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ABSTRACT

In the course of adapting a nonhydrostatic cloud model [or primitive-equation model (PE)] for simulations
of large-scale baroclinic waves, we have encountered systematic discrepancies between the PE solutions and
those of the semigeostrophic (SG) equations. Direct comparisons using identical, uniform potential vorticity
jets show that 1) the linear modes of the PE have distinctively different structure than the SG modes; 2) at
finite amplitude, the PE pressure field develops lows that are deeper, and highs that are weaker, than in the SG
solution; and 3) the nonlinear PE wave produces a characteristic “cyclonic wrapping” of the temperature
contours on both horizontal boundaries and has an associated “bent-back” frontal structure at the surface, while
in the SG solutions (for this particular basic state jet) there is an equal tendency to pull temperature contours
anticyclonically around highs and cyclonically around lows. An analysis of the vorticity and potential vorticity
equations for small Rossby number reveals that the SG model errs in its treatment of terms involving the
ageostrophic vorticity. Simulations based on an equation set that includes the leading-order dynamical contri-
butions of the ageostrophic vorticity agree more closely with the PE simulations.

1. Introduction

Because of the central role of baroclinic waves in
producing everyday weather in midlatitudes, meteo-
rologists have long sought to model the development
of such disturbances. Like other slow motions of the
atmosphere or ocean, baroclinic disturbances may be
simulated with approximate, balanced models, which
filter high-frequency gravity and inertial oscillations,
or by using some form of the primitive equations (PE).
To date, the most sophisticated approximate-model
simulations of baroclinic waves have been those using
the semigeostrophic (SG) equations (Hoskins 1976;
Hoskins and West 1979; Heckley and Hoskins 1980;
Davies et al. 1991). At the same time, PE models (Mu-
drick 1974; Takayabu 1986; Polavarapu and Peltier
1991) have provided increasingly detailed, if concep-
tually more complicated, simulations of baroclinic dis-
turbances. While developing our own elastic, nonhy-
drostatic PE model, we have had occasion to compare
our PE solutions with previous SG results for baroclinic
development; these comparisons reveal significant er-
rors in the SG solutions. This paper presents a com-
parison of PE and SG simulations in a specific case,
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along with a small-Rossby-number analysis of the er-
rors in the SG equations. Although the comparison
focuses on baroclinic waves, the analysis is general
enough to apply to a variety of geophysical flows.
Semigeostrophy was first proposed by Hoskins
(1975) and depends, like quasi-geostrophy (QG), on
approximate geostrophic balance. However, SG in-
cludes advection by the ageostrophic wind and tilting
and stretching of relative vorticity and can produce a
frontal singularity in a finite time. Indeed, SG now
underlies much of the current understanding of front-
ogenesis (e.g., Hoskins and Bretherton 1972) due to
its notable success in the description of two-dimen-
sional flows. For example, PE and SG simulations of
two-dimensional frontogenesis agree closely in both the
deformation-induced (Koclas et al. 1986) and shear-
induced (Hoskins and Bretherton 1972; Volkert and
Bishop 1990) cases. Most analyses of the errors in the
SG approximation have consequently focused on the
local breakdown of the approximation under extreme
conditions, such as near frontal collapse (Davies and
Miiller 1988; Holt and Shutts 1990) or in regions of
small stability to moist stability to moist slantwise as-
cent (Fantini 1990). Allen et al. (1990) have, however,
presented solutions for SG, and a variety of other ap-
proximate models, in the case of shallow-water flow
over O (1) topography. They find that SG is more ac-
curate than QG in such cases, but still makes significant
quantitative errors when compared with the full shal-
low-water equations. In fully three-dimensional flows,
comparisons against PE solutions have been limited to
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the frequencies and structures of linear modes for the
frontal stability problems (Duffy 1976; Moore and
Peltier 1988) and for planetary Rossby waves on a
sphere (Shutts 1989; Magnusdottir and Schubert
1991). Although SG has been used to simulate three-
dimensional flows (in particular, the nonlinear devel-
opment of baroclinic waves), it has not been directly
compared with the PE in such cases.

Primitive-equation simulations lack the conceptual
simplicity of balanced models but, of course, retain a
more accurate version of atmospheric dynamics. We
are currently modifying the nonhydrostatic Klemp-
Wilhelmson (1978) cloud model for high-resolution,
adaptive-grid simulations of large-scale baroclinic
waves. The numerical aspects of this work are due to
Skamarock and J. B. Klemp (personal communica-
tion, 1991). Our long-range goal is to resolve explicitly
certain processes that are normally parameterized in
numerical simulations of large-scale flows. In partic-
ular, we hope to use the nonhydrostatic nature and
adaptive-gridding capability of the model to simulate
explicitly regions of moist convection embedded within
an idealized baroclinic disturbance. In this paper, we
present some preliminary results from the model that
do not require the adaptive-gridding capability.

During the course of developing this model, we
compared PE and SG simulations of baroclinic waves,
using the ¢ = 1 uniform potential vorticity jet of Hos-
kins and West (1979, HW). We find systematic dif-
ferences in the baroclinic-wave development between
the PE and SG models. Relative to those in the SG
simulations, the most unstable PE mode has a NW-
SE phase tilt and the finite amplitude PE solutions ex-
hibit lower minimum pressures and weaker maximum
pressures. More importantly, the large-amplitude wave
in the PE simulations produces a distinctive tongue of
warm air at the surface that penetrates northward and
westward into the cold air and a similar cold tongue
moving southward and eastward at the lid.

The errors produced by SG in these three-dimen-
sional flows were anticipated in the scaling analysis of
McWilliams and Gent (1980). They show that, in
three-dimensional flows, SG has the same asymptotic
accuracy as QG and correctly includes only the leading
corrections to the basic geostrophic balance, while in
frontal flows with sufficiently small alongfront vari-
ability, SG retains an additional order of accuracy in
an expansion in powers of the ratio of cross- to along-
front velocity. We complement McWilliams and Gent’s
analysis by showing that, at leading order in Rossby
number, the errors in SG arise from the neglect of the
dynamical contributions of the ageostrophic vorticity.
Moreover, we confirm this asymptotic result by dem-
onstrating that solutions to an extended model, which
correctly includes the leading-order contributions of
the ageostrophic vorticity in the potential vorticity
equation, accurately portray the early evolution of a
three-dimensional baroclinic wave.
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2. Model equations

We consider the adiabatic, Boussinesq, f~plane de-
velopment of perturbations to a zonal jet. The flow
will have initially uniform potential vorticity, will sat-
isfy periodic horizontal boundary conditions at x = 0,
x; and y = 0, y;, and will be confined in the vertical
between rigid surfaces at z = 0, H. The Cartesian co-
ordinates (x, y, z) measure eastward and northward
distance and physical height, respectively.

For our purposes, the PE are the inviscid, adiabatic,
elastic, Boussinesq equations on an f plane. Replacing
pressure by ¢ = ¢,00(p/po)*""", the PE become

dv g6

av Vo = 22
= HEX v+ Yo ok (1a)
a6 _ _ >
P c“Vev, (1b)
db
E—O’ (1c)

where 6 is a reference temperature, po is a reference
surface pressure, ¢, is the constant speed of sound,
and all other notation is conventional. Although ver-
tical accelerations appear in ( 1a) and the compressible
pressure term is retained in (1b) (for numerical rea-
sons), the flow is, in fact, both hydrostatic and anelastic
with high accuracy in the simulations presented here.

Semigeostrophy is obtained from (1) by making the
anelastic approximation in (1b), the hydrostatic ap-
proximation in the vertical component of ( 1a) and the
geostrophic momentum (GM) approximation in the
horizontal components of (1a). Under the GM ap-
proximation, the momentum is evaluated, as in QG,
from the geostrophic velocity vy, where v, = (4, Uy,
0) = f~'(— ¢y, éx, 0), but unlike QG, ageostrophic
advections are retained.

As discussed in Hoskins (1975), with the GM ap-
proximation the appropriate vorticity equation is

d{sc
dt

={SG-Vv—k><Efg—V0, (2)
(4]

where
$sc = (_vgz, Ugz, f + Vgx — ugy) +f_1nyz(ugy vg)~

We have used the additional notation

che(a, b) = [(']de(aa b)a Jec{as b)a ch(a> b)]

Similarly, the potential vorticity equation is

dgsc _
. 0, (3)
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where

g
=2tV
asc 760 $sc

A transformation to the geostrophic coordinates,
X=x+f",,, Y=y—flu, Z=2z, T=t,

simplifies the GM equations considerably; the principal
advantage being that the horizontal advections become
purely geostrophic. The transformed equations are
discussed in detail in Hoskins (1975) and McWilliams
and Gent (1980). Although the semigeostrophic equa-
tions are strictly the geostrophic momentum equations
in geostrophic coordinates, we will henceforth follow
common practice and use “SG” to refer to both the
transformed equations and to the GM equations in
physical coordinates.
In geostrophic coordinates, the definition of gsg may

be rewritten as

f2

=— $zz+ Pyx + Pyy —
4asG

The quantity ® = ¢ + 1(u,*> + v,%) is the potential
function in the new coordinates; i.e., ($x, Py, ®2)
= (¢, by, ¢;). For the flows considered here, with ini-
tially uniform potential vorticity, gsc is by (3) per-
manently fixed and uniform. SG then reduces to di-
agnosing & from (4) given 8 = (0y/g) Pz on the hori-
zontal boundaries. The time evolution of these
boundary conditions is determined requiring w = 0 at
the surface and at the lid, which implies

1 d )
q’zr:?(q’y"—_ )Qz, on Z= 0 H. (5)

fz Jxy(®x, ®y) “‘"‘fz- (4)

Py
X Yoy

In order to reproduce the SG solution of Hoskins and
West (1979), we follow them and neglect the nonlinear
term in (4). This term is generally small (Hoskins
1976), but its neglect does produce noticeable changes
in the development, as discussed in appendix A.

3. Numerical methods

We integrate the nonhydrostatic equations (1) using
an integration scheme based on that of Klemp and
Wilhelmson (1978). Briefly, the equations are differ-
enced on a spatially staggered grid with the velocity
components u; located one-half Ax; from the (¢, 6)
points. All spatial derivatives are calculated with sec-
ond-order centered differencing except for the hori-
zontal advection terms, which employ fourth-order
centered differencing. Although the presence of sound
waves requires a very small time step, computational
efficiency is maintained by the use of a time-splitting
procedure. The pressure gradient terms, the divergence
term, the buoyancy term in (1b), and the vertical ad-
vection of the mean potential temperature {6)(z) in
(1c¢) are integrated with small time steps that are stable
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for the acoustic modes using a semi-implicit scheme
in the vertical. All other terms are integrated over a
large time step that is limited only by the advection
velocity.

The PE simulations presented here are dry and adi-
abatic; all microphysical and subgrid-scale processes
have been turned off. The only explicit dissipations are
a weak time filter, as described by Robert (1966 ), with
a filter coefficient of 0.2, and a weak horizontal V*-
diffusion which is turned on at day 5 of the integrations.
Without the horizontal diffusion, the PE solutions be-
come poorly resolved and noisy when the upper-level
front collapses shortly after day 5.

While neither acoustic nor gravity modes are dy-
namically important for the phenomena considered
here, using the compressible nonhydrostatic equations
(1) has certain advantages. All the equations are prog-
nostic and the set may be integrated as efficiently as
the hydrostatic PE. In addition, adaptive-grid tech-
niques, which will be necessary in our future work to
resolve the small scales associated with fronts and moist
convection, are greatly facilitated by the use of the fully
prognostic set (1).

Numerical integration of the SG model is straight-
forward. After dropping the nonlinear term, (4) is dis-
cretized with second-order differences and then solved
by fast Fourier transforms in each horizontal direction
and inversion of the resulting tridiagonal equation in
each vertical column. The potential-temperature ad-
vections on the horizontal boundaries are second-order
in time and space and are computed by the positive-
definite scheme of Smolarkiewicz (1984 ). The trans-
formation back to physical coordinates is necessary
only for plotting and is accomplished by simply trans-
forming the computational grid to physical coordinates
and interpolating to a uniform grid.

Unstable modes for both models are calculated it-
eratively by integrating forward for a day and then nor-
malizing to a small reference value. The process is re-
peated until the resulting disturbance converges to the
most unstable mode at a given zonal wavelength.

Both models produce accurate solutions to their re-
spective equation sets. The PE solutions may be
checked, at least qualitatively, against solutions for a
similar basic-state jet in Polavarapu and Peltier (1990,
their case HWF). For the SG model, our solutions
show excellent quantitative agreement with HW. Thus,
differences in the numerical techniques between the
models can be ruled out as culprits in the comparisons.

4. PE and SG simulations

In this section, we present a direct comparison of
PE and SG simulations of baroclinic waves. The SG
simulation is identical to the “u = 1> case of HW,
aside from the different numerical techniques used to
obtain the solution. The initial conditions consist of
identical zonal jets plus a small-amplitude perturbation,



2182

which has the structure, for each model separately, of
the linearly most unstable mode at the chosen zonal
wavelength. In all cases, we choose the amplitude of
the initial perturbation so that max(v,) = 1.7 m s™".
Because the motions in the PE model are effectively
hydrostatic and anelastic, and because both models use
the same physical coordinates, differences in the sim-
ulations arise principally from the GM approximation

and, to a lesser extent, from the approximate form

of (4).

The basic state is a uniform potential vorticity zonal
jet in geostrophic and hydrostatic balance. The zonal
wind is given by Eq. (17) in HW, with their parameter
u = 1, and is shown in Fig. 1, along with the corre-
sponding potential temperature field. We choose all
dimensional parameters as in HW, including: ¢sg
=1.28 X 10™*s72, x; = 4090 km, y, = 5623 km, and
H =9 km,

For these computations, the PE model uses 40 points
in x, 60 in y, and 20 in z, which gives a grid spacing
of roughly 100 km horizontally and 0.45 km vertically.
The resolution in the SG model is the same, both in
the geostrophic-coordinate computational grid and in
the physical-coordinate grid used for interpolation. In
any case, we have performed similar comparisons using
other resolutions and have confirmed that the results
are not sensitive to the resolution.

a. The linear modes

For a zonal wavelength of 4090 km, the most un-
stable PE mode grows with a 1.43 + 0.04 d doubling
time. The SG mode grows somewhat more quickly; its
doubling time is 1.34 + 0.02 d, which compares well
with the 1.3 days quoted by HW. Moore and Peltier
(1988) and Bannon (1989) have also shown that SG
overestimates growth rates.

The structure of the modes is compared in Fig. 2.
The data from both models is plotted in physical co-
ordinates as deviations from the basic state, and the
full (basic state plus perturbation ) geostrophic velocities

FIG. 1. The zonal velocity (solid lines; contour interval 3 m s™')
and potential temperature (dashed lines; contour interval 7 K) for
the HW basic-state jet with ¢ = 1. The top and bottom of the plot
correspond to the lowest (z = (0.225 km) and highest (z = 8.775 km)
interior grid levels, respectively.
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FIG. 2. The perturbation ¢ for the most unstable modes in the PE
(solid lines) and SG (dashed) models. Contours of both fields are
shown in physical coordinates for x, y planes at the levels z = 0.225
km (bottom) and z = 8.775 km (top). The contour interval is 2/5 of
the (arbitrary) maximum amplitude of each mode and the modes’
relative phase was chosen so that the zero contours cross at y = y./
2, z = 0.225 km.

have been used in the transformation of the SG mode
to physical coordinates. Both modes are essentially lin-
ear, having very small (but otherwise arbitrary) am-
plitude.

The amplitude of the PE mode is largest near the
center of the domain at low levels and is shifted north
of the jet axis near the lid, while the maximum am-
plitude of the SG mode lies on the jet axis at all levels.
In addition, for the PE mode the NW-SE phase tilt
and total phase change north of the jet axis dominates
that to the south, in contrast to the SG mode, which
has the same net phase change both north and south
of its maximum amplitude.
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This general structure appears to be characteristic of
PE instabilities on baroclinic jets in a planar geometry.
Gall (1977) used a jet with north-south symmetry
about a vertical plane in physical coordinates and still
found a PE mode similar to that in Fig, 2.

b. Nonlinear evolution

As the initial perturbations grow, the differences be-
tween the PE and SG simulations become more pro-
nounced and continue to evolve. The perturbation
pressure and full potential temperature in both models
after three days are shown in Fig. 3, for levels near the
surface and the lid. Although the disturbance is still
only weakly nonlinear, the pressure field in the PE wave
is distinctly asymmetric with the gradients and mag-
nitude of ¢' largest in regions of low pressure, as is
commonly observed on synoptic maps. (Here, primes
denote deviations from the basic state.) In contrast, the
maximum and minimum perturbation pressure, as well
as the maximum and minimum pressure gradient, have

SG
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equal magnitudes in the SG wave, a property that fol-
lows directly from the inherent symmetries of the SG
solution in geostrophic coordinates [see (23) in HW].

A more subtle, but perhaps more important distinc-
tion between the two simulations can be seen in the
shape of the surface pressure contours. The PE wave
already shows a tendency for northwesterly flow in the
cold air west of the surface low and almost pure south-
erly flow in the warm air east of the low, while the
strongest surface flow in the SG wave has an east—west
component of the same magnitude to either side of the
surface low. This behavior stems from the bias toward
NW-SE phase tilts in ¢’ for the PE solution. Because
u, is negatively correlated with v,, cold air is advected
southward and eastward (warm air northward and
westward ) at the surface, and the accompanying surface
low moves westward, in a frame of reference moving
with the wave, toward the following high. The resulting
geostrophic flow then becomes northwesterly to the
west of the low and southerly to the east.

By day 6.3 (Fig. 4), the magnitude of the pressure

PE HG
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FIG. 3. SG (left), PE (center), and HG (right; see § 5) solutions at day 3. Contours of both the full 8 (solid, “horizontal” lines; contour
interval 5 K) and the perturbation ¢ (contour interval 100 m? s=2) are shown for x, y planes at z = 0.225 km (bottom) and z = 8.775 km
(top); maxima and minima in ¢ are labeled with units of 100 m? s~2. To obtain ¢ in meters as in HW, divide by g = 9.8 m s~'. Perturbation
here refers to a deviation from the basic state.
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FIG. 4. SG (left) and PE (right) solutions at day 6.3. Plotting conventions as in Fig. 3,
but with a contour interval of 500 m* s™2 for ¢.

perturbation in the trough at the lid has, in the PE
wave, increased to more than twice that in the ridge,
and a similar disparity has developed at the surface.
Overall, the regions of low pressure have come to dom-
inate the flow pattern, overwhelming the broad, weak
highs.

At the same time, the PE wave has produced a pro-
nounced cyclonic wrapping of the potential tempera-
ture contours at both the surface and the lid. At the
surface, a warm “seclusion” pushes northward into the
cold air while bending back to the west, and at the lid,
a cold tongue extends southeastward into the warm
air. The strongest frontal region lies downstream from
the ridge at upper levels. In addition, prominent fronts
are embedded within the surface temperature field, with
the cold front stretching southwestward from just south
of the low and a bent-back warm front situated to the
northeast of the surface low, much as in the conceptual
frontal model proposed by Shapiro and Keyser (1990).
The vertical vorticity at the surface (not shown ) extends
in a continuous comma shape along the warm front
and into the cold front.

Accompanying this evolution of the boundary tem-
perature field is an alignment of the upper trough with
the surface low, as the growth of the wave slows. In the
ridge, however, the surface and upper-level patterns
are increasingly separated by the pairing of the surface
low (upper trough ) with the high to its west (east). By
day 6.3, the primary feature of the wave is a vertically
aligned, cyclonic vortex.

The comparison to the SG solution at day 6.3 is also
striking and illustrates how SG distorts even the qual-
itative features of the flow. As can be seen from Fig.
4, the SG wave maintains maximum and minimum
pressures of equal magnitude separated by a zonal dis-
tance of one-half wavelength and bends the # contours
into the same qualitative shape, irrespective of the sign
of the temperature anomaly, except for a relative re-
duction in the area of warm anomalies. The SG solu-
tion does not capture the character of the potential
temperature field, does not exhibit a pairing of the cy-
clones and anticyclones near either the surface or the
lid, and does not reproduce the strength of the troughs
or the weakness of the highs. Moreover, the SG sim-
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ulation produces a surface warm front only as a sec-
ondary phenomenon late in the development, and as
the SG wave equilibrates, the westward phase shift with
height vanishes in both the troughs and ridges. Indeed,
although this and other SG simulations of baroclinic
waves (Hoskins 1976; Heckley and Hoskins 1981)
clearly demonstrate that SG includes physical pro-
cesses, which are absent in QG models, the foregoing
comparison with PE does not reveal significantly more
quantitative accuracy than the comparison of QG with
PE in Mudrick (1974).

We emphasize that the outcome of this comparison
is not peculiar to the HW case. We have performed a
variety of other simulations, using asymmetric basic-
state jets as well as basic states with nonuniform po-
tential vorticity and a realistic tropopause. In all cases
the SG solutions exhibit similar deviations from the
PE solutions, in the sense that these deviations are al-
ways in the same “direction” relative to the PE solu-
tions.

5. Analysis

At this point, it is not completely apparent what has
gone wrong in the SG solutions, nor is it obvious why
these deficiencies have not appeared in previous two-
dimensional studies. For example, the well-known
shortcomings of QG are usually thought to originate
in the lack of ageostrophic advection and stretching of
relative vorticity, yet SG includes both of these at least
approximately (Hoskins 1975). We now identify, using
an expansion of the vorticity equation for small Rossby
number, the crucial term neglected by SG.

a. Asymptotic analysis

Before scaling the equations, we split the potential
temperature into a time-independent, horizontally
uniform component, {6, and a deviation from this
state, 6 — (6). Both the PE and the SG equations are
then nondimensionalized using the following scales:

XX, Y~L, z2,Z~H, t~ 1/Rof,
U0, U, Uy~ U, w~ HU/RiRoL, ¢ ~ fUL,
(8 ~®0, 6—{6)~0/RiRo,
(6)

where the Rossby number and Richardson number are,
respectively,

Ro = U/fL, Ri=g@H/0,U".

Consistent with the typical midlatitude synoptic scal-
ing, we also choose the horizontal length scale to be
the radius of deformation,

L = (g0H/f6)"

this fixes the relative magnitudes of the Rossby and
Richardson numbers at Ro = Ri~!/2,
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In what follows, our procedure will be to separate
the velocity, vorticity, and advections into geostrophic
and ageostrophic parts, denoted by subscripts g and a,
respectively, and then to expand both the PE and the
SG equations in small Rossby number. As in Mc-
Williams and Gent (1980), we do not make the formal
step of writing the dependent variables as power series
in Ro. It should also be noted that the dimensional
parameters in section 4a give a Rossby number of
roughly 0.3, although inferences based on the small Ro
expansions will prove quite useful.

With the choice of scales given in (6), the horizontal
ageostrophic velocities, u, and v,, scale as RoU. The
inertial terms in the PE horizontal momentum equa-
tions then become in nondimensional form (Mc-
Williams and Gent 1980),

Rod,v, + Ro?[v,- Vv, + d,(u,, v2)] + O(Ro?), (7)

where d, = 8/t + v,-V and v, = (u,, v,, w). Both
SG and QG retain the O(Ro) geostrophic advection
of geostrophic momentum. However, at O(Ro?), QG
neglects all terms, while SG keeps the first term in pa-
rentheses but omits the second, and thus has the same
formal accuracy as QG [i.e., through O(Ro)].! Diag-
nosing the O(Ro?) terms from the PE solution confirms
this formal analysis; as shown in Fig. 5, d,v,and v, - Vv,
have comparable magnitude at day 3. Moreover, the
relative magnitude of these terms is much the same
throughout the integration from day 0 to day 6.3 (not
shown).

Readers familiar with Hoskins (1975) may recall at
this point that SG is justified there by a Lagrangian
analysis of the momentum equations. However, while
the resulting equations retain certain terms neglected
by QG, the terms neglected by SG have the same order
of magnitude as those neglected by QG, as verified in
Fig. 5. In appendix B, we show that QG may be derived
with the same Lagrangian analysis as long as only the
leading-order, geostrophic velocity is used in the trans-
formation of the equations to Eulerian form.

The dynamical effects of these small errors in the
SG momentum equations are most easily isolated in
the vorticity and potential vorticity equations. Sepa-
rating the geostrophic contribution, the nondimen-
sional PE and SG vorticities are by definition

¢ = k + Rog, + Ro*,;
g_SG =k + RO{vg + RO2nyz(¢x, ¢y)

The Jacobian terms in {sg are formally the same size
as the ageostrophic vorticity; since the PE vorticity
equation has the same form as (2), asymptotic expan-

! McWilliams and Gent (1980) consider QG to be the leading-
order theory and corrections to QG to be O (Ro). In our nomen-
clature, geostrophy is the leading-order balance, QG is an O (Ro)
theory, and corrections to QG occur at O (Ro?).
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F1G. 5. Contours of the magnitude of the O(Ro?) terms in (7) for the x, y plane at z = 0.225
km in the PE solution. Shown are [v,- Vv, | (left) and | dg(u,, v,)| (right) at day 3; the contour

interval for both fields is 2 X 107¢ m s~2,

sions of each will differ only in their treatment of terms
involving {, [or J,.(¢x, ¢,)].

For further comparison, the leading-order contri-
bution to the ageostrophic vorticity must be expressed
in terms of ¢. After nondimensionalization, the mo-
mentum equations ( 1a) yield

$a= —(dgig; + Vg Vitg, dgvg, + v, -V,
—Vgu* Vg — vy, - Vo) + O(RO).

Using the thermodynamic equation (1c¢) to evaluate
dgv,, to leading order then produces the unexpected
result that

$a = —2Jx:(¢x, ¢y) + O(RO). (8)

Surprisingly, the nonlinear term in {sg has the same
form as the ageostrophic, O(Ro?) contribution to the
PE vorticity, but has the wrong coefficient, which
should be —2 instead of +1.

The nondimensional PE vorticity satisfies

Rodg$, + Ro* (v, V&, + d,$.)
=V, —~ kX VO + Ro(v,, + &+ Vv,)
+ Ro?(§- Vv, + £, Vvg) + O(Ro%).  (9)

We present the three-dimensional equation for gen-
erality, but remind the reader that the vertical com-
ponent of vorticity is the controlling factor in the dy-
namics when the scaling (6) is appropriate, since ver-
tical gradients of 6 are then O(Ro™!) larger than
horizontal gradients and the vertical component of
vorticity enters the potential vorticity equation at lower
order than the horizontal components [e.g., see (10)].
The balance through O(Ro) in (9) reproduces the QG
vorticity equation and is independent of the ageo-
strophic vorticity. In the vertical component, the first
corrections to QG are the ageostrophic advection, tilt-

ing and stretching of geostrophic vorticity, and the
geostrophic advection of ageostrophic vorticity.

A similar expansion through O(Ro?) of the nondi-
mensional form of (2) looks exactly like (9), except
¢ is replaced by Jyy:(¢x, ¢,). By (8), SG thus has the
correct form for all O(Ro?) contributions to the
vorticity equation but retains the wrong coefficient on
terms involving J,,.(¢x, ¢,), which in the PE are de-
rived from the ageostrophic vorticity. [ McWilliams and
Gent (1980) discuss a similar result for the potential
vorticity equation.] Hoskins ( 1975) suggests that, con-
sistent with the neglect of Jy,(¢x, ¢,) in (4), the Ja-
cobian terms in {sg are small and should be omitted;
but this analysis shows that these terms enter at the
first correction to QG, with dynamical effects poten-
tially as large, for example, as the stretching of relative
vorticity. It should be emphasized that our analysis
strictly pertains to the GM equations; the effects of the
further approximation of omitting the nonlinear terms
in (4) are discussed in appendix A.

It is also interesting to consider the nature of the
errors in the SG potential vorticity equation. Given
(8), it is easy to show

gsa = 4 — 3 Ro¥,(). + O(Ro®),  (10)
where g = ¢ - V6 is the Ertel potential vorticity for the
PE, and has been nondimensionalized by @/ H. Since
the PE conserve ¢, and gsg is conserved in SG, (10)
implies that in the SG model there is an O(Ro?) source,
proportional to {,, for g. Again, we see that errors in
SG are closely linked to the ageostrophic vertical vor-
ticity and, through (8), to the presence of curvature
in the flow. For example, if the flow is nearly straight
(say, if the coordinate axes can be rotated so that 4/
dx ~ Ro d/dy), then J,,(¢«x, ¢,) is O(Ro); the ageo-
strophic contribution to the vertical vorticity is O(Ro?>);
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and the SG potential vorticity equation is accurate
through O(Ro?).

b. Inferences

Even if the initial conditions in both the PE and SG
models were in some sense identical, the simulations
would immediately begin to diverge because of the dif-
ferences between the models in the treatment of the
ageostrophic vorticity. These differences are clearly the
original cause of the deviations of the SG solution from
the PE solution in section 4, although after several days
the solutions have diverged sufficiently so that the sub-
sequent evolution of the deviations is not determined
solely by differences in the model equations. Differ-
ences between the PE and SG solutions, or at least
their initial tendencies, can therefore be explained by
considering the effects of the Jacobian terms in the
vertical vorticity and potential vorticity equations.

Before beginning, it is convenient to illustrate the
relation between ¢, J,,(dx, ¢,), and the ageostrophic
vorticity with three simple examples. First consider an
axisymmetric vortex with ¢ = (a/2)(x? + y?), where
a > (O implies low central pressure and cyclonic flow,
while « < 0 implies high pressure and anticyclonic
flow. For this flow,

ny(¢x, ¢y) = az, $a= —2a% + O(Ro).

Thus, the Jacobian is positive and the ageostrophic
vorticity is negative regardless of the sense of the flow
(cyclonic or anticyclonic), consistent with the familiar
rule that flow in gradient balance around a low (high)
is subgeostrophic (supergeostrophic). Next, consider
a horizontally periodic pressure field of the form ¢
= P(x, y), where

P(x, y) = sinkx(1 — cosly), (11)

and k= 27 /x;,{= 27 [y, . Retaining only the leading-
order term, it follows that

$a = —2K21%[(1 — cosly) sin’kx — sin?ly];

¢ and {, are shown in Fig. 6a. Note that near extrema
(of either sign) in the pressure field, where the flow
approximates the axisymmetric vortex of the previous
example, J.,(¢x, ¢,) is positive and ¢, is negative, but
that near the saddle points in ¢, where the flow is highly
confluent J,,(éx, ¢,) is negative and ¢, is cyclonic.
Further discussion may be found in Xu (1990, section
3c¢). Finally, let ¢ be the superposition of an x-inde-
pendent component, corresponding to a barotropic
zonal jet and a small perturbation with the same pe-
riodic form as above:

¢o=—y+ ' sinly+ eP(x,y), e<1. (12)
Neglecting terms of order €2 and order Ro, we have
¢, = —2ek?l sinlyP.
As shown in Fig. 6b, the ageostrophic vorticity in this
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FIG. 6. The relation of ¢ (heavy solid lines) and ¢, (thin lines,
negative contours dashed) in two simple cases. (a) ¢, given by (11),
is horizontally periodic ¢. The contour interval for both fields is one-
fourth of the respective maximum amplitudes and the zero contour
for ¢ is suppressed. (b) ¢, given by (12), is the superposition of an
x-independent and a small-amplitude, horizontally periodic com-
ponent. Contours as in (a), except the contour interval for ¢, are
slightly less than one-sixth of its total change across the domain.

case is antisymmetric across the jet, having the same
sign as the “perturbation” ¢ on the cyclonic-shear
(north) side of the jet, and the opposite sign on the
anticyclonic-shear side.

Using these examples and the differences between
PE and SG in the vorticity equation at O(Ro?), one
can understand the tendency, relative to the SG solu-
tions, for lows to be deeper and highs to be weaker in
the PE solutions. Our arguments are based on the as-
sumption that, since {, = V?¢, extrema in ¢ generally
follow the location and magnitude of extrema in .

We first note that there is a strong asymmetry be-
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tween high and low pressure within the PE solutions.
However, the stretching of relative vorticity provides
an obvious mechanism for producing a field of {; in
which cyclonic vorticity is relatively strong and anti-
cyclonic vorticity relatively weak, and an associated
pressure field in which lows are deep and highs are
weak. Of course, this suggests that even in the SG sim-
ulations lows should be deeper than highs, since SG
includes stretching of {,; reference to the SG solutions
in appendix A, which use the nonlinear form of (4),
shows that this is indeed the case.

The relative tendency for deeper lows in the PE so-
lutions, compared to the SG solutions, may now be
qualitatively explained as follows. Suppose that both
the PE and SG models were initialized with identical
mass fields, so that all geostrophic quantities are initially
the same in both models. The subsequent evolution of
the geostrophic vorticity is governed by

r(k + Rot,)-Vw — Ro ‘gt“ + O(Ro?),
dt, in PE;
dr (k+Ro§‘g)-Vw+%Ro ‘g"+0(R02),
in SG,
‘ (13)

where we have canceled a factor of Ro relative to (9).
Because the ageostrophic velocities are correct to lead-
ing order in SG, the material derivative, d/dt, in SG
agrees with that of the PE through O(Ro) initially;
therefore, only the terms involving {, contribute at
leading order to the difference in the initial change of
{ between the two models. If we now follow a fluid
parcel, say one that is approaching a nearby minimum
in ¢ and maximum in {, the stretching and tilting
terms will produce changes of {, that are essentially
identical in both models. However, since ¢, is most
negative near extrema in ¢ and {,, d{,/dt will be neg-
ative as the parcel approaches the low and these terms
will thus in the PE tend to increase the already positive
geostrophic vorticity, while having the opposite ten-
dency in the SG model. For a parcel approaching a
maximum in ¢, d{,/dt will also be negative, but now
will tend to decrease (increase) the magnitude of the
geostrophic vorticity in the PE (SG) solution, since {,
is locally negative. We conclude that inverting ¢, for
¢ soon after initialization will reveal an instantaneous
tendency’ for relatively deeper lows and weaker highs
in the PE simulations than in the SG.

One can also imagine initializing both models with
identical fields of their respective vorticities (¢ in the
PE, and {5 in SG). In this case, the initial ¢ field will
exhibit relatively deeper lows and weaker highs in the
PE model than in SG because of the different balances
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inherent in the two models. More specifically, the di-
vergence equation can be written as

[§' + 2 RoJ,( ¢y, ¢y) + O(Ro?), in PE;
fSG - ROny(¢xy d)y); in SG.

Again, the fact that J,,( ¢y, ¢,) is generally positive (or
equivalent, that {, is generally negative ), near extrema
in the vorticity and ¢ will cause the PE solutions to
have a bias toward lower pressure compared to those
of SG.

Consideration of the potential vorticity equation
leads to an alternative explanation of the bias, relative
to the SG solution, toward low pressure in the PE so-
lution. As previously discussed, (10) shows that there
is an O(Ro?) source of gsg in the PE model. Thus, our
PE solutions for the HWy = 1 case maintain uniform
g (up to truncation errors) but should possess signifi-
cant internal anomalies of gsg, which by (10) should
have the same structure and opposite sign to {,. If the
ageostrophic vorticity is anticyclonic as expected near
the centers of both lows and highs, there will then be
positive gsg anomalies over extrema in ¢; these anom-
alies will tend to reduce strength of highs and increase
strength of lows, compared to the SG simulation where
there are no interior anomalies in ¢sg.

Figure 7 shows gsg — ¢ near the surface, diagnosed
from the PE solution at day 6. No assumption of small
Ro has been made in the calculation and g — gsg in-
cludes all the higher-order terms beyond O(Ro?) that
are implicit in (10). Nevertheless, the dominant fea-
tures are qualitatively as predicted by the structure of
¢,: an intense positive anomaly above surface low and
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FIG. 7. The deviation of the SG potential vorticity from the Ertel
potential vorticity (gsg — ¢) diagnosed from the PE solution at day.
6. The field is shown at z = 0.225 km with a contour interval of 0.03
PVU and labels in 10* PVU. The Ertel potential vorticity is 0.345
PVU.
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a broader positive anomaly above the surface high.
Note also that along both the warm and cold fronts,
where the flow is highly confluent, {, is cyclonic and
anomalies of gsg are negative.

The nonuniformity of gsg in the PE solutions will
affect traditional two-dimensional analyses of the
fronts. Indeed, since the anomalies of gsg originate in
the three-dimensional large-scale flow associated with
the wave, variation of gsg across the front will be char-
acteristic of fronts embedded in realistic baroclinic
waves. These ideas deserve further attention.

Other aspects of the differences between the PE and
SG simulations, especially when the comparison is
made at large amplitude, have a less direct connection
with the instantaneous divergence of the PE and SG
dynamics. A prime example of this is the characteristic,
“cyclonically wrapped” structure of the boundary-
temperature field in the mature PE wave. This structure
is partially dependent on the shape of the linear PE
wave; both the NW-SE phase tilts and the displacement
of the maximum wave amplitude into the cyclonic-
shear side of the jet produce westward advection of
warm anomalies and an eastward advection of cold
anomalies relative to the wave (at the lid, the sense of
the temperature anomalies is reversed ), and favor the
wrapping of temperature contours preferentially
around the surface low and the upper trough. Starting
from a small-amplitude perturbation, SG cannot du-
plicate these effects because it fails to reproduce the
structure of the linear wave. However, the characteristic
cyclonic wrapping in the PE simulations is not pro-
duced only by the modal structure. Because of the in-
tense circulation associated with the regions of low
pressure, which develops largely independent of the
modal shape, the mature PE disturbance inherently
favors the bent-back temperature and frontal structure
seen in Fig. 4, as the temperature contours are advected
around the northern side of the surface cyclone and
the southern side of the upper trough. Indeed, we have
examined the development of unstable waves on other
jets, for which the linear PE wave has no horizontal
tilts, and the PE simulations still exhibit cyclonic
wrapping of the boundary temperature and bent-back
warm-frontal structure in the final stages of their
growth. In contrast, location of the fronts within the
SG solutions in these cases is much more sensitive to
the details of the basic-state jet, particularly the sense
of the barotropic shear across the baroclinic zone.
Davies et al. (1991) present a detailed discussion of
this sensitivity to barotropic shear in SG simulations
of baroclinic waves.

6. A hypogeostrophic model

If the foregoing asymptotic analysis has some valid-
ity, solutions generated by a theory, which includes all
O(Ro?) corrections to QG, should, when compared
with those of the SG model, agree more closely with
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the PE solutions. We will call such a theory hypogeo-
strophy (HG). McWilliams and Gent (1980) defined
HG to be an asymptotic expansion of the PE, retaining
only terms up to O(Ro?), but we use HG to mean
simply that the model is accurate through O(Ro?).

a. The HG model
Instead of the SG vorticity equation (2 ), we propose

duc

R
°

= tug- Vv — k X V4, (14)

where
the = k + Rofy — 2 RoA (¢, 6y)

= §SG -3 Ronxyz(d’x, ¢y)

Since {yg includes the correct leading-order contri-
bution from ¢, [see (8)], asymptotic expansions for
small Ro of the HG and PE vorticities agree through
O(Ro?), and hence (14) has O(Ro?) accuracy as well.
The form of (14) and the definition of {ug were chosen
to provide a potential vorticity analog conserved fol-
lowing parcels, and to ensure that the equations re-
mained uncomplicated in geostrophic coordinates.

Using (14) and the full thermodynamic equation
(1c), we may form a potential vorticity equation sim-
ilar to (3):

dguc
dt

As with the vorticity equation, asymptotic expansions
of (15) and the conservation equation for Ertel poten-
tial vorticity agree through O(Ro?). At O(Ro?), (15)
retains the correct contribution from the horizontal
ageostrophic vorticity, but does not include the higher-
order corrections to the vertical vorticity necessary for
O(Ro?) accuracy.

The HG equations assume a more convenient form
in geostrophic coordinates. The material derivative and
the HG potential vorticity become

d/dt = 3/dT + (u, + O(Ro?))d/0X
+ (v, + O(R0?))38/3Y + Rowd/dZ,

=0; guc = {uc- VH. (15)

and

_ Ro(®zz — 3 Ro2Jxyz(®x, &v) V2)
G ™ T Ro (®xx + yr) + R0y @y, By)
(16)

Notice that without GM the horizontal advections in
geostrophic coordinates are not purely geostrophic. We
will make the approximation of neglecting the non-
geostrophic terms in the horizontal advections; since
these terms are O(Ro?) compared to Vg, such an ap-
proximation does not degrade the asymptotic accuracy
of HG. With this approximation in the material deriv-
ative, the boundary conditions for HG are given by
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(5), and thus HG in geostrophic coordinates is math-
ematically equivalent to SG, except for the different
relation between ® and the potential vorticity.

If guc is uniform, we set ® = 1HRo gucZ? + &
and, after canceling a factor of Ro, ( 16) may be written
as

1 . . . .
— ®z7 + Pyx + Pyy — 4 RoJxy(Px, Pv)
dHG

3 R02 a(iXs &Y’ §Z)
- =0. (17
X, Y, Z2) 0. a7

Comparing the above to the nondimensional form of
(4) (after a similar decomposition of &) shows that
the SG model again has the correct form, but the wrong
coefficient for the O(Ro) term. We will, for conve-
nience, neglect the O(Ro?) term in (17), since it cor-
responds to an O(Ro?) contribution to gyg and we are
primarily concerned with maintaining the O(Ro?)
asymptotic accuracy of HG. However, integrations us-
ing the fuil (17) do have certain advantages (princi-
pally, slower growth of perturbations), as might be ex-
pected given that the O(Ro?) terms in (17) are present
in an asymptotic expansion of the Ertel potential vor-
ticity.

The terms through O(Ro) in (17) could also be de-
rived as an asymptotic expansion of the Ertel potential
vorticity in geostrophic coordinates, using (8) trans-
formed to geostrophic coordinates to express the
ageostrophic vertical vorticity in terms of ®. The der-
ivation given has the advantage of providing, in phys-
ical coordinates, vorticity and potential vorticity equa-
tions identical in form to those of the PE.

quG

b. Hypogeostrophic simulations

The HG model may now be applied to the HW g
= 1 case, allowing us to evaluate the validity of the
foregoing asymptotic analysis. The numerical code for
the HG model derives directly from that of the SG
model, except that (17) is solved iteratively, by eval-
uvating the nonlinear Jacobian terms from & at the pre-
vious iteration.

The characteristics of the linear HG mode agree
closely with those of the PE mode. For a wavelength
of 4090 km, the doubling time of the HG mode, at
1.39 £+ 0.04 d, falls between the PE and SG growth
rates. More importantly, the HG mode accurately ap-
proximates the structure of the PE mode. As can be

seen from Fig. 8, which compares the perturbation ¢ .

near the lid from HG and the PE, the linear HG wave
reproduces both the NW-SE tilts and the displacement
of the maximum amplitude to the north of the jet axis.
At the surface, the structures of the HG and PE modes
are equally close.

The linear HG mode differs from that of the SG
model only for basic-state flows with horizontal shear.
Linearizing (17) about a zonal basic state gives
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_l—¢22+(1 _4RO‘—I—)Y}')@XX + @y}I: 0, (18)
HG

where the basic-state quantities are denoted with bars,
and terms O(Ro?) have been neglected. The linearized
boundary conditions [ from (5)] are the same as in the
SG model, but compared to the linear form of (4),
(18) includes a variable coefficient multiplying ®xx.
This coefficient appears because, when ®yy is nonzero,
the linearization of Jyy(®y, ®y) is nonzero and there
is a contribution to the ageostrophic vorticity at first
order in perturbation amplitude (see Fig. 6b). When
the Jacobian terms are kept in the SG model (see ap-
pendix A), (4) has a linear form identical to (18), but
of course has the incorrect coefficient on the O(Ro)
term. Both Eliassen (1983) and Joly and Thorpe (1990)
retain this variable coeflicient in their linearized equa-
tions for the SG potential vorticity.

The differences between the HG and SG modes can
be qualitatively explained using (13), which has the
same form for both the HG and PE models. Our ar-
guments are essentially the same as in section 5, where
the bias toward low pressure in PE solutions relative .
to SG solutions was diagnosed, except that the rcla-
tionship between ¢ and {, has changed.

At levels where the basic-state flow is nonzero, the
ageostrophic vorticity will have the opposite sign to the
perturbation pressure (positive in the troughs) on the
cyclonic-shear side of the jet, but the relation will be
reversed on the anticyclonic-shear side; the resulting
pattern is much as in Fig. 6b. If we again follow a parcel
moving toward a trough, d{,/dt will be negative to the
north of the jet axis and positive to the south. Reference
to (13) then shows that the perturbation {, (and pre-
sumably the magnitude of the perturbation ¢) in the
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and HG (dashed) modes at z = 8.775 km.
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HG mode will be shifted toward the cyclonic-shear side
of the jet, relative to the linear SG wave. This leads
directly to the bias in the PE or in HG toward maxi-
mum amplitude north of the jet axis and NW-SE phase
tilts, as shown in Fig. 2. The full modal structure for
the PE and HG modes, in which NW-SE phase tilts
are dominant even at the surface (where the linear
ageostrophic vorticity is zero), further depends on two
effects that we have so far ignored: the vertical coupling
inherent in the inversion of gy and the increased tilting
of the perturbation @ at the lid when its maximum is
displaced into the cyclonic shear of the jet.

Although the disturbance in the HG model has
grown too quickly, the comparison of HG with PE at
day 3 is otherwise excellent. As shown in Fig. 3, the
HG solution again captures the characteristic structure
produced by the PE simulation, including the relative
strength of the low pressure at both the surface and the
lid, the continuing bias toward NW-SE phase tilts, and
the development of warm, southerly flow and cold,
northwesterly flow at the surface. In light of our pre-
vious assertion that the nonlinear evolution in the PE
simulation to day 3 is determined in large part by the
NW-SE phase tilts of the linear mode, which inherently
produce westward (eastward ) advection of warm (cold)
air at the boundaries, the continuing similarity of
structure in the HG and PE solutions is not surprising.

Unfortunately, we have not integrated the HG model
much beyond day 3.5. Because of its nonlinearity, (17)
changes from elliptic to hyperbolic type in the region
of the nascent upper-level front after roughly 3.5 d.
The iterative procedure for solving (17) fails to con-
verge at this point, although the solutions continue to
look reasonable, even a single time step before the it-
erative solver fails. Although the change of type of (17)
may correspond to some real physical phenomenon,
such a change can occur only when and where the
nonlinear terms in (17) are comparable to the linear
terms. Thus, (17) will cease to be elliptic in precisely
those locations where the small-Ro expansion upon
which HG is based converges most slowly and where
the higher-order terms that HG neglects are largest. In
these regions, the HG dynamics need not correspond
to the PE dynamics and will instead depend mainly
on the approximations used to derive HG.

6. Conclusion

Side-by-side PE and SG simulations of a three-di-
mensional baroclinic wave are significantly different
throughout the integration. Errors are present in the
linearized SG modes and these errors grow and evolve
as the wave develops beyond the linear regime. In con-
trast to the SG solutions, the PE wave has distinctive
NW-SE phase tilts, especially at upper levels, through-
out much of its development, and at finite amplitude,
develops deep lows and weak highs. At large amplitude,
the PE wave has a strong tendency to “seclude” tongues
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of warm air at the surface and cold air at the lid, even-
tually resulting in a vertically aligned, cyclonic vortex.
These characteristics of the PE solutions appear in
many other PE channel integrations (Mudrick 1974;
Takayabu 1986; Keyser et al. 1989; Polavarapu and
Peltier 1991) and the embedded frontal structure is
similar to the conceptual model proposed by Shapiro
and Keyser (1990).

The distinctive large-amplitude structure of the PE
wave is influenced by the strong tendency in the smaller
amplitude wave for horizontal streamlines to tilt NW-
SE and to be displaced into the cyclonic-share side of
the jet. As discussed in section 5, the resulting transport
of warm (cold ) air northward and westward (southward
and eastward) on the horizontal boundaries contributes
to the characteristic cyclonic wrapping of the temper-
ature contours in the PE solutions. Here we are in par-
tial agreement with HW, who conclude that the hori-
zontal phase tilts in the small-amplitude wave are cru-
cial in determining the uitimate structure of the SG
solutions. However, the intense circulation around re-
gions of low pressure that develops in the PE also
strongly influences the mature structure of the distur-
bance and is probably the dominant influence at large
amplitude.

A small-Ro asymptotic analysis of the vorticity and
potential vorticity equations, following McWilliams
and Gent (1980), demonstrates that SG includes all
the leading-order corrections to QG, except those in-
volving the ageostrophic vertical vorticity. This
asymptotic analysis is not restricted to baroclinic waves
and we expect that there will be similar differences be-
tween PE and SG solutions for other three-dimensional
flows with similar Rossby numbers. We confirm the
analysis by deriving and solving equations for an HG
model, which correctly includes the leading-order dy-
namical contributions of the ageostrophic vorticity.
Although our solution techniques for HG do not con-
verge for large amplitude disturbances, the HG solu-
tions reproduce the characteristic features of the first
3.5 days of the PE development,

We stress that differences between the PE and SG
simulations are not caused by a “break down” of the
SG approximation, such as Hoskins and Bretherton
(1972) predict near frontal collapse. Rather, since SG
has limited asymptotic accuracy (formally, the same
as QG), the SG and PE solutions steadily diverge due
to the accumulation of small errors by SG. A fair es-
timate of the size of these errors and thus, of the ap-
plicability of the SG model, is the magnitude of the
ratio of vertical ageostrophic vorticity to f.

When compared with PE solutions, SG simulations
have been markedly more successful for two-dimen-
sional frontal flows than for the three-dimensional
baroclinic wave case presented here. However, it must
be remembered that frontal flow, which is characterized
by small ratios of cross- to alongfront velocity and
length scales, and a Rossby number of order unity,
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represents a different dynamical regime than the flow
within a developing baroclinic wave, which has a small
or moderate Rossby number and nearly isotropic hor-
izontal scales except near fronts. In fact, Hoskins and
Bretherton (1974 ) derive the SG equations for frontal
flow by neglecting the curvature of the front and then
systematically retaining only terms of leading or first
order in ¢, where ¢ is the ratio of cross- to alongfront
velocities (see also Pedlosky 1979). McWilliams and
Gent (1980) formalize and extend the Hoskins-Breth-
erton analysis. They show that the SG dynamics are
accurate only through O(e) (in their terminology,
through leading order) when the ratio of /, the cross-
front length scale to r—the radius of curvature of the
front—is O(e) but, when the front is nearly straight,
i.e., I/r = O(€?), SG gains an additional order of ac-
curacy in an expansion for small . Thus, SG is a higher
order approximation for two-dimensional fronts than
for three-dimensional baroclinic waves, making errors
of O(€?) in a nearly straight front but errors of O(Ro?)
in the three-dimensional wave.

Finally, we note that other weak effects are probably
important in determining the structure and evolution
of dry baroclinic disturbances. Specifically, spherical
geometry should be influential, especially for long
waves. Evidence for the importance of sphericity exists,
for instance, in the linear stability analysis of Simmons
and Hoskins (1976 ) for the PE on a sphere; their modes
agree closely with QG solutions and have, if anything,
a tendency to tilt from SW to NE. In addition, large
amplitude baroclinic waves on the sphere appear to
differ from those in channel integrations. For example,
Thorncroft and Hoskins ( 1990) and that on the sphere
cold air (or high potential vorticity air) aloft is often
advected westward relative to the upper-level trough
and eventually cut off, a phenomenon that we have
not observed in any of our simulations in a channel.

APPENDIX A
Semigeostrophic Solutions with Exact gs¢

The SG solutions shown in Figs. 2, 3, and 4 result
from the GM equations transformed to geostrophic
coordinates, with the additional approximation that
the Jacobian term is dropped in (4). On the other hand,
our asymptotic analysis of SG was based on the exact
form of the SG vorticity and potential vorticity equa-
tions, (2) and (3). To distinguish between these mod-
els, we modify our terminology as in McWilliams and
Gent (1980), reserving SG for the model using the
exact form of (4) and denoting by H (for Hoskins) the
model that omits the nonlinear terms in (4). In this
appendix, we discuss SG solutions for the HW u = 1
case and provide an asymptotic analysis of the effects
of approximating ¢gsg in the H model.

Solutions for the SG model may be obtained with
the same numerical techniques used for the HG model.

JOURNAL OF THE ATMOSPHERIC SCIENCES

VoL. 48, No. 19

In addition, we use the initialization procedures and,
resolutions are identical to those used for the H model
and discussed in section 4.

The exact SG simulation is similar to the H simu-
lation, but falls between H and HG in its agreement
with the PE simulation. This might be expected, since
the nondimensional form of (4) agrees more closely
with the asymptotically correct HG equation (17) when
the nonlinear terms are retained.

The most unstable meridional mode for the SG
model is compared with the H mode in Fig. 9. The SG
mode exhibits a slight tendency toward NW-SE phase
tilts, but those tilts are much less pronounced than in
the PE or HG modes (Fig. 8).

At larger amplitudes, the SG solution continues to
deviate slightly away from the H solution and toward
the PE solution. Figure 10 shows the SG solution at
day 6.3. While it is still close to the H solution shown.
in Fig. 4, the SG solution has not maintained maxi-
mum and minimum perturbation pressures of equal
magnitude, developing instead somewhat deeper lows
and weaker highs like the PE wave. The SG solution
has also begun a slight, but noticeable wrapping of the
temperature contours cyclonically around the surface
low, a behavior that is again reminiscent of the PE.

The differences between the H and SG developments
may be understood by applying the small-Ro analysis
of section 5 to the truncated form of (4). For the HW
case, the dynamics of both the H and SG models consist
of requiring that a potential vorticity analog remains
constant and advecting temperature on the horizontal
boundaries; thus, the models differ only in the defini-
tion of potential vorticity. In its exact form, (4) is sim-
ply the definition of gsg written in geostrophic coor-
dinates. However, when the nonlinear terms are omit-
ted, (4) implies that the potential vorticity analog
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FIG. 9. As in Fig. 2, but for the SG [solid lines; uses the exact (4)]
and H [dashed; uses the truncated (4)] modes at z = 8.775 km.
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FIG. 10. As in Fig. 4, but for the SG model using the exact (4).

conserved by the H model is (with the nondimension-
alizations of section 5)

_ ROQZZ
1 - RO(@XX + q’yy)

du

- dsG
1 - R02ny(¢'x’ ¢y) ’

where the second equality was obtained by writing gy
in terms of gsg and then, after some manipulation,
returning to physical coordinates using an identity from
Hoskins (1975, p. 239).

It is now easy to check the asymptotic accuracy of
gu. Much as in (10), where gsg was written in terms
of the Ertel potential vorticity, (A1) becomes for small
Ro

(A1)
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gu = gsall + Ro%/,(¢x, ¢y) + O(Ro?)]
= g~ 2 Ro*¢,(0), + O(Ro?). (A2)

Comparison with (10) shows that the errors in H have
the same leading-order form as those in SG but with
a larger coefficient. Clearly, approximating (4) de-
creases the accuracy of the H model and these addi-
tional errors have the same nature as those already
implicit in the GM approximation. This is consistent
with the fact that the H solutions differ from the SG
solutions in the same “direction” as the SG solutions
differ from the PE.

For an alternative but essentially equivalent deri-
vation of the asymptotic accuracy of the H model, see
the discussion accompanying (7.1) and (7.2) in
McWilliams and Gent (1980).

APPENDIX B
The Lagrangian Nature of GM

Through a procedure of successive approximations
to the Lagrangian momentum equations, Hoskins
(1975, section 3) argues that the GM approximation
appears as the next correction to geostrophy. How is
this to be reconciled with the Eulerian analysis (7)
which shows that QG is the next correction to geo-
strophy?

Consider the nondimensional Lagrangian momen-
tum equation at the same level of generality as in Hos-
kins [1975; see the equations preceding his (9)]:

dx = vy + Rosk X 8,x,

Ro, = (B1)

/T’
where the dependent variable is particle position x(a,
t) and T is a Lagrangian time scale. Let

x=xp+Rorx; + +-- (B2)

Substituting (B2) into (B1), and collecting terms of
equal powers in Ro; gives the following ordered set of
problems:

Ro,%: 9x = \ (B3)
Ro.': 8x; =k X 8%x,. (B4)

The claim is that (B4) with (B3) gives the Lagrangian
GM momentum equation, which in turn implies the
Eulerian GM momentum equation given by (10) of
Hoskins (1975).

If we adhere rigorously to the ordering in Ro, of the
expansion given by (B2), the latter claim is not true.
The connection between Lagrangian velocity d,x and
the Eulerian velocity v is

ax = v[x(a,?t),1t], (BS)

(e.g., Monin and Yagiom 1971, p. 529), and so the
relation between the Lagrangian and Eulerian accel-
eration is
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3°x = 9y + dx- Vv. (B6)
The only systematic way to convert the approximate
Lagrangian set (B3)-(B4) to an equivalent Eulerian
set is to substitute (B2) into (B5) and (B6), and then
to expand the Eulerian velocity field as

V=V0+ROLV1+"'. (B7)

Collecting terms of equal powers in Ro;, one obtains
the velocities,

OXo = Vo 0X; = vy, (B5")
and the acceleration,
(912!(0 = (9,\'() + a,xo' Vvo. (B6l)

Thus with (B5') and (B6'), the approximate Lagran-
gian equations (B3 )~(B4) agree with the approximate
Eulerian equation (7) (with ¢, = Ro). Thus, a Lagran-
gian analysis too yields QG, not GM, as the next cor-
rection to geostrophy.
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