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ABSTRACT

The mathematical equivalence of the linearized two-dimensional (2D) shallow-water system and the 2D
acoustic-advection system strongly suggests that time-split schemes designed for the hydrostatic equations can
be employed in nonhydrostatic models and vice versa. Stability analyses are presented for several time-split
numerical methods for integrating the two systems. The primary interest is in the nonhydrostatic system and
in explicit numerical schemes where no multidimensional elliptic equations arise; thus, a detailed analysis of
the Klemp and Wilhelmson (KW) explicit technique for integrating the time-split nonhydrostatic system is
undertaken. It is found that the interaction between propagating and advecting acoustic modes can introduce
severe constraints on the maximum allowable time steps. Proper filtering can remove these constraints. Other
explicit time-split schemes are analyzed, and, of all the explicit schemes considered, it is believed that the KW
time-split method offers the best combination of stability, minimal filtering, simplicity, and freedom from
spurious noise for integrating the nonhydrostatic or hydrostatic equations.

Schemes wherein the fast modes are integrated implicitly and the slow modes explicitly are also analyzed.
These semi-implicit schemes can be used with a greater variety of advection schemes than the explicit time-
split approaches and generally require less filtering than the split-explicit schemes for stability. However, a
multidimensional elliptic equation must be solved with each time step.

For nonhydrostatic elastic models using the KW time-split method, an acoustic filter is presented that allows
a reduction of previously necessary filtering in the KW scheme, and a method for integrating the buoyancy
equation is discussed that results in the large time step being limited by a Courant condition based on the

2109

advection velocity and not on the fastest gravity-wave speed.

1. Introduction

Atmospheric motions occur on many time scales,
from the rapid propagation of acoustic and gravity
waves to the slower-moving Rossby waves and advec-
tion. Marchuk (1974) was the first to suggest that time-
split methods be used to integrate numerical models
of the atmosphere. In his splitting-up approach, he
proposed integrating the advection, adjustment, and
dissipation terms separately using techniques appro-
priate for the different time scales of these processes.
While Marchuk was concerned with solving a hydro-
static system of equations, the use of time-split tech-
niques is similarly attractive for nonhydrostatic mod-
eling.

While time-split techniques are widely used in hy-
drostatic and nonhydrostatic models, the close con-
ceptual relationship between the hydrostatic models,
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where the fast signals are gravity waves and the slow
signals are the advected modes, and the fully com-
pressible nonhydrostatic models, where the fast signals
are sound waves, has not been discussed in presenta-
tions of time-split schemes. As a result, schemes have
been developed independently for hydrostatic and
nonhydrostatic models with little intercomparison of
methods. Our primary interest is in further under-
standing and improving the explicit splitting techniques
used in nonhydrostatic models; thus, we are led to con-
sider splitting techniques used in both hydrostatic and
nonhydrostatic models.

In the development of new splitting techniques, it is
often difficult to assess their stability across the wide
range of possible model parameters. In this paper, we
present the results of stability analyses for several time-
split schemes used in hydrostatic and nonhydrostatic
models and also analyze possible extensions to some
existing schemes. Traditionally, time-split numerical
methods are those wherein different modes in the sys-
tem are integrated separately, without regard for the
other modes (see Marchuk 1974). We examine the
more general class of schemes wherein terms respon-
sible for fast modes are integrated in a different manner
than the terms responsible for slow modes, but often
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in a more tightly coupled manner than in the traditional
time-split schemes. Also, while we are most concerned
with the computationally more straightforward explicit
time-split schemes, we also discuss the single-time-step
implicit and semi-implicit schemes.

Our particular interest in nonhydrostatic models ex-

tends not only from their past and future use in cloud-
scale simulations but in their growing role in the sim-
ulation of larger-scale atmospheric motions. While
earlier models were used to study convective storms
(e.g., Klemp and Wilhelmson 1978; Schlesinger 1978;
Clark 1979) and other small-scale phenomena, non-
hydrostatic models are now being used to examine
large-scale motions, such as baroclinic waves (Pola-
varapu and Peltier 1990; Snyder et al. 1991), as well
as mesoscale weather prediction (Golding 1987). It is
also becoming apparent that nonhydrostatic models
can be integrated as economically as hydrostatic models
at the same resolution, as is demonstrated in Snyder
et al. using the split-explicit technique we describe in
section 4 of this paper and in Cullen (1990) and Tan-
guay et al. (1990). The continued development of more
sophisticated nested and adaptive models will promote
a broader use of the nonhydrostatic equations with an
even wider range of motion scales contained in single
simulations.

Two equation sets are widely used in nonhydrostatic
models: anelastic equations, from which the sound
waves have been filtered, and elastic equations, which
retain the sound waves. The principal advantage of the
anelastic equations is that a reasonably large time step
is allowed, the time step being limited by the fastest-
propagating gravity wave. However, use of the system
requires the solution of a multidimensional elliptic
pressure equation with every time step. While fast el-
liptic solvers exist for simple, uniform grids, the intro-
duction of orography or variable-resolution grids re-
quires the use of iterative solvers or the iterative use of
direct solvers (Clark 1977).

Sound waves are not important in atmospheric mo-
tions of meteorological interest and their high propa-
gation speed severely restricts the maximum allowable
time step in a numerical integration. In cloud modeling,
Hill (1974) was the first to use the fully compressible
elastic equations where the time step is limited by the
sound waves. These integrations are much more costly
than integrations of the anelastic equations, and several
methods have since been developed to speed the in-
tegration of the full-elastic set. Tapp and White (1976)
employ an elastic model wherein the terms responsible
for the acoustic modes are handled implicitly. A
Helmholtz equation for the second time derivative of
the pressure is solved using the alternating direction
implicit method (ADI; Peaceman and Rachford 1955).
Carpenter (1979) introduced terrain into the Tapp and
White model in a manner such that the form of the
Helmbholtz equation does not change; thus, this elliptic
equation is easier to solve than the corresponding
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equation in the anelastic model. Carpenter notes that
the Helmbholtz equation becomes nonregular with any
vertical coordinate system other than the one he em-
ploys.

Another approach to integrating the elastic equations
involves isolating the terms responsible for the acoustic
modes and integrating them with a smaller explicit time
step. This time-split approach, first proposed by Klemp
and Wilhelmson (1978; hereafter referred to as KW),
is appealing because it is computationally much simpler
than handling the acoustic modes implicitly or using
the anelastic system. The finite-difference equations
maintain their simple explicit form and no multidi-
mensional elliptic equations need to be solved, al-
though KW do solve a one-dimensional (1D) Helm-
holtz equation that arises with the implicit treatment
of vertically propagating sound waves. Orography is
easily handled in the time-split system, and the choice
of variables and coordinate systems is not tied to the
time-split method. The computational effort required
for integrating the anelastic and elastic systems is
roughly equivalent.

The relative simplicity, computational economy,
and freedom in the choice of variables and coordinate
systems has led many groups to develop nonhydrostatic
models based on the KW time-split technique. How-
ever, a complete analysis of this time-split system has
not been presented, though the general stability of the
scheme can be inferred from the analysis of Tatsumi
(1983), who examines the scheme in the context of a
hydrostatic model, and in the analysis of Ikawa (1988),
who is concerned with the effect of orography on
scheme stability. The anelastic models, and the elastic
models where an explicit time-split technique is not
used, lend themselves to relatively straightforward
analyses because of their single-time-step approach.
For example, Tapp and White (1976 ) present a stability
analysis based on the dispersion relation for the discrete
system where sound waves are handled implicitly. For
the KW time-split approach, separate analysis of a sin-
gle small or large time step (acoustic and nonacoustic
terms, respectively) are similarly straightforward, and
these results are presented in KW, Durran and Klemp
(1983; hereafter DK ), and others. However, the overall
stability of the time-split scheme cannot be extracted
by considering the small and large time steps separately;
rather, they must be analyzed as a coupled system.

A wider range of time-split schemes has been de-
veloped for hydrostatic models than for their nonhy-
drostatic counterparts. The approach of Marchuk can
be more generally termed an additive-splitiing scheme,
and more concrete examples are given by Burridge
(1975) and Gadd (1978). The additive-splitting
schemes can engender numerical noise in nonlinear
and even linear calculations (McGregor 1987; Purser
and Leslie 1991), and more sophisticated schemes have
been developed to circumvent this problem. We ex-
amine the additive-splitting schemes because they have
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proven to be very stable (Leveque and Oliger 1983)
and can form the basis for new schemes.

More sophisticated splitting approaches are also
used in hydrostatic models. Madala (1981) describes
a scheme that can be considered an extension of the
KW scheme though used in a hydrostatic model. Tat-
sumi (1983) presents a scheme that is identical to the
explicit KW scheme, again for use in a hydrostatic
model. Purser and Leslie (1991) present an extension
to an additive-splitting scheme that greatly reduces the
noise in their computations. Several semi-implicit
schemes are also used that possess interesting stability
properties.

As noted, the hydrostatic and nonhydrostatic elastic
systems can be integrated using the same general split-
ting techniques. In section 2, we outline a common
basis for their analysis. A more complete linearized
equation set for nonhydrostatic models will also be
presented because of our interest in analyzing the non-
hydrostatic systems in more detail. A brief discussion
of additive-splitting schemes is given in section 3. In
section 4, we present a detailed analysis of the KW
time-split approach. Some existing time-split schemes
are considered in section 5, along with analyses of sev-
eral possible new schemes. Conclusions and a brief dis-
cussion appear in section 6.

In section 4, we also introduce two new variants to
the KW scheme for use in nonhydrostatic elastic mod-
els. In particular, we present an acoustic filter based
on the concept of divergence damping, and a method
for handling the buoyancy term that results in a time
step no longer restricted by the buoyancy, an important
consideration when using the nonhydrostatic equations
for synoptic-scale simulations.

2. Equations

Our stability analyses, like most, focus on a linearized
version of the full nonlinear equations. First, consider
the linearized equations for the nonhydrostatic elastic
system. For a stability analysis of numerical methods
for solving the nonhydrostatic elastic system, it is gen-
erally sufficient to consider a 2D nonhydrostatic, elastic
equation set where a perturbation Exner function takes
the place of pressure. The approximate, quasi-Bous-
sinesq, linearized equations are

U+ cpx + Uu, =0, (1)

w, + ¢p, + Uw, — NO = 0, (2)
6, + Nw+ Ub, =0, (3)

Do+ cs(ux + w,) + Up, = 0. 4)

In these equations, u# and w are the horizontal and ver-
tical perturbation velocities, 8 is the potential temper-
ature divided by the Brunt-Viisild frequency N, p is
the perturbation Exner function divided by cs/(c,60),
¢, is the constant speed of sound, and U is a mean
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advection velocity. To further simplify the analysis,
vertical gradients of mean density are ignored. The ad-
vection term Up, is included in (4). Klemp and Wil-
helmson (1978) have alternately retained and discarded
this term and find little difference in their simulations.
Here the advection of p is kept because it results in a
symmetric set of equations that aids the analysis. Re-
sults from stability analyses where this term is dropped
differ only slightly from those presented here. This lin-
earized set is appropriate for shallow convection and
is essentially that derived by Phillips and Ogura (1962),
except that compressibility has been retained for com-
putation convenience.

To focus on time-integration methods, the spatial
discretizations are ignored at present and the spatial
structure of the variables is represented as a sum of
continuous Fourier modes,

¢ = ¢(2) explilkx + I2)],

where k and / are wavenumbers in x and z, respectively.
With this representation, (1)-(4) become

i, + ickp + ikUii = 0, (5)

W, + icdp + ikUw — N8 = 0, (6)
6, + Nw + ikUb = 0, (7)

Bu + icy(kid + W) + ikUp = 0. (8)

This is the linearized set we consider when analyzing
the stability of time-split numerical methods used in
nonhydrostatic elastic models.

In the development of time-split numerical methods
for hydrostatic models, the shallow-water system is of-
ten used to test the schemes. The extension of a time-
split scheme from the shallow-water system to the full
baroclinic primitive equations can be performed in
several ways, and examples of this extension can be
found in Gadd (1978), Madala (1981), Chao (1982),
Tatsumi (1983), and several other works. The 2D lin-
earized shallow-water equations used in these analyses
can be expressed as

u, + Uu, + Vu, + ¢.h + fo =0, 9)
v+ Uv,e + Vo, + chy, — fu=0, (10)
hy + cg(uy + vy) + Uh + Vh, = 0, (11)

where the horizontal velocities are « and v, ¢, is the
gravity-wave speed Vg_H, and £ is the height of the free
surface divided by c,/g.

Equations (9)—(11) are similar to a 2D acoustic-
advection system; the transformation requires replacing
¢, with ¢; and & with p, and the fast modes are the
sound waves in one and gravity waves in another. If
we drop the Coriolis terms in (9) and (10), remove
the mean velocity ¥V'in (9)-(11), and drop the poten-
tial temperature ¢ in (1)-(4), then the nonhydrostatic
system in x, z coordinates is identical to the shallow-
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water system in x, y coordinates. The Coriolis terms
in (9) and (10) do not significantly affect the stability
of schemes in most hydrostatic calculations, and the
buoyancy terms in (1)-(4) are easily incorporated into
time-split schemes in such a way as they do not ad-
versely affect scheme stability [see section 4d; Cullen
(1990); or Tanguay et al. (1990)].

The major stability constraints in both systems arise
from the sound in the nonhydrostatic system and grav-
ity waves in the hydrostatic system. Thus, the general
equivalence of the two systems implies that splitting
schemes applied to one system could be directly ap-
plicable to the other. Given this relationship, we analyze
the stability of time-split schemes in the context of the
nonhydrostatic system (1)-(4) in this paper, with the
understanding that the analyses also apply to the
schemes used for solving the hydrostatic system.

In the next four sections we examine the stability of
various time-split schemes for integrating (1)-(4), or
numerical schemes for integrating (9)-(11) applied to
(1)-(4). For N = 0, the continuous equations (1)-
(4) admit wave-type solutions that do not exhibit ex-
ponential growth; hence, numerical schemes for solving
(1)-(4) are deemed stable when solutions to the dis-
cretized equations do not grow. Two general stability
analyses will be used. In the von Neumann stability
analysis, the discretized system is written as ¢,
= A¢, and the numerical scheme is stable when the
amplification factor A4, or the eigenvalues of the am-
plification matrix A (for systems with more than one
dependent variable), have an absolute value less than
or equal to one. Further details concerning von Neu-
mann stability analysis can be found in the Appendix
and in Roache (1972). The second stability analysis,
in the spirit of traditional ordinary differential equation
(ODE) analyses, requires determining the dispersion
relation for the discrete system by assuming solutions
of the form ¢ = exp(—iwt), where the frequency w is
always real for solutions to the continuous set. The
discretized equations are stable when Im(w) < 0; Im(w)
> 0 results in exponential growth.

3. Methods based on additive splittings

The most straightforward time-split approach is that
based on additive splittings. Marchuk (1974 ) was the
first to suggest that additive-splitting methods be used
for atmospheric computations, and called it the split-
ting-up method. In this approach, analyzed in detail
by Leveque and Oliger (1983), the 1D advection-
acoustic-mode system (1) and (4) is written as

U 0 0 ¢
== ux_ X
"’ 0 U e 0"
——’

———
A, Ay

(12)

where the slow modes are contained in A, the fast
modes are contained in Ay, and u is the solution vector
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(u, p). The original system is recovered by adding the
matrices multiplying u,, hence Leveque and Oligers’
and our use of the descriptive term additive splittings.

The additive-splitting method seeks the solution to
the system (12) by alternating between the solution of
two simpler systems:

(13a)
(13b)

u = _Asuxa
u, = —Asu,.

By defining a discrete solution vector uj, at the discrete
time »n and spatial point m and defining two discrete
operators Qr and Q; that advance the solution vector
one time interval for the fast and slow modes, that is,
for the fast modes [(13a)]

uyt = Q[At)ur,
and for the slow modes [(13b)]

up = Oy(Anuy,

the solution to the system containing both the fast and
slow modes [(12)] can be obtained by applying these
operators in sequence to the solution vector u:

untt = QA1) Q[ At)uj,.

Two approaches have been used in applying the
splitting (14) to the shallow-water or primitive equa-
tions. Gadd (1978) and others have defined the op-
erator advancing the fast modes to be

(14)

oan = 0%(3).

where the operator Q. denotes an explicit integration
of the fast modes, and M time steps of A¢/M are used
to advance the solution vector. In the other approach,
the operator advancing the fast modes denotes an im-
plicit integration or possibly an ADI scheme (e.g., Bates
1984).

Leveque and Oliger show that the stability of the
individual operators Qrand Q; does not always ensure
overall stability for the time-split method because
scheme stability is intimately tied to the coupling be-
tween the slow and fast modes in the system. However,
the system ( 12) is symmetric, and Leveque and Oliger
have shown that for symmetric systems the solution
procedure is stable when the fast- and slow-mode op-
erators are stable (a more general result is given in
Leveque and Oliger). The stability analysis assumes
the use of single-time-level schemes (for example, Lax—
Wendroff) as opposed to multiple-time-level schemes
(for example, leapfrog). The stability analysis by Gadd,
and the experiences of Bates and McDonald (1982)
and others, lend practical evidence for Leveque and
Oliger’s result. Also of interest is that both analysis and
experience suggest that the use of multiple-time-level
schemes is problematic in this splitting approach.
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McGregor (1987), Purser and Leslie (1991), and
others note that the additive splitting (14) can con-
tribute significantly to the problems of spurious noise
in linear and, more importantly, in nonlinear calcu-
lations. The splitting (14) is only first-order accurate
in time. Strang (1968) gives a second-order-accurate
counterpart to (14):

A A
uyt = Qf({)QAAt)Qf(;’)u:;.

This splitting significantly reduces the noise in Mc-
Gregor’s calculations. Unfortunately, the splitting er-
rors can still be large (see Purser and Leslie’s examples).
No models based on additive-splitting methods are used
for nonhydrostatic calculations, and very few are still
used for hydrostatic computations.

In the additive-splitting approach the slow and fast
modes are integrated separately. In the next three sec-
tions, we will consider methods whereby, while the slow
and fast modes are still split in the sense that they are
integrated with different methods, the modes are in-
tegrated simultaneously in a more tightly coupled
manner. These methods have been developed as a
means of reducing the splitting error and the attendant
noise in additive time-split models.

4. Stability of the KW time-split method

The KW time-split scheme is similar to the explicit
additive-splitting methods in that terms responsible for
the acoustic modes are integrated with an explicit time
step that is smaller than the time step used for the ad-
vection and gravity-wave terms. However, KW inte-
grates the slow and fast modes simultaneously, as op-
posed to separately as in the additive-splitting methods.

The KW method uses a leapfrog time-integration
scheme for the slow modes, and in previous presen-
tations of the time-split scheme the buoyancy equation
(7) is integrated with the leapfrog time step At using
the discretization

81+A£ = 0!—At — )\NWI — i)\uet’ (15)
where N, = 2AtkU and Ay = 2AtN. The carat (') is
dropped over the Fourier variables for the remainder
of the paper, and all variables with the time superscripts
refer to transformed variables except where noted.

The remaining equations, (5), (6), and (8), are ad-
vanced with #, small time steps A7 from ¢ — Afto ¢
+ At, where n; = 2At/ Ar. Acoustically inactive terms
in the equations are evaluated using values at time ¢
and held fixed over the n; small time steps. The dis-
cretizations for the small time step equations as given
in KW are

U =y — T — ni A, (16)

c)
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T+AT _ T iACZ +A7 T l t t
w =w ——(p +p7) — — A+ MY,
2 n;
(17)
s
p‘r+A7 = p'r — lzc (WT+A7 + w-r)

—_ ikcxu‘r+A1 — ni }\upt, (18)

5

where ., = Arck and A, = Arcgl. Finally, a time filter
is applied to variables at the large-time-step intervals
to keep the time levels coupled (Robert 1966):

¢' = ¢k + a(d'™' — 2¢% + o),

where the asterisk (*) designates variables that have
not yet been smoothed. Next the stability of this
method is considered.

a. Stability analysis for explicit differencing

The interaction between horizontally propagating
acoustic modes and advection is responsible for the
most severe stability constraints in the KW time-split
method. These constraints can be examined in one
spatial dimension by an analysis of the discretized
equations (16) and (18). In one dimension, the rele-
vant untransformed continuous equations (1) and (4)
become

u + ¢csp + Uuy = 0, (19)
P+ cue+ Upx = 0, (20)
and the transformed discretized equations are
i
U =yt — Ap P Al (21)
pr+A7 . pr —_ i)\cxu—r+Ar —_ ni Aupt- (22)

§

First, consider the non-time-split system, that is, 7,
= 1. The discrete system is pure leapfrog for advection,
and forward-backward time differencing is used for
the terms multiplied by ¢; (Mesinger 1977). This
method is stable for |\, £ A,| < 2. In contrast, for
acoustic modes alone, stability of the scheme requires
|Aex| < 2, and for advection alone, |M,| < 2. Thus,
for acoustic modes coupled with advection, it is the
sum of the parameters that determines the stability
limit.

The dispersion relations for the continuous equa-
tions (19) and (20) and for the discrete system (21)
and (22) with n; = 1 are

WAL = %(xu +\,) = k(U % ¢)At
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and
WAL = sin“[%(ku + )\cx)],

respectively. As is well known, the leapfrog scheme has
no amplitude error (w is always real ) and has a positive
phase error, that is, as wA? (exact) approaches +1, the
dimensionless phase in the scheme approaches /2.

The amplification factors for the scheme are given
by A = exp[Im(wAt)], using wA¢ from the dispersion
relation for the discretized system. Figure 1a shows a
plot of the maximum amplification factor for the non-
time-split scheme (2Af¢ = Ar;i.e., n, = 1) as a function
of A\, and A... The line AB in Fig. la represents the
modes that will be present in a linear computation with
an example value of U/c¢; = 1/12. The slope of AB is
M/ Aex = 2UAt/ c, At and in Fig. 1 U/ ¢, = 142. Typically,
¢; > U, so the slope of AB will be small for a single
small time step per large time step (2A¢ = A7), and

(a)
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the maximum allowable large time step will result in
a Courant number (UkAt = A,/2) of much less than
1. In elastic models, the cost of evaluating all the non-
acoustic terms on the large time step such as advection,
mixing, etc. is much greater than the small-time-step
calculations, and the advantage of the KW time-split
scheme is that larger large time steps can be taken by
using several small time steps per large time step. In
most models, it is computationally more efficient to
have a slope for 4B that is order 1. The KW time-split
scheme raises the slope of AB by decreasing Ar, that
is, taking more small time steps for a given large time
step. As can be observed in Figs. 1a—d, the slope of AB
increases with increasing n, for a fixed U/c,. In practice,
the large time step is specified such that the Courant
condition for advection is 0.5 or less, so as to keep
phase errors within reasonable bounds. Having chosen
a large time step, the number of small time steps is
chosen such that the Courant condition on the hori-

)‘uf
-A 1 1 1
% Aea
(c)
T T
BB )|
(A ‘A
bt e 8y AL SRR NPT R
% Ao 2 Y% Ao 2

F1G. 1. (a) Amplification factor for the explicit acoustic-advection system with one small time step per
large time step. The thick line is the 1.0 contour and the minor contours are at intervals of 0.2. The stippled
region denotes an amplification factor greater than 1. (b) As in (a) with n, = 2, (¢) n;, = 6, and (d) n, = 12.

The lines AB are plotted using U/c¢; = /2.
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zontally propagating sound waves is close to 1. The
only concern with the acoustic integrations is stability,
not accuracy, hence the high Courant number for the
acoustic modes.

Note that in nonlinear computations, possible modes
lie along and below (to the right of) the line 4B and
not above (to the left of) 4B, because U will vary,
being bounded by some Uy, but ¢, will always be
large, and in some models a constant sound speed is
used (Droegemeier and Wilhelmson 1987). Hence, we
must have stability below and to the right of AB.

The stability diagram in Fig. 1a holds only for a
single small time step per large time step. The stability
space for n; > 1 must be examined to determine
whether anything is gained by increasing #,. For an
even number of small time steps per large time step,
the characteristic equation for the dispersion relation
for the discrete system is

2
(B2, — \.B,, + \%,) sin?(wAt) — A,,(B,,, - )‘—2‘-)
2 2
X sin(wAt) — { M2 — N 1 - Acc) _ 0, (23)
4 4
where
Bm—l - )\%x

B 1+ By~ A’

B, = 1 and m = ny/2. Equation (23) is derived by
taking n; small time steps with (21) and (22), elimi-
nating variables at times other than ¢, t — At, and ¢
+ At, and finally using a Fourier representation in time.
Figures 1b, Ic, and 1d show plots of the amplification
factor for n, = 2, 6, and 12, respectively. The usable
stable region in these diagrams is that directly to the

2.5 ——r——r—T————r——————r —
[ -]
I unstable 2]
4 Ve
[ 7
s s
e Ve
L // //
L7 ) SRR LR
7
[ L
wAt [ [ S ]
o S
A /7
[ v // _A
F B Prag
////’
L -~ C 1
O N WU [ ST S ST SR P SR S SR W S SN S
0 A 2

FIG. 2. Dimensionless frequency for the time-split system with
explicit integration of the acoustic modes, for wA¢ as a function of
Axwith(a)ng =2, A, =04,(b)n;=2,\,=0,and (c) n, = 1, A,
= (. The exact frequencies are illustrated with dashed lines.
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right and above the origin. The instabilities depicted
in these figures were first discovered by Tatsumi (1983)
in his von Neumann analysis of the 1D system for his
use of the KW scheme in a hydrostatic model. It is
immediately obvious that these instabilities cause the
usable stable region for the scheme to shrink dramat-
ically as more small time steps are taken, although the
amplification in unstable regions also decreases signif-
icantly.

The source of the instability responsible for the
shrinking stable region can be appreciated by closer
examination of the dispersion relation (23). With #;
= 2, the solution for sin{wAt) in (23) is

1 A2
sin(wAt) = 5 xu(l - —23‘-)

)\2 x%Z )\2 AZ 1/2
(1= (-] . (24
() =30 - e

Consider first the dispersion relation with no advection
(A, =0):

AZ 172
sin(wAt) = i)\cx(l — T‘*) . (25)

Figure 2 is a plot of wAt versus A, with n; equal to
1 and 2; wAt is the dimensionless frequency as observed
on the large time step. For a given At, the highest
acoustic frequency that can be present on the small
time step when #; equals 2 is double that present when
ns equals 1 (compare the exact frequencies in Fig. 2).
For n; equal to 1, there are no frequencies greater than
/2 in the stable regime; however, for n; greater than
one, higher frequencies exist on the small time step in
the stable regime and these higher frequencies are
aliased. Thus, while the single small-time-step scheme
becomes unstable after wAt = 7w /2 (period of 4At, A,
= 2), the scheme with two small time steps becomes
unstable after the frequency returns to zero and be-
comes complex [see (25)]. Critically important is the
fact that the large time step sees 4Ar modes for
Ax < 2, and for n; = 2, this occurs at A, = V2
[see (25)].

Next, consider the addition of advection on the large
time step. Examination of Fig. 1b reveals that two un-
stable modes, centered about A, = V2, arise with the
addition of advection. The instabilities derive from the
advection of the two acoustic modes (wAf ~ *w/2)
that appear as high frequencies on the large time step
over which the advection is calculated. Figure 2 in-
cludes a plot of wA¢ showing the positive root of (24)
for n; = 2 with X, = 0.4 (the instability to the left of
Aex = V2 in Fig. 1b). The instability is apparent and
is clearly linked to the wAt = #/2 acoustic mode.
The instability to the right of A\, = V2 in Fig. 1b is
associated with the advection of the — /2 acoustic
mode.
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Closer examination of Figs. la-d reveals several
more characteristics of the instability. First, the size of
the stable region shrinks with an increasing number of
small time steps. Second, the amplitude of the insta-
bility first encountered when moving from left to right
in the stability diagrams in Fig. 1 decreases with in-
creasing n,. Next, the width of the instability and its
maximum amplitude increase with increasing \,,. Fi-
nally, the number of +#/2 aliased modes increases
with increasing n,, and the actual number of *x/2
aliased modes is n,/2.

It is the first instability (aliased acoustic mode) en-
countered as A, is increased that is important because
this boundary will determine the maximum large and
small time steps that can be taken. The line 4B in Fig.
Ic has a slope six times that of 4B in Fig. la, repre-
senting a computation identical to AB in Fig. 1, except
that six small time steps are now taken per large time
step. Unfortunately, the maximum allowable large time
step is not six times as large for n, = 6 as compared
with n; = 1; hence, taking more small time steps does
not significantly decrease computational costs. Indeed,
the actual computational cost may increase.

The stability analysis suggests that the KW scheme
should not increase efficiency when more small time
steps are taken; the stable region shrinks and the large
time step cannot be increased appreciably. However,
this instability has not hampered the use of this KW
time-split scheme because the instability manifests itself
as short-period modes on the large time step (4A¢) and
these modes are efficiently damped by a Robert time
filter (Robert 1966; Asselin 1972). Figure 3 shows the
maximum amplification factor along the line AB as a
function of « for the case n; = 6. These results were
produced using the von Neumann analysis described
in the Appendix. Even for small values of the Robert
filter coeflicient o, the unstable modes are stabilized

0 Acz

FiG. 3. Amplification factor for integration of the modes on line
AB in Fig. 1c, where A, = A./2, versus the Robert filter coefficient
«. Contouring is as in Fig. 1.
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and the scheme can be run close to the limiting Courant
conditions for the individual large- and small-time-
step schemes. Thus, while the Robert time filter is used
to prevent temporal decoupling of the solution in the
large-time-step leapfrog scheme, it also serves to sta-
bilize the explicit time-split method of KW and masks
the fact that the stability of the individual small- and
large~-time-step schemes does not ensure the stability
of the coupled system. Tatsumi also recognized that
the Robert filter effectively damps these instabilities,
though he does not show that the instabilities are related
to the advection of high-frequency acoustic modes.

b. Stability analysis with implicit differencing

By treating the vertically propagating sound waves
implicitly, the large and small time steps do not interact
in the same manner as their horizontal counterparts.
The discrete equations for this case are (17) and (18),
with A, = 0, A,y = 0, and Ay = 0. In the linearized
equations (1)-(4) the mean vertical velocity is as-
sumed to be zero. In nonlinear computations, there
will be regions of significant vertical advection that can
have an impact on the stability of the overall numerical
scheme. Hence, we add a mean vertical advection and
(17) and (18) become

.)\cz .
W1+Ar — wr - %_ (p1-+A1 + pr) _ ;i_ )\WWI, (26)

8

T+AT

p =P‘2

2.9, i

SEWTE W) =S AP, (27)
where A\, = 2A1/W . For n, = 1, this system is equivalent
to the semi-implicit approximation analyzed by Kwi-
zak and Robert (1971). They have shown that the dis-
cretization

¢n+1 = ¢n—l _ i)\w¢n _ %ﬁ(d)rwl + ¢n—l)

is stable whenever A2 < 1 + \%,. We have verified that
this result remains valid for the system (26) and (27),
and the von Neumann analysis shows that the stability
criteria become even less restrictive as 7, increases, in
contrast to the horizontal case.

Increasing the number of small time steps per large
time step does not destabilize the implicit acoustic-
mode-explicit advection system. Figure 4 shows the -
frequency wAt for the implicit acoustic integrations for
n, = 2 and can be compared to the explicit scheme
results for n; = 2 in Fig. 2. The large time step does
see aliased wAf = =m/2 modes much as in the hori-
zontal case. However, the addition of advection does
not destabilize the scheme; the advection of high-fre-
quency acoustic modes is stable.

The strong stability of this leapfrog-based semi-im-
plicit scheme has been taken advantage of in many
nonhydrostatic models, for example, the United King-
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FI1G. 4. Dimensionless frequency wAt as a function of A, with
= 2 and (a) A\, = 0.4 and (b) A, = 0. The exact frequencies are
illustrated with dashed lines.

dom Meteorological Office model (Golding 1987; Cul-
len 1990), Tanguay et al. 1990, and others, and it forms
the numerical basis of many hydrostatic models.

¢. An acoustic-mode filter

Acoustic modes in nonlinear models are easily ex-
cited by model physics, boundary conditions, nonlinear
processes, etc., and in general it is beneficial to filter
these modes. The Robert filter does not damp acoustic
modes directly, since it operates on the large time step.
In order to provide some filtering of the acoustic modes,
DK introduced the off-centered time differencing for
the implicit terms in the vertical momentum equation
and pressure equation. Equations (26) and (27), with
the off-centering parameter included, become

1+ 1 — ]
w1+A7 =@’ — i)\cz ﬂpf+AT + 6p-r _1- )\wwt,
2 2 s
(28)
1+ -
p‘r+A7 = p-r - ixcz( 2 ﬂ w-r+A-r + 1 2 B WT)

_iy
n A’ (29)

Using 3 > 0 preferentially damps high-frequency
modes that have vertical structure, although it does
not damp horizontally propagating modes with vertical
wavenumber 0. A filter for horizontally propagating
sound waves has been proposed by Ikawa (1988),
where (22) is replaced by

lL+vy .4 1 —9
Ut + —u’
2 2

pr+A‘r — p1 _ ixcx(

i
- — A2
n

S
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The KW scheme is recovered by using ¥ = 1. Ikawa
suggests the use of ¥ > 1 to filter horizontally propa-
gating sound waves and 3 = 1 to filter vertically prop-
agating sound waves along with Robert time filtering.
Von Neumann analyses confirm that using v > 1 will
further stabilize the time-split scheme because it damps
all horizontally propagating modes.

We believe that filtering the acoustic modes by using
8 > 0 and v > 1 can be detrimental to the solution,
because these filters provide at least some damping of
all propagating waves with horizontal or vertical struc-
ture. Therefore, a new acoustic filter has been con-
structed based on the characteristic that only the
acoustic modes have nonzero divergence. Divergent
modes can be selectively damped by including an ad-
ditional term in the momentum equations. Ignoring
advection, the new system is

U+ CsDx — agDy =0, (30)

w,+ ¢sp, — N8 — auD, = 0, (31)
6, + Nw =0, (32)

.+ c¢.D =0, (33)

where D = u, + w,. The addition of the terms involving
the divergence in (30) and (31), with a suitable choice
of ay, is an effective filter for acoustic modes. This can
be demonstrated by forming an equation for the di-
vergence from (30) and (31):

D, + ¢3Vp — N8, = azV?D.

The inclusion of the new terms serves to diffuse the
divergence, thus filtering the sound waves. Divergence
damping is applied on the small time steps in the KW
scheme. The divergence terms are evaluated at time
level 7 in the small-time-step system and, as expected
with an explicit evaluation of a V2-type dissipation
term, stability requires that azAr/AX? < 1/,

The divergence damping does not appreciably damp
any other modes in the system. Intuitively, we would
expect this because the anelastic equations, which ex-
plicitly require that the divergence be zero, are suc-
cessfully used for atmospheric simulations. The dis-
persion relation for the linear system (30)-(33) with
the divergence damping terms included is

w* + iog(k? + P)w? — [c}(k? + I?) + N?]w?
— jogk®N*w + c2k*N? = 0. (34)

While the damping properties of the scheme are not
obvious in (34), we can surmise that the new terms
should have little effect on the gravity waves because
the terms involving a, cancel when the anelastic grav-
ity-wave frequency w? = k?N?/(k? + I?) is substituted
into (34). By nondimensionalizing ( 34) with the zero-
order acoustic frequency w§ = c?(k? + I?)? and defin-
ing a small parameter € = az(k? + 12)'/?/c;, the dis-
persion relation (34) can be written as
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— (1 + N?)a* — ieN*(1 — )&
+N(1 -1 =

&4 + ie@3

where & = w/w, is the dimensionless frequency, NV V2
= N?/[c2(k? + I*)], and (1- ) = k*/(k? + 1?).
Representing & as an expansion in the small parameter
€, & = &y + €@, + 2@, + -+ -, we can solve for the
corrections to the solution of the original system &.
" The first-order correction is

— A1 - 1?) — @3
wy = Iw .
! 483 — 2@0(1 — A2)

Figure 5 shows the first correction term @, relative to
wo (i.e., @ /&) for the gravity-wave frequency. This
imaginary component of the frequency results in
damping of the waves, and over a single wave period
a wave will be damped exp[27e(w;/@)]. This damp-
ing is negligible. The next-order correction has been
calculated and is significantly smaller then the leading-
order correction term.

This acoustic filter also stabilizes the explicit acous-
tic-advection system. For example, the damping pro-
vided by the use of a Robert filter coefficient of 0.2 in
Fig. 3 is approximately equaled by using a dimension-
less divergence damping coefficient ayc;?Ar ™! = 0.1.
Divergence damping is a viable alternative to Robert
time filtering for stabilizing the explicit acoustic mode-
advection instability.

Our linear stability analyses have been verified with
nonlinear integrations of the nonlinear version of (1)~

(4). Moreover, in integrations where we include the.

divergence damping, and where there is no mean sta-
bility, we have produced stable integrations without
the use of the Robert time filter. Divergence damping
does not prevent decoupling of time levels often ob-
served in leapfrog integrations, so Robert filtering is
still needed in most calculations;, however, the results

FIG. 5. Correction term &, /&y divided by 7.
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of integrations using divergence damping increases our
confidence in using a small Robert coefficient. In cloud
models, the typical value of ¢ is 0.1-0.2. Now a = 0.05
or less is used. Also, the divergence term must be dif-
ferenced in a manner that would produce the correct
discretized divergence equation and pressure equation
as derived from the discretized momentum equations
and pressure equation, that is, the discretization of the
divergences and pressure gradients must be consistent.

Finally, we note that the concept of filtering the di-
vergence is not entirely new. Hydrostatic primitive
equation models have made use of similar terms in the
horizontal momentum equation where the divergence
of the horizontal wind field is diffused. This damps
internal and inertial gravity waves. The approach was
first presented by Morel and Talagrand (1974) in the
context of data assimilation. It has since been used in
models by Sadourny (1975), Bates and McDonald
(1982), and others. It is stressed that our application
uses the divergence of the full wind field and leaves
gravity waves essentially unaffected. Also, artificial
compressibility methods for solving the incompressible,
steady-state Navier-Stokes equations also make use of
divergence damping (Ramshaw and Mousseau 1990).

d. Stability of the gravity-wave modes

In the KW time-split scheme, the interactions be-
tween propagating and advecting components of sound
and gravity waves also lead to instabilities similar to,
though generally weaker than, those arising from the
interaction of horizontally propagating and advecting
portions of acoustic modes. These instabilities are not
present in the non-time-split system.

For (15)-(18), with n; = 1, the dispersion relation
is

s M) 2 Q2+ 20
Smeat—5 8(1 + \./4)

AR+ AL/
XP%‘(M+&+M4 T<m

Disregarding advection and acoustic modes, the sta-
bility requirement for the buoyancy calculations is Ay
< 2. Stability of the acoustic-gravity-wave scheme re-
quires that the right-hand side of Eq. (35) be less than
or equal to one. The stability requirement from (35)
is, surprisingly, -

A N < 4, (36)

and is not A2, + A} < 4 as might be expected. Here X\,
only serves to change the amplitude of the instabilities,
and as A, = oo the scheme is unconditionally stable.

A von Neumann analysis of the KW system (15)-
(18), for n, > 1, reveals weak instabilities for Ay < 2.
Figure 6 depicts the stability space for the scheme as a
function of A.,, A.., and Ay. The instabilities reported
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FI1G. 6. Amplification factor for the acoustic—gravity-wave system.
On the x axis 0 < Ay < 3, on the y axis 0 < A, < 2, and on the z
axis 0 < A, < 10. The y-z plane lies at Ay = 2. The region where
| 4| = 1.0 is enclosed by the contour surfaces. Note the instabilities
found in the region Ay < 2.

by DK, which were remedied by off centering the semi-
implicit part of the small time step [8 > 0 in (28) and
(29)], likely are the instabilities shown in Fig. 6. Fil-
tering the acoustic modes with the divergence damping
effectively removes the instabilities for Ay < 2, and use
of a nonzero § is no longer necessary, even in case of
large atmospheric stability.

For large atmospheric stability, that is, when a
stratosphere is included in the domain, At is increas-
ingly limited by the buoyancy (Ay) as Ax grows large
(wavenumber k grows small). In simulations where
AXx is only a few kilometers, the atmospheric stability
has little effect on the allowable time step, but when
Ax grows larger than 10-20 km, the time-step limi-
tation can become significant. This is apparent in (35),

where the term multiplying the term in the large brack- -

ets represents the acoustic mode. As k decreases and
At increases, the stability condition A} < 4 becomes
more restrictive than A2, < 4 because the stability starts
contributing appreciably to the acoustic-mode fre-
quency. While the stability criterion (36) is for n; = 1,
the limit is not appreciably altered by increasing #, for
large Ar.

We are employing nonhydrostatic models on the
mesoscale and the synoptic scale (Snyder et al. 1991),
and have encountered this time-step restriction. To
circumvent the restriction, we employ a technique
where the vertical advection of § and the buoyancy
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term in the vertical momentum equation are computed
implicitly on the small time step.

The discretized equations replacing (15) and (17)
are

*

A
e = g7 — 7N(W7+A7 + WT) _ i)\uot’ (37)
and
w1+Ar = W' — Qﬂ% (p-r+A1' + p'r) _ _l_ A W’
2 ng
AN prea
+ > (6775 + 07y, (38)

where Ax = Ay/n,, and the divergence-damping term
presented in (31) has been omitted. In the dispersion
relation for the linear system (16), (18), (37), and
(38), the 1 + \2/4 term in the denommator of the first
term in (35) becomes 1 + A2/4 + \x?/4. Hence, the
stability limitation associated with Ay is removed. Von
Neumann analyses show that this result is valid for any
number of small time steps per large time step. Also,
# can be computed explicitly on the small time step
with a stability restriction of A} < 2.

The addition of the implicit interdependence of 6
and w does not complicate the small-time-step solution
procedure. As in the original KW system, only a one-
dimensional Helmholtz equation needs to be solved;
6 is advanced in a manner analogous to p on the small
time step. In the full nonlinear model, the term anal-
ogous to the linear term Nw in (3) will be the nonlinear
term w(x, y, z, t)0(x, y, z, t)/0z. The new term
must be linear if it is to be computed implicitly on the
small time step. This is accomplished by vertically ad-
vecting the perturbation potential temperature on the
large time step, w'd[6 — 6(z)]/dz, and advecting the
time-independent mean on the small time step, 1/2( w’
+ w™t47)d8(z)/dz. We have compared three versions
of the scheme, the first with buoyancy calculations
completely on the large time step (the traditional KW
scheme), the second with the vertical advection of
buoyancy and the evaluation of the buoyancy term in
the vertical momentum calculation performed explic-
itly on the small time step, and the third being the
scheme described by (37) and (38). In all cases, no
discernible differences in the solutions have been found.
This observation holds even when the mean buoyancy
profile 6( z) does not represent the buoyancy profile in
an individual column well, as in the case with a sloping
tropopause. In semi-implicit hydrostatic models, the
choice of a reference temperature profile about which
to linearize the vertical advection of buoyancy appears
to be more critical. This is analyzed in detail in Sim-
mons et al. (1978).

The general approach of integrating the terms re-
sponsible for gravity waves in the same manner as the
acoustic terms was introduced simultaneously by Cul-
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len (1990) and by Tanguay (1990) in semi-implicit
nonhydrostatic models. An extension of the technique
to the explicit time-split scheme of KW has been pre-
sented.

5. Alternative schemes

The KW time-split scheme appears to be the best
available explicit time-split method for integrating the
hydrostatic and nonhydrostatic systems based on its
stability and simplicity. However, there are two major
reasons for seeking an alternative scheme. The Robert-
filtered leapfrog scheme is not second-order accurate
in time (see Durran 1991) and higher time accuracy
is desirable, particularly when using highly accurate
spatial discretizations. The leapfrog scheme is also
somewhat ineflicient in that the acoustic modes must
be integrated from ¢t — At to ¢ + At for each time step.
Schemes that would allow integrations from only ¢ to
t + At halve the computations required to integrate
the acoustic modes.

The interaction between acoustic modes and advec-
tion has the greatest impact on the stability of the time-
split schemes, hence, several advection schemes will
be examined for the linear momentum equations (5)
and (6) with the acoustic modes intggrated using the
small-time-step scheme given in (16)-(18). Examples
from two classes of schemes will be considered: pure
time-integration schemes in which the spatial discre-
tization need not be considered and forward-in-time
schemes for advection where the spatial discretization
and flow direction must be included in the analyses.

Before examining new schemes, we consider a
scheme that is very similar to the KW splitting scheme
and that is commonly used in hydrostatic models.

a. Madala’s scheme for hydrostatic models

Madala (1981) presents a scheme for use in a hy-
drostatic model. Using the notation in section 4, in-
tegration of the acoustic-advection system (or the
analogous shallow-water system) with Madala’s scheme
can be examined using the following difference equa-
tions:

t+ar —Ar

Ut =y D! — N,

t+at - At
p

=D - ixcx’z[ - Aupt:

where the operator ¢’ is defined as

~ 1 1+ AL
= — dt.
¢ 2At J;—At ¢

This scheme is equivalent to using a leapfrog scheme
for all modes, except that the pressure gradient and
divergence terms are differenced using time-averaged
values. To obtain these time-averaged values, Madala
integrates the small-time-step equations similar to (21)
and (22) used in KW and averages the results over the
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small time steps. Thus, Madala’s scheme is equivalent
to first using the explicit KW scheme in its entirety,
but afterwards discarding the KW results except for
the time-averaged values, and then using leapfrog and
the time-averaged values to compute the new values.
Is anything gained by including this extra step?

The results of a von Neumann stability analysis for
the Madala scheme where there are six small time steps
per large time step are given in Fig. 7 and should be
compared with the KW results in Fig. 1c. The insta-
bilities associated with the advection of acoustic modes
are still present and they are more severe than in the
KW scheme. Also, the stability limit for the acoustic
integration without advection, in the absence of Robert
filtering, is no longer A, < 2, which is the stability limit
for the KW scheme regardless of the number of small
time steps per large time step. The loss of stability arises
because of the averaging of the small-time-step results.
Robert filtering with a coefficient « = 0.15 effectively
removes the first instability to the right of the origin.
Overall, Madala’s scheme offers no advantage over the’
KW scheme even though it requires more work.

b. Pure time-integration schemes

There are few alternate time-integration schemes that
might be attractive alternatives to leapfrog. The largest
cost in a model time step is that arising from the eval-
uation of the large-time-step terms, that is, advection,
mixing, model physics, etc. In order that the model be
economical, only a single evaluation of these terms per
time step is desirable. Also, schemes that require mul-
tiple evaluations may be difficult to time split in a
straightforward manner. For example, it is not clear
how one would use a fourth-order Runge-Kutta
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FiG. 7. Amplification factor for the explicit acoustic-advection
system with the Madala (1981) scheme. There are six small time
steps per large time step. Contours are as in Fig. 1.
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scheme for evaluating the advection terms in a time-
split model.

One possible scheme for evaluating the large-time-
step advection terms is the third-order Adams-Bash-
forth scheme (AB3) recently reexamined by Durran
(1991). For the equation

d¢

—=F 39

A (¢) (39)
the AB3 time integration scheme is

¢I+Al _ ¢t
At t =4t 1—2At
= 5 [23F(6") = 16F(¢'%) + SF(¢*241).

Only the term F(¢') needs to be computed for the
time step, the other evaluations of F have been com-
puted and stored in the two previous time steps.

For horizontally propagating and advecting acoustic
modes, the discretized system is

uT+AT =y’ — ixcxp"
i)‘u t t— At 1—2A1
- m (23u' — 16u + Su ),
p1'+AT = pf — ikcqu+AT
D‘“ ! —At =24t
—E(Z:ip — 16p + 5p ).
s

In this scheme, n; = At/ A7 small time steps are taken,
marching from time ¢ to time ¢ + Az. In this case, A,
= AtkU as opposed to A\, = 2AtkU in the leapfrog anal-
ysis. The results of von Neumann analyses of the
scheme are given in Fig. 8. Instabilities similar to those
found with the leapfrog time-split scheme are present.

0 .L/.I.. B AN i
0 Mea 2

FIG. 8. Amplification factor for the explicit acoustic-advection
system with the third-order Adams-Bashforth scheme used for ad-
vection. There are six small time steps per large time step. Contouring
is as in Fig. 1.
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FIG. 9. Amplification factor for the implicit acoustic-advection
system with the third-order Adams-Bashforth scheme used for ad-
vection. There is only one small time step per large time step and
results are shown for both a centered and off-centered implicit scheme
where 8 = 0, 0.2, 0.4, and 0.6. The contours are at 1.0 and the
stippling denotes the side of the contours where the amplification
factor is greater than 1. The instabilities that appear adjacent to the
A, axis for increasing values of 8 are not for modes present in most
calculations.

However, the strength of the instabilities are much
larger than in the leapfrog scheme (cf., Fig. 1d), and
explicit small time steps are not feasible with the AB3
scheme, even with divergence damping.

Durran has analyzed the semi-implicit scheme given
in (26) and (27) for the case where the advection terms
are evaluated using AB3 and where the small time step
is equivalent to the large time step. The results for the
von Neumann analysis are given in Fig. 9. Off centering
the implicit calculations, that is, § > 0 in (28), will
damp the instabilities. However, the acoustic compu-
tations would need to be implicit in all spatial direc-
tions, and a multidimensional Helmholtz equation
would need to be solved.

Durran (1991) also briefly discusses other time-
stepping schemes, one of which is the second-order
Magazenkov method (Magazenkov 1980). The
method consists of alternating leapfrog time steps with
second-order Adams-Bashforth (AB2) time steps. The
AB2 scheme for integrating (39) is

A
9" — ¢ = Z[3F(4") — F(9')].

Again, only one function evaluation per time step is
needed. As a time-stepping scheme where F(¢) = i\,
AB2 is unconditionally unstable. However, the insta-
bilities are weak for small Courant numbers and several
modelers have employed the scheme for short-time in-
tegrations with viscosity (Deardorff 1974; Moeng
1984).
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Interestingly, Magazenkov’s combination of the
neutral scheme and the unconditionally unstable
scheme produces a stable scheme that damps slightly.
The Magazenkov scheme allows a maximum Courant
number of 0.71 for pure advection. The stability dia-
gram for the Magazenkov scheme used in a time-split
system where the acoustic modes are integrated ex-
plicitly on a small time step with #; = 6 is given in Fig,
10. The instabilities associated with the advection of
high-frequency acoustic modes appear but are much
weaker than in the AB3 scheme. Nonlinear calculations
with the scheme reveal that these are sufficiently
damped by divergence damping. The limiting Courant
conditions for the time-split system are essentially the
limiting conditions for the individual small- and large—
time-step scheme. Implicit integrations for the verti-
cally propagating acoustic modes reveal no added in-
stabilities that are not sufficiently damped by the di-
vergence damping. Thus, the Magazenkov scheme ap-
pears to be a reasonable alternative to the leapfrog
scheme for the large-time-step calculations. Its only
drawback is the increased coding complexity involved
in alternating schemes every time step, which may be
significant in large codes.

Kurihara (1965) suggests another alternating-
method scheme in which the leapfrog step is corrected
with a trapezoidal step. The scheme is

o = 6N + 2ALF(4Y),
9" = ¢!+ 2L LF(4%) + F(9)]

and is second order in time. While two function eval-
uations are needed per time step, the maximum allow-
able Courant number is 1.41; thus, larger time steps
may be used and the scheme may have an efficiency
comparable to leapfrog and the Magazenkov scheme.
In the time splitting, the KW small-time-step scheme
is used to advance the solution from ¢t — At to ¢t + At
to arrive at the predictor value ¢* and is also used to
advance the solution from ¢ to ¢ + Atz in the trapezoidal
step. The stability characteristics of the Magazenkov
scheme and leapfrog-trapezoidal scheme are similar;
thus, the scheme provides a possible alternative to
leapfrog for the time-split system. Again, coding com-
plexity appears to be the primary drawback.

No other pure time-integration scheme is known that
might be suitable for a time-split model, either because
the schemes require multiple function evaluations per
time step or because there is no clear way to incorporate
them into the time-split approach.

¢. Forward-in-time schemes for advection

There are many forward-in-time advection schemes
that could be used for the advection terms in a time-
split model. The forward-in-time schemes are attractive
because of the high accuracy and the possible mono-
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FIG. 10. Amplification factor for the explicit acoustic-advection
system with the Magazenkov scheme used for advection. There are
six small time steps per large time step. Contouring as in Fig. 1. The
instabilities at 1.3 < A, < 1.7 are adequately damped using divergence
damping.

tonic and positive-definite characteristics possessed by
many of the schemes. The schemes also allow integra-
tion of the acoustic modes in a time-split scheme from
t to t + At, cutting in half the small-time-step com-
putations of the leapfrog-based time-split scheme.

Many of these schemes are nonlinear; thus, they
cannot be considered in a linear stability analysis. A
class of linear, forward-in-time schemes referred to as
Crowley schemes is analyzed by Tremback et al.
(1987). This section examines the second-order-ac-
curate Crowley schemes for use in the time-split model,
and comments are made on the higher-order Crowley
schemes as well. The second-order-accurate Crowley
scheme is

«
A=t — 3 (Pje1 — di-1)

o?
+ 5 (@)e1 — 20 + @51),

where « is the Courant number UAt/Ax or WAt/ Az.
Analysis of the scheme with the acoustic modes requires
that the finite-difference spatial discretization be con-
sidered. The Arakawa C grid is used for the spatial
discretization. The small-time-step equations (16)-
(18) remain the same, but the frequencies A must be
redefined. Discretization on the C grid and Fourier de-
composition in space results in a new acoustic-mode
parameter:

Acx

SAT
= 2eAr s1n(k—A-)—c) . (40)

Ax 2
In our notation, A, for the Crowley scheme is

Ay = —ia?[1 — cos(kAx)] + a sin(kAx). (41)
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Replacing x with z and k with / gives the new A,,. As
with previous systems, the most stringent stability re-
strictions result from the advection of propagating
acoustic modes, and we will set Ay = 0 in (16)—-(18).

Figure 11 depicts the stability region for #, = 6 with
explicit integration of the acoustic modes for the 4Ax
horizontal-wavelength mode. The instabilities asso-
ciated with the advection of high-frequency acoustic
modes are significantly stronger for this scheme than
for the leapfrog scheme (compare Figs. 11 and Ic).
Divergence damping and other filters will help control
the instabilities, particularly those associated with the
short-wavelength horizontal modes. However, the
longer-wavelength modes are also unstable, and while
the instability is weaker for longer wavelengths, it covers
a larger portion of the A, — A, stability domain. The
longer-wavelength modes are not appreciably damped
by most filters; hence, the use of this Crowley scheme
with explicit integration of the acoustic modes is not
recommended.

The stability of the higher-order Crowley schemes
has been examined for use in the explicit time-split
algorithm. It is found that the higher-order Crowley
schemes excite weaker instabilities than their lower-
order brethren. In general, the increased damping in
the lower-order schemes on the large time step leads
to larger instabilities associated with the advection of
the acoustic modes. The higher-order Crowley schemes
have less damping and smaller instabilities, and the
counterintuitive result is that the scheme with less
damping is more stable. Through sixth order, however,
the instabilities are still more severe than those arising
in the KW scheme, and the long-wavelength instabil-
ities remain.

Results from the analysis of the Crowley schemes
can be directly applied to the use of semi-Lagrangian
schemes for advection in an explicit time-split ap-

0 AT/ Azx 1

FIG. 11. Amplification factor for the explicit acoustic-advection
system for the 4Ax mode with the first-order Crowley scheme used
for advection. There are six small time steps per large time step.
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proach. The stability and accuracy analysis of a semi-
Lagrangian advection scheme using Lagrange poly-
nomial interpolators is given in Bates and McDonald
(1982). Consider the 1D quadratic semi-Lagrangian
advection with a Courant number o = UAt/Ax
< 1/2. Introducing Fourier modes into the spatially dis-
crete system allows one to express the scheme as

! = o'+ [—-az(l — coskAx) — ia sinkAx]¢’.
(42)

Equation (42) is (9) in Bates and McDonald, with p
= 0. The parameter )\, for the semi-Lagrangian scheme
is that given by (41) in our analysis of the Crowley
schemes. Thus, our first result is that the semi-Lagran-
gian schemes would be expected to behave like the
Crowley schemes when used in the time-split approach
of KW. Note that the acoustic integrations are not per-
formed along the trajectory, and we do not know of
any attempts to construct a split-explicit semi-Lagran-
gian model where the fast-mode integrations are per-
formed along the trajectory.

Purser and Leslie (1991) present a time-split ap-
proach that uses semi-Lagrangian advection and is
based on the traditional additive-splitting scheme but
introduces a small-large time-step coupling similar to
that used in KW. The notation of Purser and Leslie is
used in describing the scheme. First, A/ small time steps
(adjustment steps in Purser and Leslie) are taken to
advance the fast modes:

un,m+l = un,m + i)\CXpn,m + M_‘FZ:I’M, (43)

pn,m+l = pn,m + i)\CXun,mH + M_IFZ:I’M, (44)
where 7 is the time level and m is the number of small
time steps taken at that time level. The semi-Lagrangian
advection term F% is defined, using (42), as

m o — ; 2,
Fy" = —i\ub™,

and likewise for F},. After the small time steps, the
advection used in the small time steps is subtracted
out:

u:‘,M — un,M — Fﬁ:lM and p:,M = pn,M _ F;:lM
(45a), (45b)

The large time step (advection ) is computed using these
results:

un+1,0 = u:,M + FZ'.M

(46)
(47)

pn+l,0 = pz,M + FZ:«M
Note that the advected quantity used in the operator
Fin (43) and (44) is that recovered at the end of the
previous set of small time steps and not the value re-
sulting from the previous complete time step; thus, only
one advection calculation is performed every time step
and the result is saved for reuse on the next time step.
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First, we note that the scheme described above is
not that given in Purser and Leslie (1991). In Purser
and Leslie, the scheme is incorrectly stated in that the
Lagrangian advection terms used in the small time steps
[the leftmost terms in (43) and (44)] should be sub-
tracted out before the large time step, as described here,
as opposed to being subtracted out affer the large time
step, as described in Purser and Leslie (J. Purser, per-
sonal communication ). However, the model calcula-
tions reported in Purser and Leslie were performed with
the correct scheme (43)-(47).

This scheme differs from the traditional additive-
splitting scheme in that a time-lagged advection is now
included on the small time steps. This time-lagged ad-
vection is then subtracted from the small-time-step
results before the advection step is taken. A stability
analysis of this scheme shows that it possesses stability
properties similar to that of the Crowley scheme used
with the KW approach examined earlier in this section.
Thus, the scheme does not appear to present a viable
alternative to the KW scheme. Although Purser and
Leslie present results from stable integrations using this
scheme, filters are used in their shallow-water integra-
tions, and they have found that their scheme is unstable
for Courant numbers o greater than 1 (J. Purser, per-
sonal communication ).

Implicit integration of the acoustic modes using the
Crowley schemes for advection can be examined by
considering the simple discrete equation

A (118
2 \72

¢n+l+1—6¢n)’

2
(48)
where A, and A, are given in (40) and (41), respec-
tively, with w replacing u and z replacing x. For the

second-order Crowley scheme, the amplification factor
for (48) is

¢n+l — ¢n — iqu&n —

_ 1 — A, — l>\cz(1 —B/z)
T 1+ (14 8/2)

Figure 12 shows the stability space for this scheme.
Both short- and long-wavelength instabilities exist,
though both are effectively damped by off centering
the implicit acoustic-mode integrations. The higher-
order Crowley schemes possess these same stability
characteristics when coupled with implicit integration
of the acoustic modes. Thus, the Crowley advection
schemes can be used in models where the acoustic
modes are integrated implicitly, but the acoustic in-
tegration must be off centered for stability. Also, as
with any fully implicit acoustic-mode integrations, a
multidimensional Helmholtz equation must be solved.

Filtering will damp the instabilities in schemes with
explicit and implicit integration of the acoustic modes.
Divergence damping and off centering of the vertically
implicit small time step have been used with mixed
results in nonlinear models where the horizontally
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FI1G. 12. Amplification factor for implicit acoustic-mode integration
with the second-order Crowley scheme used for advection. There is
one small time step per large time step. Contouring is as in Fig. 10.

propagating acoustic modes have been integrated ex-
plicitly. The models have not proven as stable as the
leapfrog-based time-split model. Time-split models
have also been constructed using the nonlinear forward-
in-time scheme of Smolarkiewicz (1984), and the sta-
bility of the calculations follows that of the Crowley
scheme, that is, filtering is needed and calculations are .
often unstable. In general, hybrid models have shown
the most success where forward-in-time schemes are
used (L. Wicker, personal communication ); the hybrid
models advance the scalars with the forward-in-time
scheme, and momentum is handled with the traditional
leapfrog scheme.

6. Conclusions

Both the hydrostatic and nonhydrostatic elastic
equations can be solved using the same time-split nu-
merical methods. In our analysis of explicit time-split
numerical methods, where no multidimensional elliptic
equation need be solved, we conclude that the leapfrog-
based time-split method of KW is the most appropriate
for integrating the hydrostatic or nonhydrostatic sys-
tems. All other schemes possess some greater drawback;
for example, schemes are less stable, require excessive
damping for reasonable stability, or significantly in-
crease code complexity. In particular, the method of
Madala (1981) can be viewed as a more complex ex-
tension of KW that does not increase accuracy or sta-
bility. As outlined by McGregor (1987) and Purser
and Leslie, additive-splitting techniques can result in
noisy solutions, and while they have been used in hy-
drostatic computations, they are not used in nonhy-
drostatic models.

Forward-in-time advection schemes have been an-
alyzed for their use in a KW time-split model. These
schemes excite instabilities associated with the advec-
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tion of acoustic modes and, for the Crowley schemes
analyzed with explicit integration of the acoustic
modes, the instabilities tend to be much larger than
those associated with the leapfrog scheme. These in-
stabilities grow smaller in the higher-order schemes. In
particular, use of the Crowley schemes excite a long
horizontal-wavelength instability that is not easily
damped using standard filters. These observations, and
tests with nonlinear models, strongly suggest that the
Crowley schemes are unsuitable for use in an explicit
time-split model based on a KW-type small time step
with a forward-in-time slow-mode integration. This
result is likely to apply to many other forward-in-time
advection schemes. Purser and Leslie’s (1991 ) method,
which makes use of forward-in-time semi-Lagrangian
advection in an additive-splitting approach that incor-
porates a small-large time-step coupling in some ways
similar to that in KW, does not improve on the gen-
erally poor stability of the split-explicit forward-in-time
schemes.

We have introduced two extensions to the original
KW scheme to improve its performance. First, an
acoustic filter is described that eliminates the need for
strong Robert filtering of the solution. The new filter,
which we refer to as divergence damping, also removes
the need for off centering the vertically implicit acoustic
integration in KW, introduced by DK to damp nu-
merical instabilities in cases possessing strong mean
atmospheric stability. Divergence damping is preferable
to other forms of damping because it only damps di-
vergent modes; it leaves gravity waves largely unaf-
fected. Second, we have presented a scheme wherein
the vertical advection of buoyancy and the buoyancy
term in the vertical-momentum equation are handled
implicitly on the small time step. This scheme, used
by Cullen (1990) and Tanguay et al. (1990) in semi-
implicit nonhydrostatic models, removes all stability
restrictions based on the Brunt-Viisili frequency and
leaves the large time step restricted by the advection
velocity and the small time step restricted by the hor-
izontal sound-wave velocity.

It is possible to use a greater variety of advection
schemes in conjunction with implicit integration of
the acoustic and/or gravity-wave terms. The implicit
schemes coupled with leapfrog integration of the slow
modes are very stable and are used successfully in many
hydrostatic and nonhydrostatic models. When an im-
plicit fast-mode integration scheme is used with the
Crowley, semi-Lagrangian, and other forward-in-time
advection schemes, short- and long-wavelength insta-
bilities exist that are not present in the leapfrog-based
schemes. Moderate off centering of the implicit acous-
tic-mode integration does damp the instabilities, as does
divergence damping in both hydrostatic and nonhy-
drostatic models. Thus, implicit integration of the fast
modes is an attractive alternative to the split-explicit
approaches. However, one must solve a multidimen-
sional elliptic equation when using an implicit method.
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The major portion of this paper focuses on the sta-
bility of explicit time-split integration schemes with
the general result being that at least some minimal fil-
tering is always necessary. The stability of implicit
methods has also been examined where convenient,
and it has been found that these methods generally
require less filtering for stability than their split-explicit
counterparts. However, in actual nonlinear applica-
tions, especially when using real data, the filtering used
in split-explicit models is generally no more than that
used in the implicit models. Also, in nonhydrostatic
applications, the acoustic filter described previously
selectively damps the acoustic modes, while the Robert
time filter and the off centering of implicit schemes
damps all high-frequency modes. Thus, the relative
merits of split-explicit and implicit approaches should
focus on relative numerical efficiency and simplicity.
In terms of CPU time needed on present-day machines,
we have found the computational costs of the two
methods to be roughly equivalent for general atmo-
spheric flow simulations (though in specific applica-
tions one scheme may be more economical than the
other).

We also note that machine architectures are chang-
ing rapidly, and algorithms that work well on existing
serial computers may not work well on massively par-
allel computers. In particular, while it appears that the
split-explicit schemes will map well onto the new mas-
sively parallel architectures, it is not obvious how to
efficiently solve elliptic equations on the massively
parallel machines. Further evaluation of the different
schemes awaits future hardware/software and algo-
rithm development.
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APPENDIX

The von Neumann stability analysis, as described
in Roache (1972, pp. 42-45), requires that the discrete
system (21) and (22) be written as a matrix equation
of the form ¢*2' = A¢'. The matrix A is the amplifi-
cation matrix, and for stability its eigenvalues must
have an absolute value of less than or equal to one.
Analysis of the small-large time-step coupling requires
that the full time step be contained in the matrix A:
that is, the large time step, #n, small time steps, and any
filtering.

A full time step, (21) and (22 ) with Robert filtering,
can be represented as follows:

u +AL an;Lu t ,
where

—_ t t — At 1—At1T
ul—[ufsp19u’p’u » D ] .
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The square matrices L, S, and F represent the large
time step, small time step, and Robert filter—variable
reset, respectively, and are order 6. The time step can
be written in more compact form, but this form mirrors
the actual computation in that in the typical model
the large time step is taken first, followed by n; small
time steps, and finally a Robert filter and a resetting
of the variables. At the beginning of a time step, ¢~
= ¢'~*. In this example, the large-time-step matrix is
the identity matrix because no variable is advanced on
the large time step. If buoyancy was included as in
(15), it would be advanced with the application of the
matrix L. The matrices S and F are

1 —iAee N/ A 0 00
—Mex 1= A —Aehu/Bs —iNu/ns 0 0
S = 0 0 1 0 00
0 0 0 1 00
0 0 0 0 10
0 0 0 0 01
a 0 1-2« 0 a 0
0 « 0 l1-2a 0 «
E= 1 0 0 0 0 0
0 1 0 0 0 0
a 0 1-2«a 0 a 0
0 « 0 1~2a 0 «

For the von Neumann analysis, A = FS™L. The sub-
routine CG is used in the EISPACK software library
on the NCAR CRAY Y-MP8/64 to find the eigen-
values of the matrix A. All von Neumann stability
analyses presented in this paper are computed in this
manner.

It should be noted that in cases where there is more
than one eigenvalue of the matrix A equal to 1, the
stability condition that all the eigenvalues of the matrix
have an absolute value of less than or equal to 1 is a
necessary, though not a sufficient, condition. A suffi-
cient, though not necessary, condition for stability in
these cases is that the spectral norm of the matrix A
be less than or equal to 1. The lack of sufficiency arises
because the spectral radius of A (its largest absolute
eigenvalue) is used to approximate the spectral norm
of A. We have checked our stability results and found
that the spectral radius is a good approximation to the
spectral norm in the cases presented. A detailed analysis
of the stability requirements is given in Sod (1985),
along with examples where the spectral radius does not
accurately approximate the spectral norm.
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