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ABSTRACT

Although atmospheric phenomena tend to be localized in both time and space, numerical models generally
employ only uniform discretizations or fixed nested grids. An adaptive grid technique implemented in 2D and
3D nonhydrostatic elastic atmospheric models is described. The adaptive technique makes use of separate
rectangular refinements to increase resolution where truncation error estimates are large. Multiple, rotated,
overlapping grids are used along with an arbitrary number of discrete grid-refinement levels. Refinements are
placed and removed automatically during the integration based on estimates of the truncation error in the
evolving solution. The technique can be viewed as an extension of the nesting technique often used in atmospheric
models.

The adaptive model integrates the compressible, nonhydrostatic equations of motion. Although sound waves
are not significant in the solution, they do constrain the time step. A splitting technique is used to accommodate
the sound waves by advancing certain terms with a separate smaller time step. The terms responsible for gravity
waves are also integrated with the smaller time step, and with the acoustic modes filtered through the use of
divergence damping, the resulting model can be run as efficiently as hydrostatic models. Boundary conditions
developed for the splitting technique in the adaptive framework are described and tested in the 2D and 3D
models. The adaptive technique is shown to be efficient when compared to single fixed-grid simulations. Two
new features are included in the basic solver.

Also considered are additional complications that arise because of the necessary use of parameterized physics.
The dependence of many parameterizations on grid scale creates difficulties in evaluating truncation error and

VOLUME 121

raises more general questions concerning solution error in nested and adaptive models.

1. Introduction

The increasing speed and memory of supercompu-
ters allows for the explicit resolution of an ever larger
range of scales of atmospheric motion in a single com-
putation. This can be seen clearly in the global forecast
models that are now being run regularly with spatial
resolution of order 100 km. Atmospheric motions of
interest, though, span many more scales than it is pos-
sible to capture explicitly in a single computation.
Nonhydrostatic motions may contain significant fea-
tures on scales ranging from several meters to tens of
kilometers with time scales of seconds to many hours.
Hydrostatic motions, in which nonhydrostatic features
are embedded, have scales orders of magnitude larger
than the nonhydrostatic motions. The inability to ex-
plicitly resolve this large range of motion scales in nu-
merical models has hindered the study of scale-inter-
action issues.
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We believe that the next generation of mesoscale~
cloud-scale models should be suitable for studying scale
interactions between nonhydrostatic and hydrostatic
motions and would benefit from the utilization of
adaptive grid-refinement techniques. The purpose of
this paper is to present an approach for selectively en-
hancing resolution within portions of a nonhydrostatic
mesoscale model through the use of adaptive grids. The
adaptive method was developed by Berger and Oliger
(1984 ) and uses multiple overlapping fine grids to in-
crease resolution. The fine grids function similarly to
the more conventional two-way interactive nested
grids. However, the adaptive grids can change size,
shape, location, and number in response to evolving
structure in the simulation. In the next section, we will
briefly review nested and adaptive modeling techniques
and describe the Berger and Oliger adaptive method. |
In section 3, we present the equations and discretization
used in a simple 2D model. We employ an elastic
equation set and a variant of the solution technique
described in Klemp and Wilhelmson (1978), which
includes a sound-wave filter and a modified split-time-
step solution method. Two-dimensional adaptive sim-
ulations of a gravity current are shown in section 4.
Timing results demonstrate that the adaptive method
is effective. The gravity-current simulations also illus-
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trate the consequences of using parameterizations that
depend on the grid scale. These parameterizations are
responsible for nonconvergence of the solutions and
make model verification difficult. In section 5, results
from a 3D, fully compressible, nonhydrostatic, moist
interactive-adaptive cloud model demonstrate the ro-
bustness of the numerical algorithms and the straight-
forward extension of most 2D adaptive algorithms to
the moist 3D problem.

2. Nested and adaptive modeling techniques

For the 2D and 3D models we employ the adaptive
mesh refinement technique (AMR) of Berger and Oli-
ger (1984) and use the nonhydrostatic, compressible
equations of motion. This section begins with an out-
line of the AMR procedure, continues with a brief re-
view of other adaptive solution approaches, and con-
cludes with a discussion of other nested-grid models
used for atmospheric simulations. AMR has much in
common with the nested-grid models and various grid
nesting issues will be considered.

a. Adaptive mesh refinement

AMR is one in a class of techniques for automatically
improving the solution accuracy in the numerical in-
tegration of a set of partial differential equations. AMR
is a Jocal refinement technique in that it adds grid points
as a means of improving the solution accuracy, as op-
posed to a global refinement technique, which redis-
tributes grid points. AMR has been successfully used
for many fluid-flow problems, including large-scale
hydrostatic atmospheric flows (Skamarock et al. 1989),
transonic airflow (Berger and Jameson 1985; Berger
and Colella 1989), and steady-state and time-depen-
dent Navier-Stokes equations (Caruso et al. 1986;
Perng 1990).

The adaptive solution procedure for hyperbolic sys-
tems begins with a coarse-grid solution valid at some
time ¢, The numerical error (normally the truncation
error) in the solution is estimated at the grid points.
Where the error is greater than some predetermined
tolerance, the points are flagged, indicating that the
area needs refinement. Rectangles (the fine grids) are
fit enclosing these points. The grids may overlap and
they need not be aligned with the base grid. Initial con-
ditions for the fine grids are interpolated from the
coarse grid or possibly from previously existing fine
grids. Next, the coarse and fine grids are integrated
from time ¢ to time ¢ + Atz (coarse). The time steps on
the fine grids are smaller than those on the coarse grid
in order to keep Ax/ At constant on the different grids
(as is appropriate for hyperbolic systems). Fine-grid
boundary values are interpolated, spatially and tem-
porally, from the coarse grid or from the fine grids in
places where fine grids overlap. When all grids have
been integrated over the coarse time interval, the so-
lution at the coarse grid points that lie inside of a fine
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grid are replaced (updated) with an appropriately av-
eraged value from the fine grids. This process may now
be repeated for the next time step. The error estimate
and re-creation of the fine grids need not occur at each
time step but rather only at specified intervals. By pe-
riodically reestimating the error and creating new fine
grids, the grids can move with whatever is responsible
for the high error, usually some prominent solution
feature. A fully adaptive method is achieved by allowing
for error estimation on the fine grids and the intro-
duction of still finer grids.

The philosophy of AMR is to use regular finer grids
to resolve features that are not resolved on the coarser
grids and to do this automatically. Also, phenomena
not resolved on the coarse grid are not allowed to prop-
agate through a fine-grid boundary out onto the coarse
grid; rather, the fine grids are replaced so that the re-
finement moves with the feature. If phenomena reori-
ent, grow, or decay, then the fine grids are reoriented,
changed in size, added, or removed. It is in this capacity
that AMR differs from traditional nested models where
grids are stationary or where a single fixed-size grid
follows a single solution feature.

AMR offers certain advantages over other adaptive
approaches. All grids are regular; hence, preexisting
solvers can be used with the AMR routines as well as
fast solvers that work only on regular grids. Grid reg-
ularity results in shortened development time and pre-
serves and extends previous model development efforts.
Also, the experience derived from constructing nested
models can provide guidance in the development of
more robust boundary condition and updating rou-
tines. Finally, the AMR routines can be used with par-
allel and distributed solution techniques.

This paper outlines boundary condition specification

for the interior fine grids, updating procedures, and

presents general test results for the nested-adaptive grid
approach using a nonhydrostatic, elastic set of equa-
tions. Details of the error-estimate procedures are given
in Skamarock (1989). Algorithmic details and data
structures, along with a more general overview of
AMR, can be found in Berger and Oliger (1984).

b. Other adaptive approaches

Several approaches have been developed for adaptive
grid refinement. Other options that can be classified as
local refinement methods involve adding grid points
or dividing grid cells (see Dannenhoffer and Baron
1986; Kallinderis and Baron 1989) or dividing ele-
ments (Hawken et al. 1991). In these approaches, there
is only one grid, and the irregularity of the grid gives
rise to a complex solution algorithm and prevents the
use of standard solvers. The primary advantage these
techniques have over AMR is that the refinement can
be more easily tailored to the phenomena and that
fewer grid points need to be used. We know of no efforts
to construct an atmospheric model using these ap-
proaches.
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Global refinement methods are receiving increasing
attention from atmospheric modelers. In the global re-
finement techniques, grid points move automatically
so that they are clustered in regions where the solution
error is high. The governing equations are transformed
from physical space, where the grid is nonuniform,
possibly nonorthogonal, and in motion, to computa-
tional space, where the grid is regular and stationary.

The global refinement techniques are not Lagrang-
ian; the grid points are not advected by the flow. The
distribution of points must be computed at each time
and the most popular methods involve solving a set of
elliptic equations that are derived from a combination
of variational problems. The variational problems at-
tempt to maintain certain grid properties, typically or-
thogonality and grid smoothness. A weighting function
serves to attract points to regions where they are needed.

The global refinement techniques offer one major
advantage over most local refinement techniques—the
transition between regions of high resolution and low
resolution is smooth. This feature removes some of the
wave-reflection and wave-dispersion problems that can
occur in local refinement methods where points are
added to a regular grid or where nested fine grids are
used. Although this feature is highly desirable, the
global methods also have several undesirable features.
First, the grid is no longer regular. The transformation
to computational space produces numerous additional
terms that need evaluation, and the transformation
metrics also must be recomputed each time step. The
grid must be generated anew each time step, most often
by solving a set of elliptic equations. Also, in time-
dependent problems where the equations are integrated
with explicit methods, the time step is limited by the
stable time step for the smallest grid volume. Finally,
increasing the resolution in one region reduces reso-
lution in another, and it is only by adding points that
a given overall solution accuracy can be guaranteed
(here we are concerned with the maximum local error).
Even with these potential drawbacks, progress is being
made in developing economic global refinement mod-
els for atmospheric computations ( Dietachmayer and
Droegemeier 1992; Dietachmayer 1992).

¢. Nested-grid models

The fine grids in AMR function as two-way inter-
active nested grids commonly used in atmospheric
models. Grid nesting has been used extensively in hy-
drostatic models. Examples in a research setting are
the Pennsylvania State University-National Center for
Atmospheric Research Mesoscale Model (MM4)
(Zhang et al. 1986) and, in an operational setting, the
NGM used at the National Meteorological Center
(Hoke et al. 1989). In both cases, the grids are fixed
in both number and location, though recently the MM4
has incorporated the ability to have multiple fine grids
that move in time (G. Grell, personal communication).
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Applications where the fine grids are allowed to move
include the hurricane models of Harrison (1973) and
Jones (1977). These nested models are not truly adap-
tive in that 1t must be known a priori where increased
resolution will be needed.

There are fewer nested nonhydrostatic models. Clark
and Farley (1984) constructed a nested model based
on an anelastic set of equations. The system allows
multiple nesting, but they cannot be rotated with re-
spect to the base grid, and multiple, overlapping grids
cannot be used on the same refinement level. Solution
of the elliptic pressure equation in the nested config-
uration does not appear to impose any significant
computational penalty. Chen (1991) describes a nested
nonhydrostatic model that uses a compressible (elastic)
equation set. This nested model does not require the
solution of any multidimensional elliptic equation.

We have chosen to use the compressible nonhy-
drostatic equations as opposed to the anelastic set for
several reasons. While the computational cost of in-
tegrating either set on a single grid or in a simply nested
system is comparable, integrating the anelastic set on
multiple overlapping grids is very expensive compared
with the elastic set. The solution of the pressure equa-
tion on overlapping grids must be treated as a set of
coupled problems. Solution techniques exist (See Ca-
ruso et al. 1986; Oliger et al. 1990; Thompson and
Ferziger 1989), but all these require some form of it-
eration among the overlapping grids. Solution of the
elastic set on overlapping grids requires no information
exchange between grids when integrating over a time
step.

The use of overlapping, arbitrarily oriented fine grids
is highly desirable when trying to refine features that
are not aligned with the base grid. In particular, fine
grids can be aligned with the flows, thus reducing trun-
cation error, and fewer overall grid points need be used
in the refinements. An example of this is given in
Fig. 1.

Fine-grid rotation is difficult to achieve when using
the anelastic system or any system in which exact mass
conservation is important, because interpolations for
boundary conditions and averaging for updating must
be conservative. Conservation of mass or any other
quantity in the nested system has been considered by
Clark and Farley (1984), Kurihara et al. (1979), and
others, and it can be stated as follows. Given the quan-
tity ® on the coarse grid and the corresponding quantity
¢ on the nested fine grid, where ® and ¢ are fluxes,
the quantities will be conserved in the interpolation
and averaging procedures if

> ¢iAl = ®,AL, (1)
where A/ is the grid length on the fine grid, AL is the
grid length on the coarse grid, and the fine-grid variable
is summed over a single coarse-grid interval. It is also
required that the fine grid and coarse grid are aligned,
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FiG. 1. Nested-grid example for {a) a single fine grid, (b) multiple, nonrotated fine grids, and (c) multiple,
rotated fine grids. Multiple, rotated fine grids allow possible alignment with the flow and more economical

coverage of the phenomena.

and a coarse grid length is an integer multiple of fine
grid lengths. In this example we are considering the
2D problem; in three dimensions lengths are replaced
by areas in (1).

Equation (1) can be satisfied during the updating
process by appropriate averaging of the fine-grid values
inserted onto the coarse grid; thatis, ®, = 2 ¢;Al/AL.
Interpolation formulas for boundary conditions can
also be designed so that they satisfy (1). Kurihara et
al. use a linear interpolation formula, and Clark and
Farley use a quadratic formula, though it is formally
only first-order accurate. All interpolation schemes that
we are aware of are formally only first-order accurate.

Clark and Farley show that the use of conservative
updating and interpolation schemes leads to superior
solutions in their nested system. This has also been
observed in applications of AMR in other fluid-flow
problems such as transonic airflow (Berger and Jame-
son 1985) and incompressible Navier-Stokes calcu-
lations (Caruso et al. 1986; Perng 1990). These results
can be expected in any system where there is a strict
mass-conservation condition, such as in the anelastic
equation set or incompressible Navier-Stokes equa-
tions, or in systems where small errors in the mass
divergence can lead to large errors in the solutions,
such as in systems containing shocks. Unfortunately,
simple conservative interpolation and averaging for-
mulas are not available for grids that are not aligned.
Berger (1987) describes possible algorithms but they
are complex. The remapping routines used in the ar-
bitrary Lagrangian—-Eulerian schemes (Dukowicz and
Kodis 1987) are conservative but are complex and
prohibitively expensive.

Hydrostatic nested and adaptive models generally
have not used conservative interpolation and averaging
procedures (for example, Skamarock et al. 1989; Zhang
et al. 1986; Jones 1977; Harrison 1973; and others).
The elastic nonhydrostatic system is similar to the hy-
drostatic system in that both have prognostic, hyper-

bolic equations for pressure, as opposed to the anelastic
system and other systems that have diagnostic, elliptic
equations for pressure. The similarity suggests that
strictly conservative interpolation and averaging pro-
cedures are not essential for the elastic model. This has
been found to be true for the elastic system, and further
comment on this can be found in section 4. Since (1)
does not need to be satisfied identically, general inter-
polation and averaging formulas can be applied, and
grids do not need to be aligned.

3. 2D equations and discretization

For boundary conditions and updating tests, a sim-
plified model is employed that utilizes the 2D, Bous-
sinesq, dry-adiabatic equation set. The discretization
follows Klemp and Wilhelmson (1978) with two sig-
nificant modifications.

a. Equations and discretization

The inviscid, dry, adiabatic equations used in the
2D model are

u om_ _ ou_ ou 2)
a  ox  ox "z

ow or (6 W ow

—_— o e— 1=y — —w—

a ez g(e ) “ox Vo O
or Sf0u | ow\
az“S(aeraz)_O )

and

LVl ) NS

ot v gz_ ox a0z

Equations (2)-(5) are the horizontal and vertical
momentum, pressure, and thermodynamic equations,
respectively. The fluid velocities in x and z are u and
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w, tespectively; 6 is the potential temperature; 8(z)
is the mean potential temperature, « is the perturba-
tion Exner function [Exner function II = II + =
= C,0(p/po)®/*]; g is the gravitational constant; ¢ is
time; and c; is the speed of sound. The sound speed is
constant. This system is appropriate for shallow con-
vection (Ogura and Phillips 1962) and is a Boussinesq
system, except that compressibility has been retained
for computational convenience. Alternatively, rescaling
the velocities with a reference density would result in
a system identical in form but appropriate for deep
convection.

A time-split scheme is used whereby the terms re-
sponsible for the sound waves are separated from the
remaining terms and integrated with a smaller time
step. The discretization is similar to that developed by
Klemp and Wilhelmson (1978). Differencing of the
equations occurs on a staggered grid where the veloc-
ities u; are defined at points a distance Ax;/2 in the
ith coordinate direction from the points where the
pressure and potential temperature are defined (i.e., a
C grid). The leapfrog time discretization requires in-
tegrating the equations from ¢ — Az to ¢ + At with the
time-tendency terms evaluated at time ¢. In this time-
split scheme, terms responsible for both the acoustic
and gravity wave modes [the left-hand side terms in
(2) through (4)] are integrated from ¢ — At to ¢t + At
with # small time steps of A7 = 2At/n. The advection
terms are evaluated at time ¢ and are held fixed over
the small time steps. The new scheme presented here
differs from that in Klemp and Wilhelmson in that the
thermodynamic equation (5) is advanced with the
small time step A7 and the buoyancy term in (3) is
evaluated on the small time step.

Defining averaging and differencing operators

ot = %(¢5+A5/2 + dng2)
and

1

0:p = A_S (beras2 — Pe-ner2),

the discretizations for (2)-(5) are

”ﬁAATT— Yt ben — aDy = F, (6)
w'*‘z; w’ 4 % (5,77 + 6,777
T T 2+ S (5wt B = 0
At 2
(3)
BT+ZT_ & + % (W6.8 +wo5,8) = Fyp (9)
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F, =~ —wou
F, = _mx _ mz
Fy=~[wo.(0—0)] —ub0
and

D=06u" +o,w.

The terms on the right-hand sides of (6)-(9) are eval-
uated at time ¢. Equations (7), (8), and (9) are linear
in z, and the vertical velocity w, the pressure =, and
the potential temperature 6 are obtained each small
time step by inverting a single tridiagonal matrix for
each column.

The method described above is stable, but some fil-
tering is necessary to control noise when sharp fronts
form. A second-order spatial filtering term is added to
the rhs side of the momentum equations and the ther-
modynamic equation. The term is of the form »V? and
the values from time ¢ — At are used to maintain sta-
bility. Also, a time filter is needed to keep the different
time levels of the solution coupled. The filter used is
described by Robert (1966) and is

O = dL + v(¢TY = 20L + GLHA),

where the variables ¢4 have yet to be filtered.

The primary differences between this discretization
and the Klemp-Wilhelmson discretization is the in-
troduction in the present scheme of the calculaticn of
the buoyancy terms on the small time step, given in
(7) and (9), and the addition of the terms involving
the divergence in (6) and (7). A complete stability
analysis for this system along with justification for the
changes to the original KW scheme can be found in
Skamarock and Klemp (1992).

Briefly, the additional terms in the momentum
equation (aD,, aD;,) act to damp the divergence and
thus filter out the sound waves. Divergence damping
has only negligible effect on other, nondivergent, modes
in the system. The divergence used in the filter is the
full divergence and not just the divergence of the hor-
izontal velocity components. With the introduction of
divergence damping, the offcentering of the vertically
implicit piece of the small time step (see Durran and
Klemp 1983) has been removed, and the time filtering
has been decreased.

In the original KW model, where all the buoyancy
calculations are performed on the large time step, the
large time step is limited by the buoyancy frequency
with the restriction being roughly of the form NAt
< 1. For small grids (Ax less than a few tens of kilo-
meters), this stability restriction is not broached.
However, with the application of nonhydrostatic mod-
els to larger-scale flows, larger A¢’s are desired and this
stability restriction becomes significant. By shifting the
buoyancy calculations to the small time step, the max-
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imum large time step is now limited only by the ad-
vection velocity and the dissipation terms.

b. Boundary condition and updating algorithms

For updating coarse-grid values that lie within a fine
grid, the fine-grid values are first averaged over an
equivalent coarse-grid volume, after which the new
coarse-grid values are bilinearly interpolated from these
averaged values. Interpolation is necessary when a fine
grid is rotated with respect to a coarse grid because
coarse- and fine-grid points may no longer coincide.

Boundary conditions are required for both the coarse
and fine grids. The coarsest grid has its boundary con-
ditions satisfied through some numerical representation
of the physical boundary conditions. Fine-grid bound-
ary conditions are obtained by quadratic spatial and
linear temporal interpolation of all variables, except
pressure, to the fine-grid boundaries from the interior
of the coarser grid(s). The interpolated variables in-
clude a velocity normal to the boundary and, Ax,/2
inward from the boundary, a tangential velocity and
all other variables excluding pressure. Thus, the fine-
grid boundary values vary linearly in time over both
their large and small time steps. Note that this requires
only a single interpolation of a coarse-grid tendency to
the fine-grid boundary per coarse-grid time step; the
tendency is held fixed over the fine-grid time steps.

As noted in section 2a, boundary values for over-
lapping fine grids must be interpolated from the other
fine grid where possible. However, the fine grids are
independently integrated over a single time step, and
boundary values for the small time steps between ¢ and
t + At are not yet available from the neighboring fine
grid. In this case, the boundary values needed on the
small time step between ¢ and ¢t + At are linearly
extrapolated using the boundary values at time ¢ and
t — At. The extrapolated values are replaced with the
values interpolated from the overlapping fine grids after
the full time step is complete for both grids. This pro-
cedure allows the grids to be independently integrated
over the small time steps, with boundary values ex-
changed only at the end of the full time step.

The discretized pressure equation (8) needs no
boundary conditions for solution on the interior grids;
the finite-difference stencil is complete with the spec-
ification of the normal and tangential velocities. How-
ever, the boundary pressure calculations have been
modified in two ways. A reduced sound speed is used
when applying (8) to the pressure points at the bound-
aries (typically using ¢, = 100 m s™!), and after the
small time steps and large time step are complete, the
boundary pressures computed using the reduced sound
speed are replaced with values interpolated from
coarser grids or from an overlapping fine grid.

Two observations led to the use of these pressure
boundary conditions. First, when the overlap between
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two fine grids is small, the use of (8 ) with no additional
conditions on the pressure can produce a numerical
instability. Decreasing the sound speed along the fine
grid boundaries in the pressure equation (8) stabilizes
the calculations for overlapped grids with very small
overlaps. Second, if the boundary pressures computed
using (8), with or without the reduced sound speed,
are not replaced with values interpolated from the in-
terior of another grid (either coarse or fine, computed
using the correct sound speed), the pressure solution
can diverge in a fine-grid overlap region or between
the fine and coarse grid at the boundary.

We presently have no analysis that illuminates the
nature of the overlap instability or shows why the
modified pressure boundary conditions work. Intu-
itively, we surmise that using the reduced sound speed
in computing the boundary pressure slows the sound
waves, reduces reflection, and allows for more efficient
removal of acoustic energy by filters in the model. By
replacing the pressure at the end of the time step, the
coarse- and fine-grid pressure fields remain closely
coupled.

The linear temporal variation of the fine-grid
boundary values does not allow for proper transmission
of sound waves through boundaries. Proper acoustic
transmission would require that boundary-value in-
terpolations and updating occur every small time step.
While the overhead associated with updating and in-
terpolations is small in the present scheme, the over-
head would not be insignificant if interpolations and
updating occurred every small time step. For example,
the cost of boundary interpolations and updating range
from a few percent to 15%-20% of the total CPU time
in the integrations presented in sections 4 and 5. The
overhead depends on the complexity of the equation
set and the size and distribution of fine grids. Also, the
filtering of sound waves and the disregard for proper
sound-wave transmission through the boundaries is
consistent with the time-splitting approach; the sound
waves have little energy and are meteorologically in-
significant; hence, they are filtered and no effort is made
to properly resolve them.

Other pressure boundary conditions have been tried.
In particular, boundary pressure could be specified by
interpolation as are all the other variables. This works
well in the dry Boussinesq system but has led to some
unstable calculations with the 3D, fully compressible
moist model. As noted, the pressure can be allowed to
float because (8) needs no boundary conditions in the
C-grid discretization. In general, this produces noisy,
poor solutions. Conservative interpolation and updat-
ing procedures can also be used with all of these con-
ditions, but their use does not affect overall stability.
Also, while the sound-wave filter discussed previously
is sufficient to control sound-wave reflection at the
boundaries when used with the conditions described
previously, it does not stabilize other unstable condi-
tions.
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Yet another type of boundary condition is possible.
The fine-grid boundary conditions described by Chen
(1991) for use in a nested, nonhydrostatic split-explicit
model are radiative with respect to sound waves. How-
ever, the boundary conditions described here are much
simpler than those proposed by Chen. Divergence
damping, and the adaptive philosophy of keeping phe-
nomena that are poorly resolved on the coarse grid
contained within the finer grids, appears sufficient for
producing acceptable nested grid solutions.

Before continuing, we note that fine grids may over-
lap by varying amounts and there may be a consider-
able overlap in the case where the grids are rotated
with respect to each other. When fine grids are not
rotated, the grids can be positioned such that there are
no points that are on the interior of both grids. In this
case, the grids abut one another. Note that the overlap
instability discussed in this section is most severe when
grids abut. We consider boundary values to be part of
the grid, and abutting grids are ones that have mini-
mum overlap. In all adaptive solutions shown in this
paper, the fine-grid boundary values are plotted along
with the interior values, and grid boundaries are drawn
on the outermost row of interpolated boundary values.

4. 2D adaptive model examples

In this section, adaptive results for two different flows
are presented. Both flows in the adaptive simulations
result in horizontally propagating gravity currents, one
starting from the release of a cold bubble in a closed
box, and the other arising from the collapse of a cold
pool (Skamarock and Klemp 1989). In the first sim-
ulation, the viscosity is fixed and a grid-independent
solution is very nearly attained. However, in the second
simulation the viscosity is a function of the resolution
and the solution does not converge. This nonconver-
gence has implications for the evaluation of any so-
lution computed with adaptive, nested, or any grid re-
finement models in which parameterizations are a
function of the resolution.

Before discussing the gravity-current results, we note
that the boundary and updating algorithms described
in the previous section have also been tested by per-
forming a series of collapsing bubble experiments sim-
ilar to those performed by Clark and Farley (1984)
and Orlanski (1976). The experiments are designed to
test the propagation of gravity waves through the
boundaries from fine to coarse grids and involve in-
tegrating a nested grid system using an initial condition
consisting of a box of constant-f air placed in an at-
mosphere of constant stability. In our test, a 9-km
X 9-km domain and a 1.8-km square neutral bubble
were used. Figure 2 depicts the error kinetic energy .
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FIG. 2. (a) Total KE/ 100, (b) error kinetic energy from the Clark
and Farley scheme, and (c) from the scheme described in section 3b
for the bubble-collapse experiment.

along with the total kinetic energy for two nested bub-
ble-collapse experiments, one using the Clark and Far-
ley interpolation procedures and the other using those
described in section 3b. Here Au and Aw are the dif-
ferences between velocities in the fine-grid solution and
the nested solutions. The results of these experiments
are similar to those presented in Clark and Farley but
differ in one aspect. The conservative-reversible inter-
polation scheme does not improve the overall accuracy
of the grid-nesting procedures for the elastic system.

a. Cold-bubble experiments

All physical boundaries in this simulation are solid,
free-slip surfaces. The domain length is 24 km and its
height is 12 km. The initial cold bubble is specified as
follows:

0, L>1
Al =

—15[cos(xL) + 11/2, L <1,
where '

_ 2 _ 291/2
L=[(X Xo) +(z 220)

x? z?

and x, = 0, x, = 4000 m, z, = 3000 m, and z, = 2000
m. The initial velocities are zero and the initial pressure
7 is computed by solving the anelastic pressure equa-
tion. The model parameters used in the runs are AXx,,
Az, =300m, At, =4.0s, At =0.5s, a = 0.05, and »
=75m?s7 L.
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Figures 3a and 3b depict the results at 900 s for fixed-
grid simulations with 300- and 33.3-m resolution. The
coarse-grid simulation cannot capture the billows that
form behind the gust-front head. However, the general
shape of the gravity current is well captured, and sur-
prisingly, the gust-front position is the same in both
the coarse- and fine-resolution simulations. Generally,
the propagation of the gust front is independent of the
resolution, though it does depend on the viscosity.

Adaptive simulation results are shown in Figs. 3¢
and 3d. In the adaptive simulations, the refinement
ratio is 3 and the model computes the truncation errors
and replaces the fine grids every 25 coarser-grid time
steps. Thus, the fine grids are replaced every 100 s when
one refinement level is used and, for two levels of
refinement, the finest level grids are replaced every
33.3s.

The adaptive simulation with a single level of re-
finement resolves the overall structure of the billows
fairly well. There is still significant Gibbs phenomena
associated with the propagating front and with the tail
of the gravity current. The noise from the Gibbs phe-
nomena is advected into the billows, particularly the
leftmost billow. The adaptive simulation with two levels
of refinement, where the finest grids have 33.3-m res-
olution, compares well with the single fine-grid run
(compare Figs. 3b and 3d). The Gibbs phenomena are
almost entirely removed and the position and shape
of the billows are virtually identical in the two simu-
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lations. For most purposes, the solutions are identical,
though there are small differences. For example, the
middle billow in the fixed-grid simulation has a slightly
colder core than that in the adaptive simulation.

The fine grids are not rotated in these simulations.
We choose not to rotate the grids in order to always
have gravity acting in a single coordinate direction.
Fine-grid rotation in a 3D example will be demon-
strated in the next section.

We have demonstrated that the adaptive method
can produce results almost identical to fixed grid results
having the same resolution as the finest grid in the
adaptive simulations. For the adaptive method to be
cost effective, that is, to actually justify its use, the CPU
times and memory for the adaptive runs must be sig-
nificantly less than that for the fixed grid runs. Table
1 presents the CPU times and approximate memory
sizes for the adaptive- and fixed-grid codes. Obviously,
increasing resolution increases both memory size and
CPU times. Efficiency of the adaptive method is ex-
amined by comparing the 300-100-m adaptive run
with the fixed 100-m-grid run and comparing the 300-
100-33.3-m adaptive run with the fixed 33.3-m-grid
run. With one level of refinement, the CPU time (from
the fixed-grid run) and the required memory are both
decreased by a factor of 3. Further refinement increases
the efficiency. With two refinement levels, the CPU
times are decreased by almost a factor of 7 and memory
requirements are reduced similarly. The adaptive sim-
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FI1G. 3. Potential temperature fields for the cold-bubble simulation at 900 s with a contour interval of 1 for (a) a
single grid with Ax = Az = 300 m, (b) a single grid with Ax = Az = 33.3 m, (¢) an adaptive run with one level of
refinement with Ax; = Az = 100 m, and (d) an adaptive run with two levels of refinement with Ax,= Az, = 33.3 m.
The contour interval is 1, and the fine grids in (¢) and (d) are outlined.
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TABLE 1. Program instructions and miscellaneous memory are an
additional 700 X 10° words. All computations are performed on the
NCAR CRAY Y-MP/864. The run times are with all plotting turned
off.

Resolution CPU time Memory
(m) (s) (thousands of words)

300 5.1 ~60

100 94.3 ~540

33 2288 ~5000

300-100 35.3 ~200

300-100-33 337.2 ~1000

ulations are cost effective, and these results are consis-
tent with those found in other applications of the AMR
method.

Again it is emphasized that the AMR method is a
local refinement method. The efficiency of the tech-
nique decreases as more area needs refinement. The
break-even point for the method where the cost of an
adaptive simulation will be approximately equivalent
to a fixed-grid simulation occurs when about 50%-60%
of the coarse domain needs refinement at the finest
refinement level.

b. Simulations of a collapsing cold pool

The 2D adaptive model has also been used for sim-
ulating a collapsing surface cold pool and resulting
gravity current, and the results are given in Skamarock
and Klemp (1989). In these simulations, the upper,
lower, and left boundaries are solid, free-slip surfaces,
and the right boundary is open with boundary condi-
tions specified as in Klemp and Wilhelmson (1978).
The channel length is 40 km and the channel height
is 10 km. The initial cold pool is specified as follows:

5000 — z
300—(W lO), z < 5000 m,
0= X < 15000 m;
300, elsewhere.

The initial velocities are zero and the initial pressure
@ is in hydrostatic balance with the temperature field.
The model parameters used in the runs are Ax, = 250
m, Af. = 3.0s, A7 =0.5s,and v = 0.012Ax%/At. In
these simulations, the viscosity is now a function of
the grid scale. The viscosity is chosen so that only well-
resolved features are present on any grid. Decreasing
the viscosity results in unacceptable noise in the so-
lutions.

Figure 4 shows the solution for the collapsing cold
pool at 900 s for two fixed-grid simulations. Figure 4a
is the result from the coarse-grid run, and no billows
are present behind the head of the gravity current be-
cause the viscosity mixes out any incipient billows.
Several billows are present when the a 27.8-m grid is
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used (Fig. 4b). The presence of the billows in the fine-
grid simulation is due entirely to the decreased mixing.

Results from an adaptive run with two levels of re-
finement (250-, 83.3-, and 27.8-m grids) are shown in
Fig. 5. Comparing the fixed and adaptive grid runs
with 27.8-m resolution (Figs. 4b and 5¢) reveals a close
correspondence. However, differences in certain so-
lution features are apparent. In particular, the leftmost
eddy that appears in the adaptive solution depicted in
Fig. Sc does not appear in the reference solution in Fig.
4b. Examination of the evolving adaptive solution
shows that perturbations associated with changing res-
olutions were sufficient to initiate the leftmost billow.
The billow has sufficient truncation error associated
with it to cause refinements to follow it.

Even changes in the numerical scheme can produce
perturbations that excite the billow. Evidence for this
is provided by the simulations presented in Carpenter
et al. (1990), where a different numerical technicque
has been used to simulate the same problem. The left-
most eddy appears in their fine-resolution simulation
and yet does not appear in their coarse-resolution re-
sults. However, changes to our boundary interpolations

[Illlilllllll
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FIG. 4. Collapsing cold-pool simulation results at 900 s with
potential temperature contoured at 0.5. (a) Single-grid solution
with Ax = Az = 250 m and (b) single-grid solution with Ax == Az
= 28.7 m.
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FIG. 5. Adaptive simulation results for the collapsing cold pool
(a)at 300 s, (b) 600 s and (c) 900 s. Two refinement levels are used,
Ax;= Azy= 28.7 m, and the fine grids are shown. Contoured as in
Fig. 4.

do not remove the fictious eddy. In particular, the use
of conservative interpolations does not remove the eddy
in this simulation.

The adaptive simulation depicted in Figs. 5a—c shows
that the finer grids are replaced periodically as the so-
lution evolves. The adaptive solution at 300 and 600 s
is included to depict the changing grid structure over
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time. The finest level of grids is replaced 27 times over
the course of this simulation. The solutions in the fine-
grid overlap regions behave properly, and the procedure
of obtaining boundary values from the overlapping grid
correctly resolves finescale features passing through
overlap regions.

c¢. Convergence of solutions with parameterized
physics

The collapsing cold-pool simulations illustrate the
difficulty in interpreting any simulations, particularly
nested and adaptive simulations, when primary phe-
nomena can arise from instabilities that grow from in-
finitesimal perturbations—as is the case with Kelvin-
Helmbholtz billows. Solutions will diverge as small per-
turbations are magnified. While this is primarily an
issue of predictability rather than numerics, the use of
physical parameterizations that depend on the grid
scale exacerbate the predictability problem. In atmo-
spheric models, it is usually necessary to parameterize
processes that are not grid-resolvable—for example,
turbulence, cloud microphysics, surface layers, etc.
These parameterizations are dependent on the grid
scale (Ax, Ar), and their effects change with varying
grid scale. Questions of uniqueness thus arise when
solving a system that contains parameterized physics.
As Ax, At = 0, do the finite-difference equations (pa-
rameterizations included) converge to a set of contin-
uous equations that are well-posed and have a unique
solution? In computational practice, we must ask if the
solutions converge toward the solution of the contin-
uous equations over the range in which Ax and At are
altered.

The gravity-current results presented here lead us to
these questions, as does the observation that the trun-
cation error in simulations with parameterized mixing
does not exhibit the expected rate of decrease with in-
creasing resolution based on the usual truncation-error
analysis for finer nested or adaptive grids, at times it
even increases. Finer-scale structure appears on the fine
grids that engender increased truncation error. This is
not the case in models without parameterized physics.

The adaptive models seek to minimize the solution
error by adaptively reducing the truncation error in
regions where it is high. Given that the truncation error
does not decrease and sometimes actually increases
when using parameterizations that depend on grid
scale, what can be said about the accuracy of the grid-
refined solution? Without an exact solution, the con-
cept of solution error no longer has precise meaning
and can only be based on subjective criteria. There is
no longer a single, definable solution error with which
to directly connect the truncation error. Pragmatically,
we must consider which refinement criteria will lead
to the “best” solutions. Innumerable possibilities exist,
and it is likely that additional refinement criteria should
be included along with the truncation error. Certain
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areas of the solution domain and certain flow features
may be of more interest than others, and more sub-
jective criteria for grid placement can be used to resolve
these selected features.

A more fundamental concern is the validity and
consistency of grid-scale-dependent parameterizations
that are used over a wide range of grid scales, partic-
ularly in nested-grid and adaptive calculations. For ex-
ample, it is known that convective parameterizations
used in hydrostatic models will produce different con-
vective realizations (time, location, and extent) solely
due to a change in grid scale (Zhang and Fritsch 1988).
It is also unclear at what grid scale the convective pa-
rameterizations become unnecessary and even detri-
mental. These same concerns apply to turbulence
models and other parameterizations. In nested and
adaptive models, grid-scale-dependent parameteriza-
tions must be carefully examined because we are de-
manding that they function over a wide range of grid
scales and because they may have a substantial impact
in an evolving adaptive solution.

The 2D examples illustrate the utility of the adaptive
approach. We empbhasize that the structure of the
equations and the particular solution technique are
what make possible these adaptive computations. The
boundary approximation makes the computations
economically attractive because boundary values do
not need to be interpolated to interior boundaries on
the small time step but rather only on the large time
step. For elliptic equations and overlapping grids, the
solution process described in this paper may not work
because an elliptic equation represents a boundary-
value problem, and the solution at any point depends
upon all the boundary values. Iterative schemes known
to give the correct solution for the overlapping grid
problem are not economical.

Finally, we note that adaptive code is easily modified
for applications in domain decomposition and parallel
or distributed processing. The simplest approach con-
sists of dividing the computational domain into regions
(grids) of equal size and allowing each processor to
work on a single grid. The overlapping boundary con-
ditions, described in section 3d, are such that the so-
lutions on overlapping grids do not exactly match the
solution on the single, large grid because the small time-
step boundary conditions do not allow sound waves to
pass correctly through the boundaries. However, the
differences in the solutions are insignificant, and the
domain-decomposition model proves reasonably effi-
cient when used on a multiprocessor CRAY.

5. 3D interactive model

A variation of the 3D Klemp-Wilhelmson model
has been modified for use with the adaptive grid
method. At this time, the model is not fully adaptive.
Grid fitting in three dimensions is significantly more
difficult than in two dimensions, and the 2D routines
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have not been extended to three dimensions. The more
complex finite differencing in the 3D model also makes
it more difficult to estimate truncation error. The model
contains discretizations of different-order accuracy, and
the procedure advocated by Berger and Oliger (19&4)
cannot be directly applied, nor is it easy to directly
compute estimates of the truncation error using finite
differencing.

Aside from grid-fitting and error-estimation routines,
the 3D model possesses all the capabilities of the 2D
adaptive model. In particular, multiple, overlapping,
rotated fine grids are employed, and any number of
fine grids and refinement levels can be used. The model
is used interactively, and the user needs to specify the
number, sizes, and locations of the fine grids. For ¢x-
ample, in the convective simulations presented, the
system was integrated in 10-min segments between
which the fields were examined and the fine grids re-
placed. In these cases of strong convection, the fine
grids are placed based on the locations of the updrafts,
downdrafts, vorticity fields, and gust-front locations.

a. Model description

The 3D model used by the adaptive grid algorithms
is an extension of the 2D model described in Miller
and Durran (1991). The model includes terrain and
moist processes (vapor, cloud, and rain water) and is
fully compressible. The momentum equations and
scalar equations for water substances are cast in flux
form, and pressure is used as a prognostic variable.
Moist physics are included through a Kessler param-
eterization scheme, calculated with the two-step pro-
cedure given by Soong and Ogura (1973). In the first
step, the potential temperature and moisture are up-
dated with the moist processes ignored. Next, the source
and sink terms for potential temperature and moisture
are calculated using the results from the first step. The
second step ensures that total moisture and energy are
conserved within the limits of the approximations and
that both evaporation and condensation occur moist
adiabatically.

The general time-stepping scheme has been altered
to include the divergence damping terms. Also, the
buoyancy term in the vertical momentum equation
and the vertical advection of # are now computed on
the small time step. These changes are easily imple-
mented.

b. Supercell storm simulations

The robustness of the nested-grid system used with
the three-dimensional model is demonstrated in sim-
ulations of the 20 May 1977 Del City supercell storm.
The convective event has been analyzed by Ray et al.
(1981), Brandes (1981), and Klemp et al. (1981). Die-
tailed analyses and simulations of its tornadic phase
can be found in Klemp and Rotunno (1983, hereafier
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referred to as KR) and Rotunno and Klemp (1985).
Klemp et al. (1981) present simulations on a 48-km
X 48-km horizontal domain with 1-km horizontal res-
olution and 500-m vertical resolution in a 16-km-depth
domain. Klemp and Rotunno (1983) perform a win-
dowed simulation wherein a fine grid with 250-m hor-

60 minutes

(a) coarse grid

izontal resolution is placed over the occlusion region
of the supercell. The fine grid is initialized with inter-
polated coarse-grid values, but the grids are not inte-
grated in the two-way interactive manner. Short time
integrations on the fine grid are stable, and finescale
structure in the occlusion region is revealed.

(c) fine grids,
120 minutes

(b) fine grid, 60 minutes
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FIG. 6. Adaptive simulation of 20 May Del City supercell storm with Ax,=3km, Axy= 1
km: (a) at z = 3150 m on the stationary coarse grid at 60 and 120 min, (b)at z =250 m on the
fine grid at 60 min, and (c¢) on the two fine grids at 120 min. The cold-frontal boundary in all
figures is at z = 250 m and denotes the —1°C potential temperature perturbation. The heavy
solid lines represent the 0.5 g kg ™' rainwater contour. Velocity vectors are for storm relative winds
with storm velocities U; = 3m s~ and ¥, = 14.6 m s'. Vertical velocity is contoured at I m s™!
in (b) and (c) and at 5 m s™" in (a) with the negative regions being stippled and zero contours

removed.
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We present two interactive simulations of the Del
City storm. In the first, the coarse grid covers a 210-
km X 210-km domain and has 3-km horizontal reso-
lution. Fine grids in this simulation have a horizontal
resolution of 1 km, and the vertical resolution of the
coarse grid is 500 m. Figure 6 depicts the low-level flow
field at 1 and 2 h. It also shows the fine-grid positions
relative to the coarse grid and depicts the storm motion.

This simulation differs from Klemp et al. and most
convective-storm simulations in that the coarse grid is
stationary as opposed to the coarse grid moving at the
average storm velocity, which in this case was approx-
imately 15 m s~ toward the east-northeast. Previously,
computational limitations necessitated a moving do-
main that requires a priort knowledge of storm motion.
In an adaptive or interactive simulation, a prior
knowledge of storm motion is not needed as long as a
sufficiently large coarse domain is used.

In addition to knowing storm motion, it has also
been necessary to know the size of the evolving con-
vective system. The 20 May storm splits early in its
evolution; the right-moving storm is the supercell and
the left-moving storm is much weaker. In the Klemp
et al. simulations, the left-moving storm is allowed to
propagate out of the domain because it has little bearing
in their study and because it would be expensive to
include both the right- and left-moving storms in a
single computation. The interactive simulation shown
in Fig. 6 captures both. Single and multiple overlapping
fine grids are used to resolve both storms during the
simulation.

The flow field near the surface at 60 min, shown in
Fig. 6b, should be compared with KR Fig. 4b. The flow
fields are similar; updrafts and downdrafts have the
same relative magnitudes and shapes, the rainwater
patterns are similar, and the gust fronts occupy the
same position relative to the main updraft of the su-
percell.

Figure 6a in KR depicts the flow field at 120 min
for the 1-km grid and can be compared with the lower-
right fine grid at 120 min in Fig. 6c. The occlusion
process in the adaptive model progresses more rapidly
than in the KR simulation for the 1-km grid. We be-
lieve this is due primarily to the different mixing for-
mulations in the two models; the KW model solves a
prognostic turbulent kinetic energy equation, whereas
TKE is diagnosed in the adaptive model (see Durran
and Klemp 1983).

The vorticity field in the adaptive run at 120 min
is given in Fig. 7. The strong cyclonic vorticity is sim-
ilar in magnitude and location to that in KR. How-
ever, the strong anticyclonic vorticity present at the
eastern edge of the occlusion on the 1-km fine grid is
not apparent in KR Fig. 7b, neither does it appear on
the KR 250-m grid (see KR Fig. 7d). This negative
vorticity depicted at 120 min develops much earlier,
beginning around 60 min, and alternately waxes and
wanes until it strengthens dramatically when the oc-
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FiG. 7. Vorticity at 120 min with a contour interval of 0.005 57!
for the field depicted in the lower right fine grid at 120 min. Negative
vorticity is stippled.

clusion process begins in earnest at approximately 90—
100 min. This does not occur in the KR simulations
until after 120 min.

Fine grids are replaced every 10 min in the simu-
lations, and after 80 min, two fine grids are needed to
track the right- and left-moving storms. The fine grids
are placed so that features that would not be well re-
solved on the coarse grid are contained within a fine
grid. The left-moving storm does not mature into a
supercell, rather it develops a multicellular structure.
If left unrefined on the 3-km grid, the left mover weak-
ens dramatically. The right-moving supercell will not
evolve into a strong supercell on the 3-km grid if left
unrefined.

The solutions at the fine-grid boundaries are of par-
ticular numerical interest in the adaptive simulations.
For the adaptive solution at 120 min (Fig. 6¢), the
solution in the fine-grid overlap region is smooth at
both fine-grid boundaries. A strong updraft is propa-
gating smoothly through one of the boundaries. The
grids are not aligned with respect to each other, but
given that the resolution is the same, simple interpo-
lations do not introduce any significant error and the
solutions stay well behaved. No extra filtering is per-
formed at the boundaries. Also at 120 min, gust fronts
are propagating out of both fine grids onto the coarse
grid. The gust fronts do not pass smoothly through the
boundary because they are poorly resolved on the
coarse grid. The gust-front updraft appears to be par-
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tially pinched off at the boundary, and the sharp tem-
perature gradients associated with the gust front
broaden as they pass to the coarse grid (not shown).
The gust fronts were not followed any farther because,
at this distance from the primary storm updrafts, in-
adequate resolution of the gust fronts has little effect
on storm evolution.

In the second interactive simulation, a 1-km reso-
lution coarse grid and 333-m fine grids are used to
produce a simulation similar to that presented in KR.
The KR 250-m grid simulation was started from a 1-
km grid supercell at 120 min, a time when the low-
level rotation had reached its maximum strength. The
occlusion is not resolved on the 1-km grid of Klemp
and Rotunno but is generated rapidly when the 250-m
grid is used. Questions arise as to what effect the sudden
increase in resolution has on the realism of the rapid
occlusion that occurs after a sudden change in reso-
lution. Occlusions have been observed to progress rap-
idly, and KR suggest two possible interpretations for
their simulations. The first is that the finescale struc-
tures are forming on the coarser grid, though smoothed
by the parameterized turbulence. The second sugges-
tion is that the fine-grid simulation starts with the best
estimate of the mature supercell structure and that the
coarse grid does not capture any appreciable part of
the occlusion dynamics. A simulation where fine res-
olution of the supercell is introduced well before the
occlusion process will help resolve these questions. In
the present interactive simulation, fine grids are used
to resolve the developing supercell storm beginning af-
ter 0.5 h of simulated time. At 0.5 h, the initial updraft,
triggered by the initial warm bubble, is well resolved
and the precipitation downdraft is beginning to split
the low-level updraft.

The low-level field for the 333-m grid is given in Fig.
8 at 60 min. Compared with the 1-km grid solution in
KR Fig. 4b, the general features are similar and, as
might be expected, the main updraft and gust fronts
are narrower and slightly more intense on the 333-m
grid. The most interesting new feature in the adaptive
simulation are the waves present on the gust front ex-
tending to the southwest of the main supercell updraft.
At this time, the waves are small amplitude and would
not be resolved on a 1-km grid.

Figure 9 presents the low-level fields and vorticity
at 80, 110, and 120 min. During this time period, the
storm occludes and, as in the other adaptive simulation,
the supercell evolves more rapidly in the adaptive sim-
ulations than in the KR simulation. The adaptive sim-
ulations at 120 min and the KR 250-m simulation
share many flow features. In both simulations, the
downdraft progresses cyclonically around the circula-
tion center (see KR Fig. 7¢). A ring of cyclonic vorticity
is forming around the circulation center and, asin KR,
the increasing low-level vorticity associated with storm
occlusion is only slowly communicated to the upper
levels. Two updraft maxima form: the original maxima
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FI1G. 8. Adaptive simulation of the 20 May 1977 Del City supercell
storm with Ax, = I km and Ax;= 333.3 m. Fields at z = 250 m at
60 min for the fine grid. Plotting is as in Fig. 6.

is at the center of the occlusion and the second is at
the northeastern edge of the occlusion in response to
the strong convergence forced by the rapidly propa-
gating gust front. The vorticity maxima in the 333-m
solutions are two to three times larger in magnitude
than those in the 1-km solutions, though they are not
as strong as in the KR 250-m simulation. The strong
anticyclonic vorticity to the south of the eastern tip of
the occlusion is still present and it has the same mag-
nitude as the maximum cyclonic vorticity.

The adaptive solution shows a wave propagating to
the southwest along the gust front that is absent from
the KR simulation. Point A4 in Figs. 9a—c denotes the
position of a single wave over time. The wavelength
increases as the wave propagates, and the wave is re-
sponsible for a positive and negative vorticity couplet.
At 110 min (Fig. 9b), a second smaller wave is apparent
immediately behind (to the north of) the larger wave.
The positive and negative vertical vorticity couplet as-
sociated with the waves is a clear signal of their pres-
ence. These waves have been produced in high-reso-
lution simulations with other cloud models (R. Wil-
helmson, personal communication).

Simulations have been performed where refinement
is introduced at later times and the results have been
different. If high resolution is introduced late in the
simulation, rapid occlusion occurs, much as when KR
introduces the 250-m grid. The occlusion process, when
refinement begins at an early time, is a more gradual
process. However, comparison of the 1-km and 333-m
solutions shows that the coarser grid does capture the
larger-scale features well. This suggests that the KR
results for the 250-m grid are reasonable, though the
time evolution is probably somewhat accelerated; the
333-m results suggest that the major finescale features
discussed here form over a 10-20-min time interval.

As in the previous adaptive simulations, the solution
at the fine-grid boundaries is well behaved, and finescale
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(a) 80 min

(b) 110 min

z

FI1G. 9. Fields and vorticity at z = 250 m for the fine grids at (a)
80 min, (b) 110 min, and (c) 120 min. The vorticity is plotted to
the right of the flow fields. Plotting is as in Figs. 7 and 8.

disturbances pass smoothly through boundaries of
overlapping fine grids. Again, finescale features do not
pass cleanly from the fine to the coarse grid in cases
where the coarse grid cannot adequately resolve the
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features. The adaptive approach dictates that these fea-
tures should be followed with refinements until they
either propagate out of the physical domain or decay.
In atmospheric calculations, however, it will not always
be possible to refine all small-scale flow features.
Finally, single fine-grid calculations for the 3D moclel
have not been performed because the computational’
resources were not available. The 3D model appears
to be relatively more efficient than the 2D model based
on the observation that the 3D model spends over 8%
of its CPU time in the solver, compared with 75% of
the CPU time used by the solver in the 2D model.

6. Summary

We have presented results from 2D and 3D adaptive
grid models that solve nonhydrostatic, elastic equation
sets. The simulations demonstrate the utility of the
adaptive grid approach. In particular, for local phe-
nomena, the adaptive method can be used to produce
accurate solutions at only a fraction of the CPU and
memory requirements of an equivalent fixed fine-grid
solution. Presently, the 2D model is fully automated
and the 3D model is used interactively.

The adaptive method makes use of regular nested
refinements. This approach allows the use of regular,
fast, preexisting solvers. Any number of refinements
and refinement levels can be used, as opposed to the
moving-gridpoint methods where the number of points
is fixed. The use of rotated, overlapping refinements
permits economical coverage of areas needing refine-
ment. The multiple-grid solution technique also facil-
itates the use of simple domain decomposition and
parallel processing.

Simple approaches to rendering the 3D model fully
adaptive (automatic) are being investigated. In partic-
ular, the 2D grid-fitting routine can be used to fit grids
in the two horizontal dimensions, with no refinement
used in the vertical. Simple refinement criteria can be
used, such as vorticity, gradients of the prognostic vari-
ables, etc., and vertically integrated measures of these
refinement criteria can be passed to the existing 2D
grid-fitting routines. In many cases—for example, that
of strong convection—simple refinement criteria will
bring about reasonable grid placement. In more com-
plex situations, the question of appropriate refinement
criteria will need to be addressed. For examining the
role of convection embedded in larger-scale environ-
ments, vertical refinement is not critical because the
large-scale typically has sufficient vertical resolution for
resolving the active convection on nested grids that
have horizontal resolutions of 1 km. In general, we
believe that vertical refinement is not appropriate until
the horizontal resolution is of the same order as the
vertical resolution.

We have introduced several numerical procedures
for use in the adaptively nested, nonhydrostatic, elastic,
time-split model. Inner-grid boundary conditions are
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slightly different than those in traditional nested mod-
els. Data transfers between coarse and fine grids take
place only after large time steps, not after each small
(acoustic ) time step. For the inner fine grids, boundary
values are interpolated linearly in time and quadrati-
cally in space from the coarse grid. The exception to
this is for the pressure, which is computed at the
boundaries using a reduced sound speed and replaced
after the small time steps are complete. Grids with the
same resolution that overlap must obtain their bound-
ary values from the other overlapping grid. Both the
2D and 3D simulations demonstrate the robustness of
these inner-grid boundary conditions for both fine and
overlapping grids.

A divergence filter, as described in Skamarock and
Klemp (1992), is used in these models. The inner-grid
boundary conditions do not take into account acoustic
waves, and this filter effectively removes them. We also
integrate the equation for potential temperature dif-
ferently than in past models; the vertical advection of
the mean § and the buoyancy term in the vertical mo-
mentum equation is updated on the small time step.
This effectively removes any stability restrictions arising
from gravity-wave propagation and removes instabil-
ities related to buoyancy-sound-wave interaction.

Subgrid-scale parameterizations cannot necessarily
be discarded when using AMR because they may be
critical in the initiation of important phenomena,
which, while being subgrid scale on a coarse grid, will
be explicitly resolved on the fine grid. In the case of
imminent convection, refinement criteria other than
the truncation error may need to be used to bring about
the necessary refinement in a timely manner in cases
where the convection is not resolved on the coarse grid.
This may also be the case for other phenomena. Also
note that parameterizations that depend on the grid
scale can be the cause of nonconvergent solutions in
any adaptive or nested model. These parameterizations
effects leave open the following questions. 1) What is
the correct solution? 2) When using adaptive models,
how far should refinement proceed?

Adaptive mesh refinement, with its ability to resolve
isolated small-scale phenomena within larger-scale
flows, makes possible the exploration of several scale-
interaction problems. On present supercomputers, the
adaptive models should permit maximum solution re-
finement of between one and two orders of magnitude.
Using these computational capabilities, our continuing
adaptive work focuses on the explicit resolution of
convection in realistic larger-scale environments.
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