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ABSTRACT

Truncation error estimates are considered as criteria for fine-grid placement and movement in nested and
adaptive finite-difference atmospheric models. A simple method for calculating the truncation error at any time
during an integration is described. Two cases using the shallow-water equations and the hydrostatic primitive
equations are examined to demonstrate the accuracy of the method and illuminate the relationships among the
truncation error, a particular discretization, the equations being solved and the flow physics. The relationship
between the truncation error and the solution error is also discussed and it is argued that minimization of the
truncation error is the necessary consideration for producing more accurate numerical solutions. Examples of
use of the truncation error estimates in adaptive models are also presented.

1. Introduction

Numerical models of the atmosphere are becoming
increasingly sophisticated. Nested models in which the
fine grids may move and adaptive models in which the
number, size and location of fine grids may change
bring about the problem of choosing suitable criteria
to use for deciding where to place the fine grids. In this
paper a method for calculating the truncation error in
finite difference simulations of atmospheric flow is
presented and possibilities for using the truncation error
estimates for fine grid placement are discussed. These
estimates have been used in the adaptive hydrostatic
primitive equations model of Skamarock et al. (1989)
and Skamarock (1988a) and in the adaptive nonhy-
drostatic model of Skamarock (1988b). The results and
conclusions presented here are, in part, based upon the
results from the adaptive models.

First, criteria presently used for fine-grid placement
in atmospheric models will be considered. Adaptive
grid refinement techniques have been under develop-
ment for a variety of engineering and aerodynamic flow
calculations and techniques used in these contexts will
also be discussed. Few of these techniques make use
of estimates of the truncation error or overall solution
error as refinement criteria. Rather they rely on mea-
sures of the solution gradient, second derivatives or
some combination of the two.

A method for calculating estimates of the truncation
errors which arise from the discretization of hyperbolic
systems of equations is outlined in section 3. The

* The National Center for Atmospheric Research is sponsored by
the National Science Foundation.

Corresponding awthor address: William C. Skamarock, NCAR,
P.O. Box 3000, Boulder, CO 80307-3000.

© 1989 American Meteorological Society

method has been used previously by Berger and Oliger
(1984) in the course of developing the grid-refinement
technique later used by Skamarock et al. (1989) for
computing large-scale atmospheric flow. It is a simple
method in which one need not know the form of the
truncation error and its implementation does not re-
quire excessive amounts of additional programming.
Accurate estimates of the truncation error associated
with the discretization of the evolving flow field may
be obtained and used as criteria for fine-grid placement.
The accuracy of the estimate has been demonstrated
by Skamarock et al. and data from those calculations
will be used to further demonstrate the accuaracy of
the procedure. The relationship among the equations
being solved, a particular discretization, and the trun-
cation error in two large-scale flow simulations will be
examined.

Truncation error estimates can also be used for pur-
poses other than the placement of fine grids. Solution
methods for PDEs have an inherent accuracy com-
monly referred to as their order of accuracy, the overall
accuracy of the method being the lowest order of ac-
curacy in the differencing of the individual terms in
the equations being discretized. In reasonably con-
structed schemes, most terms are differenced with
methods having accuracy of the same order. Discreti-
zation decisions are often based on a modeler’s intu-
ition or the ease of implementation and not necessarily
on the actual effect of the discretization on the solution
in terms of solution error—the ultimate arbitrator.
While the errors associated with individual terms are
considered to be of the same relative size, the contri-
bution to the total truncation error in a numerical
scheme varies widely among the truncation errors as-
sociated with the discretization of particular terms.
Truncation error formulas can be derived that reveal
more information about the source of the truncation
errors. This new information can be used to derive
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more straightforward techniques for computing esti-
mates of the truncation error, 1.e., computing the finite
difference representation of the terms, and it can also
be used to indicate which terms may need more ac-
curate discretization.

Last, the use of actual truncation error ‘estimates in
atmospheric flow computations using adaptive or
nested models is discussed. The development of the
next generation of models which use adaptive and more
sophisticated nesting techniques is underway, partic-
ularly in the research community. Some techniques
for making use of the truncation-error estimates are
presented. Even when adaptive or nested modeling
techniques are not being used, the truncation-error es-
timates can provide information concerning solution
accuracy, information which until now has not been
available, Using truncation-error estimates to deter-
mine the quality of solutions directly may be the most
important use of the error estimating technique in at-
mospheric calculations at present.

2. Review of refinement criteria

There are few atmospheric models which can make
use of information concerning solution quality for so-
lution refinement. In general, ad hoc methods are used
for fine-grid placement in nested models. Fine grids
are placed over regions where finer resolution is desired
rather than over regions where refinement is necessary
for an overall more accurate solution. Nothing can be
said about the accuracy of these nested model solutions
other than that the truncation error of the scheme is
lower in the refined region. It can not be stated with
any certainty that the overall solution is more accurate
or even that the solution in the refined region is more
accurate because no measure of the solution error or
truncation error is used or even calculated.

Some moveable fine-grid tropical-cyclone models
use objective criteria to determine the location of the
fine grids (see Harrison 1973; Jones 1977; Kurihara
and Bender 1980). The fine grids are centered over
the cyclone. The cyclone center is defined as being ei-
ther the surface-pressure low or the first moment of
the difference of the surface pressure from some mean
pressure. Consistent results have been obtained from
these models because it is most often the case that very
little is happening outside the region occupied by the
cyclone. The errors in the numerical scheme are largest
within the cyclone and refinement should occur there.
This is an example of using knowledge of the flow to
place fine grids. If the relative evolution of the flow is
known beforehand, as is often the case with tropical
cyclone simulations and in models used in research
applications, using previous experience and knowledge
is often the preferred and certainly the most expedient
technique for placing fine grids. For operational use,
experience and reliance on the identification of flow
features may not be adequate because it may not be
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known beforehand how the solution will evolve. There
is no obvious way to extend the use of this criteria to
more general flows.

In the engineering disciplines, adaptive techniques
are being actively developed using both finite-difference
and finite-element methods, The finite-element appli-
cations deal with elliptic and parabolic PDEs and re-
finements consist of a reconstruction and/or addition
of elements. Elements needing refinement are identified
by computing some measure of the solution error.
These error estimates are often similar to truncation
errors in appearance. The error-estimation techniques
for the adaptive finite-element methods are mostly
problem specific and error-estimate derivations are not
straightforward or without many assumptions and
qualifications. There are few finite-element models for
atmospheric-flow computations and none of these are
adaptive. No more will be said about these methods
but interested readers can refer to Babuska et al. (1983)
for more details about adaptive finite element models.

Adaptive methods using finite-difference techniques,
as opposed to adaptive finite-element methods, in gen-
eral do not use concrete measures of the solution error.
Most of the finite-difference techniques refine in regions
where derivatives are large. Dwyer et al. (1980) describe
an adaptive procedure which places grid points in pro-
portion to solution gradients. The method is a global-
refinement technique because new points are not
added; rather, existing points are redistributed based
upon the evolving solution. Physical space is mapped
to computational space (x, y, t = &, 1, T) using

fo (1 +bl— asz )dS
Ex,y,t) = —— T
J; (l +b Eg asz )dS

where b and C are constants or functions that control
the relative importance of the first and second deriv-
atives. Here S'is the arc along which the points (incre-
ments of £) are to be placed. For example, if b = C
= (0, a uniform distribution of points along the arc .S
is obtained. Larger values of b and C lead to the
placement of more points around the larger values of
the first and second derivatives of the dependent vari-
able 7.

As noted earlier, methods that do not make use of
actual error estimates have no formal way of controlling
errors in the solutions. Solution accuracy can be guar-
anteed, in a strict sense, only by using accurate esti-
mates of the error induced by the discretization. Meth-
ods which use derivatives, such as Dwyer et al. (1980),
have proven successful in problems involving shocks
and very strong fronts. They perform calculations for
combustion problems involving flame fronts and also
for 2-D (two-dimensional ) convection and convection-
diffusion problems. As with the cyclone calculations,
flow features that lead to large errors are obvious and
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this knowledge is easily used. In more complex flows
the connection of flow features to errors may not be
obvious.

A more sophisticated refinement technique has been
developed by Dannenhoffer and Baron (1986). They
solve the steady state 2-D Euler equations adaptively
for flow around an airfoil using a local-refinement pro-
cedure; gridpoints (in this case cells) are added to the
mesh as opposed to redistributing the existing points.
The principal features present in the flows are strong
shocks; hence, solution gradients are used for refine-
ment criteria. As with- the technique developed by
Dwyer et al. (1980), there is no direct measure of the
solution error and the accuracy of the solution cannot
be guaranteed in a strict sense. The solution is consid-
ered sufficiently accurate based upon the convergence
parameters on two successive grids.

The Dannenhoffer and Baron technique is of interest
because it makes use of an expert system to control
the adaptation. The expert system incorporates rules
that are used to decide which cells should be divided
based on the refinement criteria. The system also con-
tains rules that allow for error recovery. If a refined

_grid will not yield a converged solution, i.e., the solution
process diverges, then the grid will be altered (rerefined )
using knowledge contained in the rules incorporated
in the expert system. Nonconvergence is usually the
result of failure to refine certain portions of the grid.
Additional rules are used to determine where further
refinement may be necessary to bring about conver-
gence even though the original refinement criteria may
not indicate such refinement is necessary. Dannen-
hoffer and Baron consider the optimal refinement cri-
teria for calculations of transonic flow to be the gradient
of the density.

Knowledge of the flow can and should be used as
refinement criteria, but it should not be used in place
of knowledge of the actual error in the solution. Com-
bining both kinds of information will be important in
future adaptive models. In section 3 a technique is de-
scribed for obtaining estimates of the truncation error
in finite difference schemes that is not problem depen-
dent or discretization dependent. The technique, de-
veloped by Berger and Oliger (1984) differs from the
methods discussed in this section (for finite difference
models) in that the errors being measured are directly
tied to the solution error.

3. Truncation error estimates based upon Richardson
extrapolation

In developing adaptive schemes or any approximate
solution technique, we wish to minimize the solution
error. Unfortunately, the solution error is very difficult
if not impossible to-determine during an integration.
Truncation errors associated with methods are easier
to compute. Examination of the relationship between
solution error and truncation error show that trunca-
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tion error is the source of solution error; minimization
of the solution error can only be attained by continually
minimizing the truncation errors. In this section a
method for estimating the truncation error is presented
but first we examine the relationship between the trun-
cation error and the solution error.

Given a set of hyperbolic PDEs

u, = L{u)

where L is a spatial differential operator and u may be
a vector, a space and time discretization of this set can
be written as

u(x9 r+ k) = Qh,k[u(x9 t)]) (3-1)

where u is the approximate solution at time ¢ + k, Qj«
is an operator representing the discretization, and A
and k are the space and time step sizes respectively.
The truncation error for the discretization is derived
by substituting the continuous solution, represented as
a Taylor series valid locally about a point (x, t), into
the finite difference equations (3.1). If we assume that
u is sufficiently smooth, i.e. no discontinuities and rea-
sonably small 4 and k, then the truncation error 7 can
be written

u(x’ t+ k) - Qh,k[u(x’ t)]
klk“a(x,t) + h2b(x, t)] + kO(k*! + h2*!)
1L + KO(k9*! + potly, 3.2)

Here 7, is the leading order term in the truncation
error 7, g; and ¢, are the orders of accuracy in space
and time, respectively, and a(x, ¢) and b(x, t) are usu-
ally higher-order derivatives of u.

The truncation error 7 is not equivalent to the so-
lution error. The truncation error is the error in ap-
proximating the differential equation at a point whereas
the solution error is the error in the solution itself. The
solution error at time ¢ + k can be defined as

e(x,t+k)y=u(x,t+k)—u(x,t+ k). (3.3

After the initial time step the solution error at a point
is equal to the truncation error at that point [compare
(3.2) and (3.3) using (3.1)], or stated differently, the
solution error introduced in the first time step is exactly
equal to the truncation error of the scheme at that time
step.

After a second time step the solution error is

e(x,t+2k)=u(x,t+2k) —u(x, t+2k). (3.4)

The relationship between the solution error and the
truncation error can be recovered by noting that the
approximate solution, u(x, ¢ + 2k) can be represented
as

u(x, t + 2k) = Quifu(x, t + k)]

= Qh,k[u(x9 t) - e(xa t+ k)]
= Qh,k[u(x5 t) - T(x, t+ k)]

T
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Here 7(x, t + k) is the truncation error associated with
the time step ¢ = ¢ + k. Substituting this into (3.4)
yields the solution error after the second time step.

e(x,t+ 2k) = u(x, t + 2k)

= Qnilu(x, t) — r(x, t + k)].

If the equations are linear, then the expression for
the solution error can be further simplified:

3.5)

e(x,t+2k) = u(x,t+ 2k)
= Onilux, t + k)] + Qnal7(x, t + K)].

Recognizing that the first two terms on the RHS of
this equation comply with our definition of a truncation
error (Eq. 3.2), the solution error for a linear system
becomes

e(x,t+2k) = r(x, t + 2k) + Quu[7(x, t + k)].
' (3.6)

For example, if we were solving a linear advection-
diffusion equation, the solution error would be the
truncation error introduced in the previous step plus
the advected and diffused truncation errors that were
introduced into the solution before the last time step.

The interaction between the truncation error and
the solution error for a nonlinear system, given by Eq.
(3.5), cannot be interpreted in such a simple manner
as in the case of the linear system because in the non-
linear system the truncation error interacts with the
evolving solution. Specifically, the truncation error 7(x,
t + 2k) is a function of 7(x, ¢ + k). However, an ap-
propriately linearized nonlinear system will describe
how the nonlinear system will behave over the time
period for which the linearization is valid. If the so-
lution is reasonably smooth and 4 and k are reasonably
small then the truncation and solution errors of the
linearized system will approximate the truncation and
solution errors of the nonlinear system for at least a
few time steps.

Equations (3.5) and (3.6) show that the source of
the solution error associated with the discretization is
the truncation error. Grid refinement in regions of high
solution error cannot guarantee a reduction in the so-
lution error whereas grid refinement in regions of high
truncation error decrease the truncation error and de-
crease the solution error. Truncation error should dic-
tate where refinement occurs. A more rigorous argu-
ment is presented by Oliger (1984) in the context of
adaptive mesh refinement.

The solution error is difficult to compute, but as we
have noted it is the truncation error that should guide
refinement. A simple method for computing the trun-
cation error based on Richardson extrapolation was
first used by Berger and Oliger (1984) in an adaptive
solution method for hyperbolic PDEs. The adaptive
method and truncation-error estimate technique was
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later used by Skamarock et al. (1989) in the solution
of the 3-D hydrostatic primitive equations.

We use the assumption of a smooth solution, i.e.,
the existence of a valid local linearization to derive the
truncation error estimate, By taking two time steps on
a grid of step sizes 4 and k, and assuming that the time
and space differencing are of the same order of accuracy
(g1 = ¢2), the solution error for the linear system given
by Eq. (3.6) can be rewritten

u(x, t + 2k) — Qhilu(x, 1)]
= 27, + kO(K® + A1), (3.7)

Here we have used the assumption of a reasonably
smooth solution to replace 7(x, ¢ + 2k) and Qux[7(x,
t + k)] with 7, + KOk + h9t!),

Next, a single time step of 2k is taken on a grid with
step size 2h.

u(x, t + 2k) — Quparlu(x, t)]
=29 7) + kO(k™ + hel).  (3.8)

Subtracting (3.7) from (3.8) and normalizing by the
appropriate constant yields the estimate of the leading
order term in the tiuncation error.

) — Qunlulx, )]
2q+l —_ 2 .
+ kO(h7 + k7).

_ Ohalulx,
TL =

3.9

This is the truncation error estimate formula valid for
both linear and nonlinear systems. The technique re-
quires taking two time steps on the base grid and a
single time step on a grid with grid lengths of 24 and
2k. Subtraction and appropriate normalization yield
the truncation error estimate.

There are advantages in using this technique as op-
posed to calculating the truncation error by other
means. The exact form of the truncation error need
not be known because a(x, ¢) and b(x, t) are never
calculated. Also, the same solver that is used to advance
the equations can be used to compute the estimate of
the truncation error. Thus, the truncation error is easy
to compute even for systems containing several vari-
ables.

One drawback of the method is that the spatial and
temporal discretizations must be of the same order.
This is true for many schemes but when it is not true
a more expensive variant of the above method can be
used. The variant involves keeping the time step fixed
and using Eq. (3.9), with Qs replacing Q,;« and
Qi replacing Q%,, to estimate the truncation error
associated with the spatial discretization. Next, the
space step is held constant and (3.9) is used with Q) «
replacing Q2. This gives the truncation error asso-
ciated with the time discretization. These separate es-
timates of the space and time truncation errors can be
added to determine the total truncation error or used
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individually. The computational cost of using this
variant is higher than the cost of the first method.

The general method produces an estimate of the
truncation error accurate to kO(h?*' + k*') if the
solution is reasonably smooth. In regions containing
shocks, fronts, or other nonsmooth features the trun-
cation-error estimates will be inaccurate but the esti-
mates will likely be large and appropriately identify the
regions as needing refinement. High accuracy is not
necessary because the estimates are not used to correct
the solution.

In practice, atmospheric models often use multiple
time-level schemes. The finite-difference Eq. (3.1) on
which the analysis is based encompasses only single
time-level schemes. Multiple time-level schemes, such
as the popular leapfrog method, require a different form
for (3.1) if the analysis is to be carried through. The
results are similar to those presented for the single time-
level schemes and (3.9) can be used to estimate the
truncation errors. In practice, if we apply (3.9) with a
finite-difference scheme employing a leapfrog time dis-
cretization, the solution at times ¢, t — k and ¢t — 2k
would be required to perform the truncation error es-
timate using.(3.9). The solution at ¢ — 2k and ¢ are
needed for the O, operator and the solution at ¢
~ k and ¢ are needed for the Q74 operator. The accu-
racy of the error estimates is retained and the variants
of (3.9) used for separately computing the spatial trun-
cation error estimates and the time truncation error
estimates can also be used.

Finally, a comment on observations of truncation
errors in nested and adaptive models is needed. Trun-
cation errors and solution errors have been shown to
decrease in adaptive models (using truncation errors
as a guide to refinement) for solutions to simple hy-
perbolic systems ( Berger and Oliger 1984) and the Na-
vier-Stokes equations [laminar flow (Caruso 1985)].
In other adaptive simulations (Berger and Jameson
1985; Skamarock et al. 1989; Skamarock 1988b) the
overall accuracy of the adaptive solutions have been
determined by comparison to single fine-grid solutions,
and in this way the adaptive methods have been jus-
tified. It is often the case, though, that the truncation
errors are larger on the finest grids than on the coarser
ones. In many models finer resolution often allows
finer-scale structure to appear. This occurs most often
when the filtering and smoothing in the model is pro-
portional to the grid length. In these cases the necessary
question to ask is, What is the correct solution? or,
What is the grid-independent solution? and in the case
where the filtering is dependent on the grid resolution
an important question is, What equations are we ac-
tually solving?

Truncation errors should play a dominant role in
determining where refinement occurs even in these
cases, but the concept of minimizing the truncation
error has to be reconsidered in the context of the pre-
viously posed questions.

MONTHLY WEATHER REVIEW

VOLUME 117

4. Examination of truncation-error estimates

The following are examples of truncation-error es-
timates for particular flows and particular discretiza-
tions of the governing equations. The results are not
applicable to all numerical schemes or all flows. The

- specific results may change for different discretizations

or for flows which exhibit motion on different scales.
The primary purpose of this section is to demonstrate
that the Richardson truncation-error estimates are ac-
curate, even for the pressure and temperature fields in
hydrostatic primitive-equation models. These results
are presented to illustrate how one can examine the
Richardson error estimates and compute them in a
simpler manner. Also considered is what might be
learned from the estimates.

Two cases are used to examine the truncation error
estimates. In the first case, the shallow-water equations
are used to model a cyclone being advected by a zonal
flow. While this case is similar to the case presented in
Skamarock et al. (1989), the calculations differ because
in this simulation a constant, uniform zonal wind is
prescribed and no acceleration technique is used in the
time-integration scheme. In the results of Skamarock
et al. the dominant truncation errors are associated
with the time-discretization scheme and the error is
computed on a very coarse grid. These factors preclude
the type of analysis that is performed for the present
case.

a. Shallow water equation example

We can write the flux form of the shallow-water
equations as

oh_ [a(hu) a(hv)
o | éx + dy ] @D
d(uh) _ [8(uuh) 8(uvh)] _ 52@3
a - | Tex oy ] 2 ax T 4D
a(vh) _ [8(uvh) _ d(vwh)] gﬁiﬁ 3
a | ox B ] 2 9y fuh. @4.3)

The horizontal velocities are ¥ and v in the x and y
direction, respectively, & is the free surface height, g
the gravitational constant and f the Coriolis parameter.
The equations are discretized on the C-grid illustrated
in Fig. 1 and the simulation is on an fplane (f = 10™*
s7!) in an east-west periodic channel. We can write
the finite-difference form of the shallow-water set com-
pactly using the following definitions:

(a)x = (@p172 = ai12)/ BX
(a)y = (@12 — aj_12)/ DY
mx = (@jyy2 + imyy2)/2

—)
(@) = (aji/2 + ajmy2)/2.
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P z, East

FIG. 1. C-Grid, h, w, T and ¢ are defined at the p points. Other
terms u and v are the velocities in the x and y direction (east and
north), respectively.

Using second-order centered differencing in time and
space, the height tendency Eq. (4.1) is discretized as

hﬁm _ hg’—jAt
2A1
the discretization for the u-momentum equation is
(uhyiy™ — (uh)i;™ _
2At

= ~[(F u)e + (B ),], (4.4)

X R

~[@*uh" s+ (@0h),)

— (g/2)(h) + fH D, (4.5)

and the v-momentum equation is discretized in a sim-
ilar manner.
The initial wind field is given by

—_ 2 - 27172
Ur(x, y) = U + Uc[(x Xo) L+2(y Yo) ]

— 2 - 2
_x xo)L+2(y Yo) )] 4.6)

1

X exp[ 2 ( 1
and is depicted in Fig. 2. Here Uy is the tangential
wind velocity for a cyclone centered at (xg, o). The
following results are for the case U, = 20 m s~ ', L,
= 500 km and constant zonal wind Uy = 10 m s™'.
The initial height field is found by taking the x and y
derivative of (4.2) and (4.3), respectively, adding the
results, setting-(uh), + (vh), = 0, and solving the re-
sulting Poisson equation for the free surface height 4.
Figure 3 shows the initial field for a 4000 km? channel
with Ax = Ay = 250 km.

Figures 4 and 5 show the truncation errors in the u
and 4 field, computed with the Richardson based tech-
nique using (3.4). The stable time step is dictated by
the maximum gravity wave speed u + VEE and not the
maximum wind speed. A small time step is needed to
satisfy the Courant condition; thus, the truncation er-
rors resulting from the time discretization are small
and the spatial discretization is responsible for most of
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FI1G. 2. Initial velocity field for shallow-water example.
The region plotted is 4000 X 4000 km.

the error. The errors resulting from the spatial discre-
tization can be computed directly using a variant of
the Richardson technique described in section 3 and
the results are virtually identical to those in Figs. 4 and
5 (given appropriate normalization).

What is striking about the truncation error estimates
is that the truncation errors in the z-momentum equa-
tion are much smoother than for the height equation
(4.1). In some sense this is counterintuitive because

—9600 ———eo—  ————9600

FIG. 3. Initial height field for shallow-water example. The height
is in meters and the region plotted is the same as in Fig. 2.
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L
42 -42

FI1G. 4. Truncation-error estimate for the u-momentum equation
using (3.9). Errors normalized and nondimensionalized by dividing
by AtUsf, X10*.

one would expect the u-truncation error to exhibit a
less smooth pattern given the greater number, and the
nonlinearity of terms in the #-momentum equation as
compared to the height tendency equation. We shall
see that it is not the complexity of the overall discre-
tization that results in nonsmooth error patterns, but
rather, the discretization of the particular term that
dominates the fruncation error, and ultimately the
dominant term in the exact truncation error formula,
that determines the truncation error pattern.

The discretization for the right-hand-side of (4.1)
given in (4.4), including the truncation error, can be
written as

d(hu) a(fv)
SR B (GO U)y]
Ax

22 [uh)m + vhyyy + B + oy,

+ g’ (uxhxx + hx Uyx + vyhyy + hyvyy):l + 0(Ax3)
(4.7)

where the subscripts on the variables denote differen-
tiation. Equation (4.1) and the truncation error con-
tained in (4.7) can be nondimensionalized and scaled
by defining nondimensional primed variables u = Uu/,
v=Uv,h=Hy+ Hh',x = Lx'and y = Ly’ with H
< H,. For large scale flows the RHS of (4.1) does not
scale as UH, /i, but rather scales as Ro>UH,/L for
geostrophic flows and as RoUH,/ L for synoptic scale
flows; R, is the Rossby number and Ry <€ 1. The lead-
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ing-order terms in the truncation error can be found
by substituting the dimensionless variables into the
truncation error in (4.7). The leadmg order truncation
error terms are

Ax Ho

Ax®> HU
S L (Uhryr f+vyyy)+0( )

24 L}
(4.8)

These terms arise from the discretization of the diver-
gence (uh)x + (vh),.

Two observations may be made. First, if we compare
the size of the mass divergence with the truncation
error we find

mass divergence truncation error

L 'L 2417 L

For Ry* =~ (Ax?/24L?), i.e., for very large scale flows
simulated on a coarse grid, the mass divergence may
be of the same relative size as the truncation error. It
is unclear what the implications are for a numerical
scheme which uses a nonzero quantity that is calculated
with a scheme having an error that may be as large as
the quantity itself. Even for synoptic-scale flows the
errors can be significant compared to the mass diver-
gence. In Skamarock (1988a) it was noted that the error
estimates in the surface pressure fields and the tem-
perature fields tended to be noisy, i.e., they contained
many high-wavenumber components. This is not noise
but rather the error in this case is less smooth than the
flow which is being computed.

R,

F1G. 5. Truncation error estimate for / using eqn. 3.9. Errors nor-
malized and nondimensionalized by dividing by AtH,f where Ho
=10%m, X108,
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The Richardson estimate is accurate for sufficiently
small # and k. This can be demonstrated by finite dif-
ferencing the dimensional counterpart to (4.8) and
computing the dominant contribution to the trunca-
tion error, or even more directly by using the analytic
form of the initial wind field (4.6) and substituting it
into (4.8). Either method produces results which verify
the accuracy of the Richardson estimate.

The analytic form of the truncation error (4.7) in-
dicates that the truncation error in the height field is
due primarily to truncation errors in the calculation
of the divergence of the velocity field. These truncation
errors are proportional to 4, + vy,,, and for simple
flows can produce complex truncation error patterns.
This information can be used in two ways: First, we
now know that the truncation error in the discretization
of the mass divergence can be reduced by a more ac-
curate representation of the advecting velocities. Sev-
eral more accurate -schemes exist. A more accurate
representation of the flux quantity 4 at the inflow and
outflow faces will not improve the overall accuracy of
the scheme. Second, the truncation error in the height
calculations can easily be monitored throughout a
computation by simply computing ., + v,,,. This is
much simpler than the Richardson technique and may
be used at any time with much less overhead than the
Richardson technique.

The truncation error estimate for the velocity field
u shown in Fig, 5 can be analyzed in a similar manner.
Using a similar discretization for the hydrostatic prim-
itive equations and for large-scale flow simulations,
Skamarock et al. (1989) demonstrate that while the
magnitude of individual terms in the momentum
equations differ (the pressure gradient and Coriolis
term tend to be an order or more of magnitude larger
than the other terms, though they largely cancel each
other), the truncation errors arising from the discre-
tization of the terms tend to be the same relative size.
This observation also holds for the shallow-water ex-
ample. Table 1 lists the magnitude of the maximum
truncation error associated with the individual terms
for the shallow-water example. While the errors are of
the same relative size, it turns out that the error in one

TABLE 1. Maximum and average errors associated with the RHS
terms in Eq. (4.2). Errors are nondimensionalized by multiplication

with (1/fUsHp).

Term [#lmax [ Irloqy [ a9
Huuh) 0.033 1.7 X 1073
ax
Buvh) 0.041 1.7 X 1073
ax
g ) 4
= —— A 6 X
> o 0.010 6.6 X 10
Sfoh 0.047 3.3 % 1073
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term still dominates the overall truncation error. The
dominant error is associated with the Coriolis term

2
r(foh) = S5 f[vh + A+ )]

and the dominant error arises from the term (v,
+ v,,). For this flow and for the discretization of the
u-momentum equation (4.5), we see that the trun-
cation error in the w-momentum equation is much
smoother than the truncation error in the height field
equation The u-truncation error can also be computed
in a very simple manner, i.e., by computing (Ax?/
8) fh(vyx + vy).

b. Hydrostatic primitive equations example

In the primitive-equation calculations of Skamarock
et al. (1988), a developing baroclinic wave was simu-
lated. Truncation error estimates using (3.4) were used
to place fine grids. An explicit time integration scheme
was used, and the truncation errors arising from the
temporal differencing are small; thus, we need consider
only the errors arising from the spatial discretization.
Errors in the vertical discretization are not computed
or considered and no vertical refinement was used.

Truncation error estimates for the surface pressure,
u velocity and temperature are examined next. The
relevant equations are

L = —Z V.-(Vx)Aoy 4.9)
ot k=1
(ur) _ o(mwuu) + o(muv) + d(ruo)
ot ( ax dy do )
_0md) _ pr_ 9T
e (RT — ¢) I +nfo (4.10)
a(Tr) - O(wuT) + o(mvT) + d(nTo)
ot ( ox - dy - o )
+%7:w+ Q (4.11)
where

w=dp/dt = 7nc + o(dx/t + V-V, 1),

w is the surface pressure, and the equations are cast in
the o-coordinate system (o = p/«) and are discretized
on the C-grid.

The flow simulated in Skamarock et al. (1989) is a
developing baroclinic disturbance which results from
the perturbation of a baroclinically unstable jet. Three
identical disturbances are initialized within an east-
west periodic channel. There are no physics in the
model and free-slip boundary conditions are used; thus,
the flow is adiabatic. The domain size is 14 040 by
6480 km, Ax = Ay = 360 km and At = 112.5 s. Further
information can be found in Skamarock et al.
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The surface pressure = is given in Fig. 6 and a plot
of the Richardson truncation-error estimate for = is
presented in Fig. 7. Again, we see that the truncation
error is not smooth and is dominated by high wave-
number components. The discretization of the surface
pressure tendency equation is similar to that for the
height tendency equation and can be written as

{~ At
— 7ri,j

K
== [(@ u)x + (7'v), kAox. (4.12)
2At k1
Here K is the number of layers in the model. The trun-
cation error associated with this discretization will be
similar to the error in the shallow-water calculations
but here we must sum contributions to the error from
all layers. The dominant term in the truncation error
is

sz K

e 2 (uxxx + vyyy)kAa'k,

'—24 Z 4.13)

— T

where m is an average surface pressure. The quantity
(4.13) is plotted in Fig. 8. Again, the truncation error
contains many high wavenumber components and can
still be calculated easily using (4.13). The observations
from the shallow-water model also apply to this more
complex system.

In Skamarock et al., plots of the u-truncation error
on the ¢ = 0.3 level (jet core) obtained using (3.4) and
also computed directly from the exact truncation-error
formula compare well and indicate that (3.4) does
provide accurate truncation-error estimates. Figures 9
and 10 are the velocity vectors and the u-truncation-
error estimate obtained using (3.4) for the ¢ = 0.9
level. Figure 10 also compares well with directly com-
puted truncation-error estimates.

Complete truncation-error formulas and scalings for
the momentum equation can be found in Skamarock
et al. (1988) and are not repeated here. From the scaling
analysis we expect that the truncation errors from the
terms in (4.10) are of the same relative size. Table 2
presents the maximum size of the truncation errors
associated with each of the terms in (4.10). Once again,

free—slip, no—flux boundary

free-slip, no—flux boundary A

- 14040 km. >

FI1G. 6. Surface pressure () in millibars for primitive equations
case. The domain plotted is 14 040 X 6480 km. and the contour
interval is 2 mb.
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F1G. 7. Truncation error estimate for = Eq. (4.9) using (3.9).
Errors normalized and nondimensionalized by dividing by 2wAt/
t*, where t* = 10° s. Negative contours are dashed and the contour
interval is 0.002 with minimum contours of +0.001.

though, a single term can be found to dominate the
truncation error—the Coriolis term. The discretization
of the Coriolis term differs in this computation from
the shallow-water computations. For the primitive
equations solver, the discretization is

:—X
wfo = fv'r
which results in a truncation error of

Ax? ‘
(nfv) = +8_ S(omre + w(Vic + 1) + 2m,0,).

Again, the dominant truncation error arises from the
term v, + vy, even though the discretization is differ-
ent. This is not surprising because the source of the
truncation error arises from the interpolation of the v
velocity and not the new specification of the flux quan-
tity «. Figure 11 is a plot of the term (Ax?/8)f(vxx
+v,,). Itis a good indicator of the form and magnitude
of the truncation error. It should be noted that other
terms contributing to the truncation error are signifi-
cant.

The temperature on the ¢ = 0.9 surface is given in
Fig. 12 and the error estimate in Fig. 13. Two obser-
vations can be made: First, the truncation error in the
temperature (Fig. 13) is similar to the truncation error

FIG. 8. Truncation error estimate for the pressure Eq. (4.9) com-
puted using (4.13). Errors normalized and nondimensionalized by
dividing by 2m,/¢*, and contouring is as in Fig. 7.
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F1G. 9. Horizontal velocity on ¢ = 0.9 surface.
The region plotted is the same as in Fig. 6.

in the surface pressure (Fig. 7). This can be explained
by noting that the temperature Eq. (4.11) is primarily
an advection equation, as is the surface pressure Eq.
(4.9). The errors will be similar because the temper-
ature scales in the same manner as the surface pressure:

T="Ty+ TT",

where T, > T. The dominant source of error will be
proportional to moTo( Uy + vy, ). Note that here we
do not sum over the layers. The T truncation error is
similar to the 7 truncation error because the largest
contribution to . + v,,, is at the lowest layer (¢
= (.9). We can also conclude that there are significant
contributions to the truncation error from the other
terms in the RHS of (4.11) because the largest term
(uxxx + Vyy,) is inaccurate in estimating certain portions
of the overall truncation error. In particular, using #..
+ vy,, as a truncation-error estimate results in missing
part of the truncation error associated with the cold
front.

Another conclusion is that whenever advected
quantities have the form :

A=Ay + A4’ (4.14)

with 4o > A, discretizations of the form (4.4) and
(4.12) will result in truncation errors proportional to

FI1G. 10. Truncation error estimate for the ¥-momentum equation
on the ¢ = 0.9 surface using Eq. (3.9). Errors normalized and non-
dimensionalized by dividing by AtUp/t* with Up = 10 m s™* X 103,
Negative contours are dashed and the contour interval is 0.1 with
minimum contours of +0.05. )
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TABLE 2. Maximum errors associated with the RHS terms in
equation 4.10. Errors are nondimensionalized by multiplication with
(7/Upmo)-

Term 'T‘max

Hpuum) 0.119
ax

Auor) 0.146
ax

) | RT- ) 2% 0.091

8x
frv 0.393

Usex T V). When advected quantities are not of the
form (4.14) this will no longer hold and other terms
in the truncation error will be important. The latter
case will occur in the moisture advection equations
and the truncation error will likely remain complex
and could not be computed with a formula as simple
as (4.13).

It is difficult to associate errors with particular flow
features. This is not surprising given that the maximum
truncation errors are associated with second and third
derivatives of the horizontal velocities. It may be rea-
sonable to associate large truncation errors with fronts,
at least at the lower levels, though the figures show that
not all frontal regions are associated with high error.
It might seem reasonable to connect large errors with
frontogenesis, but comparisons of the frontogenetical
function calculated from the data (see Bluestein 1986)
with the truncation errors do not necessarily provide
a strong indication of where truncation errors are large.
The connection of errors with frontal zones is linked
to the wind shifts that make up the fronts. The largest
truncation errors are associated with the warm front
in these simulations and it is here that we find the
greatest wind shifts. Truncation errors can only be as-
sociated with flow physics in so far as interesting flow
phenomena are likely to contain regions in which there
are large higher order derivatives; thus, interesting flow

FIG. 11. Plot of (Ax?/8)f(vx + vy,) on the ¢ = 0.9 surface. Results
are normalized and nondimensionalized by multiplication with ¢*/
Up. Contours are as in Fig. 10.



FiG. 12. Temperature field (K) on the ¢ = 0.9 surface.
The region plotted is the same as in Fig. 6.

phenomena may possibly, but not necessarily, indicate
locations of large truncation error.

Large truncation errors are not necessarily linked to
regions of large gradients. This is very evident in the
cases of the height Eq. (4.1) and surface pressure Eq.
(4.9). Large values of the second derivatives could be
used as a refinement guide for the momentum equa-
tions because of the discretization of the Coriolis term.
This may not work in all cases, especially for smaller-
scale flows where the Coriolis effect is smaller or for
different (more accurate ) discretizations of the Coriolis
term. Techniques which rely on large first or second
derivatives to identify regions of large truncation error
will not always work and provide no direct connection
. to the solution error.

5. Using the truncation error estimates

The truncation error estimates obtained using the
Richardson procedure can be used as refinement cri-
teria during the solution process. First I reiterate the
argument made in section 3 for using the truncation
error as a guide for refinement. The error in the solution
to a set of PDEs that arises from the discretization has
the truncation error as its source. Localized truncation
errors interact with the equations and become nonlocal
solution error. The only way to control the overall ac-
curacy of the numerical solution is to continually min-
imize the truncation error. Any other refinement cri-
teria may miss regions of significant truncation error
and lead to larger solution errors. Given that the first
goal of numerical simulations is to produce accurate
solutions to the continuous PDEs, minimization of the
truncation error is paramount.

Of course, in numerical simulations of the atmo-
sphere there are other sources of error. These include
errors in initial data, boundary-condition specifications
and boundary data, the parameterization of physical
processes, and from other sources. It may be.that these
errors are more important than truncation errors in
the solution of the PDEs. While this may be so, it can
be difficult to judge the true effects of the other sources
of error without accurate solutions to the PDEs; hence,
accurate solution techniques are necessary. Increased
resolution might also help decrease the errors from
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other sources. If this is the case then information con-~
cerning where increased resolution will help reduce
these errors should be used in conjunction with the
truncation error estimates.

Various criteria for choosing refinement regions in
fluid dynamic calculations have been considered in
section 2. More flexible solution processes can make
use of the detailed error estimates and refine only in
regions where error is large. In most nested models,
flexibility is limited and the only choice one has is where
to place—or where to move—an already existing fine
grid(s). In some sense this is an easier problem for
there are many fewer degrees of freedom; hence, the
decision is easier to make (and easier to program!).

Next, I briefly describe the technique used to place
fine grids in the adaptive model described in Skamarock
et al. (1988). The strategy and algorithms were devel-
oped at Stanford University and details can be found
in Berger and Oliger (1984) and Berger (1982). The
grid placement algorithms require a truncation error
estimate which is usually provided using the Richard-

'son technique. Using a predetermined error tolerance,

points where the error is too large are flagged. Next,
the flagged points are divided into clusters. Ideally, the
clusters represent spatially distinct reigons of error and
usually they are associated with some solution feature.
Rectangles are placed around the clusters and these
rectangles become the new fine grids. There are three
parts to this gridding procedure: flagging the bad points,
clustering the points, and placing the grids around the
clusters.

Choosing a tolerance for flagging points can be ac-
complished using theory (see Oliger 1984; Berger
1982), though intuition and experience is used more
often. Tolerances are often chosen such that refine-
ments cover reasonable portions of the solution do-
main. Experience and experimentation may be even
more important when using error estimates for all de-
pendent variables in the flagging process. In the sim-
ulations of Skamarock et al. (1989) and Caruso (1985),
only the velocity error estimates are used. One possible

HG. 13. Truncation error estimate for the temperature equation
on the ¢ = 0.9 surface using (3.9). Errors normalized and nondi-
mensionalized by dividing by AtT,/t* with T, = 290 C. Negative
contours are dashed and the contour interval is 0.0002 with minimum
contours of +0.0001.
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scheme for using error estimates from all the dependent
variables would be to scale and nondimensionalize the
error estimates and add them together. The appropri-
ateness and compatibility of the scalings would then
be the critical link in the flagging process.

While it is quite easy for a human to look at a set
of points and enclose them in a set of rectangles that
minimizes the size of the total refined area while, at
the same time, producing a small number of rectangles,
it is quite difficult to get a computer to perform this

task. At present, the points are first clustered using a
nearest-neighbor algorithm. If a flagged point is within -

a critical distance of another flagged point then these
points are in the same cluster. All that remains is to
choose the critical distance, usually using experience
as a guide. More sophisticated procedures may be used
if this procedure is inadequate. Inadequacy can be
measured by comparing the size of the rectangles to
the number of points they contain. The more sophis-
ticated procedures consist of clustering the points using
a method more complex than the nearest-neighbor al-
gorithm and then iteratively breaking up the clusters
and fitting rectangles until a reasonable set of rectangles
is generated. Rectangles are merged as is appropriate.

Fitting rectangles to a specified set of points in some
optimal manner is not difficult once the clusters are
determined. The essence of the procedure used by Ber-
ger (1982) is to compute a least squares fit line through
the set of points. This line becomes the principal axis
of the rectangle enclosing the points. It is easy to com-
pute where the sides of the rectangle must lie to enclose
the points. If rotation is not allowed then it is even
easier to compute the enclosing rectangle, but the fit
may not be as optimal as that produced by rotating
the rectangles.

As an example of grid fitting, Figs. 14 and 15 show
the fine grids that were generated by the algorithms
using the truncation-error estimate for the u velocity
field depicted in Figure 10. The flagged points in Fig.
14 were determined using a tolerance of 0.1. The max-
imum truncation error in the solution is 0.562. A single
fine grid adequately covers the region needing refine-
ment based on this error tolerance. A higher error tol-
erance, in this case 0.3, is used to generate the fine grids

L 8 Jame o

FIG. 14. Flagged points and fine grids generated using the
truncation-error estimate in Fig. 10. The error tolerance is 0.1.
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FIG. 15. As in Fig. 14, but with an error tolerance of 0.3.

in Figure 15. Fewer points are flagged and three smaller
grids can be used to cover the points. Two of the grids
are rotated so as to enclose the flagged points in an
efficient manner. The rotated grids also happen to be
aligned with the warm fronts associated with the baro-
clinic disturbances; this will enhance the accuracy of
the solution on the fine grids. ’

In the actual simulation from which the error esti-
mate in Fig. 10 was taken, the error estimate for the
other horizontal velocity along with the estimates from
all other horizontal planes were used to arrive at the
flagged points (see Skamarock et al. 1989). Two over-
lapping fine grids covered most of the solution domain
and flagged points appeared much as in Fig. 14.

Recently, the author has constructed a two-dimen-
sional, nonhydrostatic adaptive model which is being
used to study cold pool collapses and the resulting
gravity currents. The dry, compressible, Boussinesq
equations are used and a complete description of the
model can be found in Skamarock (1988b).

Figures 16 and 17 depict a typical cold pool collapse
simulated with this model. The domain size, boundary
conditions, and resolution of the various grids are given
in the figures. The very sharp front at the nose of the
gravity current is difficult to resolve, and the Kelvin-
Helmholtz (K-H) billows that form in the gravity-cur-
rent head can be suppressed or may be entirely absent
if a coarse discretization is used. Figures 18, 19, and
20 show estimates of the truncation error arising from
the spatial discretization of the potential temperature
equation, and the horizontal and vertical momentum
equations for the largest fine grid. In these simulations,
the estimates are computed using finite-difference rep-
resentations to the leading-order truncation error terms.
The front and the two K-H billows are obvious in the
truncation-error estimates. Figure 21 shows the points
that are flagged based on the three truncation-error es-
timates and the placement of the finest grids. The finest
grids cover the advancing front, the K-H billows, and
part of the still-collapsing cold pool.

In this model, as in the previous example involving
solutions to the hydrostatic primitive equations, the
truncation error is periodically reestimated and the fine
grids replaced. Figures 22 and 23 depict the regridding



884

MONTHLY WEATHER REVIEW

VOLUME 117

free-slip, no-flux boundary

40 km.

symmetry
plane

300.

296,

204, ‘

|

open

10 km.
boundary

free-slip, no—flux boundary

FIG. 16. Potential temperature at time ¢ = 0 in the cold pool collapse simulation.

process at a later time. Several K-H billows exist and

- two are merging. Once again the flagged points (largest
errors) are associated with the front and the K-H bil-
lows. The solution process is efficient because we min-
imize the total size of the refined area. This is possible
because we use truncation error estimates and multiple
fine grids.

coarse grid -
Az =Az=250m.

fine grid
Az = Az =250/3 m.

fine grid
7Az = Az = 250/9 m.

FIG. 17. Potential temperature at ¢ = 450 s.

Details of the grid fitting procedures are not provided
here (see Berger and Oliger 1984 ) but note that fitting
finer grids over regions of high error is the most difficult
part of the gridding sequence, and totally satisfactory
procedures have not yet been found. Many tasks which

FiG. 18. Truncation error estimate for the spatial discretization in
the horizontal momentum equation at ¢t = 450 s. The error estimate
is for the first inner grid in Figure 17. The units are m? s~ with a
contour interval of 0.008, and minimum contours of +0.004.
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F1G. 19. Truncation error estimate for the vertical momentum
equation at ¢ = 450 s. Plotted as in Fig. 18.

are conceptually simple are difficult to program. One
possibility which would help circumvent some of the
difficulties in the procedures would be to have an in-
teractive model, with the user analyzing the error es-
timates and then placing the fine grids. Another pos-
sibility is to develop an expert system which would

F1G. 20. Truncation error estimate for the potential temperature
equation at ¢ = 450 s. The units are s~', plotted as in Figure 18.

FiG. 21. Flagged points and placement of the finest grids at 450 s
based on the truncation error estimates in Figs. 18-20.

control the solution process. It would still encounter
the same problems but it may provide sufficient flex-
ibility to include information and algorithms which
are not easily included in a standard FORTRAN pro-
gram. A simple expert system could be developed along
the lines of the one developed by Dannenhoffer and

300,

-

%92

~

FI1G. 22. Potential temperature field at 900 s.
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FIG. 23. Flagged points and placement of the finest grids at 900 s.
The domain is the first inner grid in Fig. 22.

Baron (1986), although a more complex system would
be required to monitor and control the error and so-
lution process continuously.

The adaptive model uses multiple, finer-resolution
grids to reduce the truncation error. Other techniques
may also be suitabie for certain problems. For example,
grid points could be clustered in regions of high error
using a transformed grid. In an adaptive scheme the
grid would be changed periodically in response to the
changing truncation error. Present nested models which
allow movable grids could use the truncation-error es-
timates for determining where fine grid(s) should be
placed and when the grids should be moved. Most cur-
rent models use solution features for grid movement
and initial grid placement. This does not guarantee
solution accuracy. As we have seen, truncation errors
may not be large where intuition might expect. Un-
fortunately, it may not be possible to refine where nec-
essary when only one fine grid of limited size exists.
Still, it is best to place the fine grid where the errors
are largest, or possibly where the largest amount of
error can be enclosed. '

As a final point, even when truncation-error esti-
mates are not used for placing fine grids, they can give
indications of where large errors exist in the solution.

For realistic flows, there are few exact solutions with

which to compare model results and it is often prohib-
itively expensive to compute a grid-independent so-
lution. It is important to observe where truncation er-
rors are large and to consider actual estimates of the
errors before considering solutions sufficiently accurate
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and making inferences about the flow physics. Fortu-
nately, calculating truncation errors using (3.9) is

" straightforward. As a side note, truncation error esti-

mates for the fine grid domain in two-way interactive
nested models can be produced by simply inserting the
fine and coarse grid solutions in (3.9) before the coarse
grid solution is replaced by the fine grid solution.
Equation (3.9) will need to be rederived if the refine-
ment ratio is not 2.

Truncation error estimates can be easily computed.
Truncation errors are the source of solution error and
more accurate solutions can be obtained by monitoring
the errors and using nested or adaptive models to min-
imize the truncation errors.
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