated when needed.

To confirm the behaviour of the proposed scheme, we directly calculated the normal modes of the discretized shallow
water equations on a hexagonal–pentagonal geodesic grid on the f-sphere. The grid comprised 642 cells and 1920 edges, giv-
ing 2562 degrees of freedom in total, with an average distance between cell centers of about 9:6% 105m. The Coriolis terms
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were evaluated using (8) and (33). Earth’s radius was taken to be a = 6371220 m, the Coriolis parameter was set to
f ¼ 1:4584% 10'4 s'1, and the mean geopotential was taken to be 105m2 s'2, giving a Rossby radius of 2:1683% 106m.

Of the 2562 normal modes found, 1280 are geostrophic modes and 1282 are inertio-gravity modes. These numbers are
consistent with a slightly modified version of the argument given by [26], who claimed that the number of geostrophic
modes should equal the number of vorticity degrees of freedom while the number of inertio-gravity modes should equal
the number of mass plus divergence degrees of freedom. Vorticity is naturally evaluated at vertices, and the grid used has
1280 vertices. However, the global integral of vorticity is constrained to vanish, so in fact there are only 1279 vorticity de-
grees of freedom. Mass and divergence naturally reside in cells, but the global integral of divergence is constrained to vanish,
so there are in fact 1283 mass plus divergence degrees of freedom. However, one of the mass degrees of freedom, U ¼ const,
corresponds to the n ¼ 0 mode, which hasx ¼ 0 and so is classed as a geostrophic mode rather than an inertio-gravity mode.
Hence there should be 1280 geostrophic modes and 1282 inertio-gravity modes, as found.

Fig. 8 shows the normal mode frequencies, sorted into geostrophic and inertio-gravity modes, and into ascending order
within each of these categories. A similar number of frequencies given by (47) are also shown. Two points are noteworthy.
First, all of the frequencies are real, implying that the scheme is stable; this is a consequence of energy conservation. Second,
the geostrophic mode branch has frequencies exactly zero, as intended. The numerical inertio-gravity mode frequencies
somewhat underestimate the exact frequencies for the fastest, smallest-scale modes, for which the finite-difference approx-
imations to the gradient and divergence become less accurate. This is consistent with the results of [26]; although not per-
fect, the inertio-gravity wave dispersion is far superior to that on an unstaggered grid.

For comparison, Fig. 9 shows the normal mode frequencies for an alternative scheme: only the four edges that meet edge
e are used to approximate u?

e ; this scheme reduces to the scheme analysed by [16] on a plane regular hexagonal grid. Again,
all the frequencies are real. However, the geostrophic modes have non-zero frequencies, with the largest being of a size com-
parable to f.

4.5. Triangular geodesic grid on the f-sphere

There is current research interest in the possible use of the version of the geodesic C-grid that uses triangular primal cells;
it is therefore worth confirming the behavior of the proposed scheme for this grid too. The calculation of Section 4.4 was
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Fig. 8. Normal mode frequencies on the f-sphere. The upper panel shows the full spectrum of frequencies resolved on a hexagonal geodesic grid with 2562
degrees of freedom using the proposed scheme to compute the Coriolis terms (continuous curves) along with the exact normal mode frequencies given by
(47) for n 6 25 (dashed curves). The lower panel shows a subset of frequencies with smallest indices: circles and diamonds indicate exact normal mode
frequencies; plus and cross symbols indicate numerical normal mode frequencies.
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repeated for the triangular version of the grid. The grid now comprised 1280 triangular cells and 1920 edges, giving 3200
degrees of freedom in total, with an average distance between cell centers of about 5:6% 105 m. Again, the Coriolis terms
were evaluated using (8) and (33). The other problem parameters were the same as in Section 4.4.

Of the 3200 normal modes found, 642 are geostrophic modes and 2558 are inertio-gravity modes, consistent with the
numbers of vorticity, mass and divergence degrees of freedom on this grid. Fig. 10 shows the normal mode frequencies,
and confirms that the geostrophic mode frequencies are exactly zero, as intended. For comparison, Fig. 11 shows the results
of a similar calculation using a different but plausible method of constructing the tangential velocity components based on
computing the angles between adjacent edges and projecting the normal velocity component at a given edge onto the tan-
gential direction of each neighboring edge. The accuracy of the inertio-gravity wave frequencies is comparable to that seen in
Fig. 10, but the geostrophic mode frequencies are not exactly zero.

4.6. Computational modes

An important issue for atmosphere and ocean models, particularly in the balance-dominated flow regime, is whether the
numerical solution method supports computational modes that fail to propagate or that propagate in an unphysical way. An
advantage of the C-grid is that it does not support wave modes that spuriously fail to propagate; this result is well known for
grids of orthogonal quadrilaterals (e.g. [2,18]), has been shown theoretically for regular hexagons on the plane [26], and is
confirmed numerically for hexagonal and triangular geodesic grids by experiments like those described above but where f is
allowed to vary with latitude.

Nevertheless, the C-grid may support wave modes that propagate in an unphysical way. The numbers and types of such
modes depend on the grid structure, and are related to the numbers of vorticity, mass, and divergence degrees of freedom on
the grid, as discussed above.2
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Fig. 9. Normal mode frequencies on the f-sphere. The upper panel is like the upper panel in Fig. 8 but for a scheme that reduces to the scheme used by [16]
on a plane regular hexagonal grid. The lower panel shows the same data but with a much expanded frequency scale to make clear the non-zero frequencies
of the geostrophic modes.

2 Incidentally, exactly the same discussion would apply to a ‘‘C-grid” vorticity-divergence formulation, in which the prognostic variables are mass and
divergence in primal cells and vorticity in dual cells. This formulation would be equivalent, through (6) and (9), to the standard velocity C-grid formulation
discussed in this paper.
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A hexagonal C-grid, for example, has roughly twice as many Rossbymodes as might be expected for a given resolution. For
the case of regular hexagons on a plane, which can be analysed theoretically [26], the shallow water dispersion relation is
found to be a quartic expression in frequency, with two branches corresponding to Rossby modes (rather than one branch
of a cubic dispersion relation, as in the continuous case). For constant f, provided the tangential velocity appearing in the Cori-
olis terms is correctly constructed, the Rossby modes in the extra branch are stationary, as they should be. However, when f
varies with latitude the extra Rossbymodes propagate unphysically: their frequency is extremely small and of thewrong sign,
and is strongly sensitive to the details of the discretization [26]. The extra Rossby modes are visible in Figs. 8 and 9, though in
these numerical calculations there is no simple way to distinguish which of the two branches a given mode belongs to.

A triangular C-grid, on the other hand, has roughly twice as many inertio-gravity modes as might be expected for a given
resolution. For equilateral triangles on a plane the dispersion relation is a quintic in frequency, with four branches corre-
sponding to inertio-gravity modes (rather than two branches of a cubic in the continuous case). These extra inertio-gravity
modes are visible in Figs. 10 and 11. There is a distinct change in slope of the numerical dispersion relation around mode
index ±640 at the transition between the inertio-gravity mode branches.

The question here, then, is what effect, if any, does the construction (8) and (33) have on the presence of computa-
tional modes. The construction does not change the numbers of modes of different types; in particular, it does not intro-
duce any new computational modes or affect the presence or otherwise of extra branches to the dispersion relation. The
construction is also found to have negligible effect on inertio-gravity mode frequencies (see Figs. 8–11 and also [26]). In
the constant f case the construction has a clear benefit of eliminating spuriously fast propagation of Rossby modes (and
this applies to both branches on the hexagonal and hexagonal-geodesic grids). However, in the variable f case, it does not
eliminate the unphysical slow, backward propagation of the extra Rossby mode branch on the hexagonal and hexagonal-
geodesic grids.

5. Discussion and conclusions

We have shown how to construct a discretization of the Coriolis terms for the linearized shallow water equations on
C-grids with a wide variety of possible grid structures so as to ensure that geostrophic modes are stationary in the case of
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Fig. 10. Normal mode frequencies on the f-sphere. The upper panel shows the full spectrum of frequencies resolved on a triangular geodesic grid with 3200
degrees of freedom using the proposed scheme to compute the Coriolis terms (continuous curves) along with the exact normal mode frequencies given by
(47) for n 6 25 (dashed curves). The lower panel shows a subset of frequencies with smallest indices: circles and diamonds indicate exact normal mode
frequencies; plus and cross symbols indicate numerical normal mode frequencies.
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constant Coriolis parameter f. Stationarity of geostrophic modes for constant f is a pre-requisite for good Rossby mode
behaviour when f varies. The proposed scheme also ensures that the Coriolis terms introduce no spurious source or sink
of energy.

The tangential velocity at a cell edge is expressed as a weighted sum of the known normal velocities at a set of nearby
edges, with the required weights given explicitly by (33). Assuming that the grid geometry is completely given in terms
of the lengths le and de and areas Ai, A

ðvÞ
v , the scheme still allows some freedom in the choice of the weights Ri v relating

the cell divergence to the vertex divergence. This freedom may be used to optimize the overall accuracy of the scheme,
for example.

When the scheme is extended to the case of variable f, some new freedom arises in exactly how the factors of f are han-
dled: for example, velocity components may be multiplied by f before taking the weighted sum (8), after taking the weighted
sum, or as some linear combination of these alternatives. The requirement for energy conservation, however, does constrain
the options (Ringler et al., manuscript submitted to Journal of Computational Physics). The accuracy with which Rossby
mode propagation is captured is sensitive to these details: the case of the longitude–latitude grid on the sphere is discussed
by [25] and the case of a perfectly regular hexagonal grid on a b-plane is discussed by [26].

In a companion paper (Ringler et al., manuscript submitted to Journal of Computational Physics) we discuss the extension
of this scheme to the nonlinear case with variable f. We obtain a scheme that is energy conserving in the fully nonlinear case,
and retains stationary geostrophic modes in the linear constant f limit.
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