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1. Introduction

In atmospheric simulations using both the hydro-
static and nonhydrostatic equations, modes of physical
interest often are of much lower frequency than the
highest-frequency modes admitted by the equations,
such as high-frequency gravity and acoustic modes,
that are meteorologically unimportant. Numerical tech-
niques used to integrate the equations are often time-
step limited by these irrelevant modes, and a popular
integration approach is to integrate the high-frequency
components with a smaller time step, or with an im-
plicit technique, while integrating the lower-frequency
components with an explicit scheme and an appropri-
ately longer (and more economical) time step. Klemp
and Wilhelmson (1978, hereafter KW) introduced a
technique for integrating the compressible nonhydro-
static equations using a large time step with the leap-
frog time-integration scheme for the low-frequency
modes, and a small time step with the forward—back-
ward scheme of Mesinger (1977) for integrating the
terms responsible for the horizontally propagating
acoustic modes together with an implicit scheme for
integrated the vertically propagating acoustic modes.
Tatsumi (1983) independently developed essentially
the same technique for treating the horizontally prop-
agating gravity wave modes in a hydrostatic primitive
equation model. Skamarock and Klemp (1992, here-
after SK)) analyzed the stability of this and other tech-
niques and concluded that the KW method appears to
offer the best combination of stability, minimal filter-
ing, simplicity, and freedom from spurious noise for
integrating the hydrostatic or nonhydrostatic equations.

When choosing a splitting scheme, accuracy and ef-
ficiency are also important factors that must be consid-
ered. Skamarock and Klemp did not quantify the effi-
ciency or the accuracy of the KW method compared to
the fully explicit nonsplit leapfrog technique. In this
note, we show that the KW scheme is both efficient and
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accurate for integrating the nonhydrostatic compress-
ible equations both for grids with vertical to horizontal
aspect ratio (Az/Ax) ~ 1 and for aspect ratios much
less than 1. We also comment on the accuracy of the
integration of the nonhydrostatic equations at hydro-
static scales, where several research groups have shown
that the nonhydrostatic equations can be integrated as
efficiently as the hydrostatic equations using both semi-
implicit and KW-type integration techniques (e.g.,
Tanguay et al. 1990; Cullen 1990; Dudhia 1993).

Browning and Kreiss (1994 ) have suggested that the
KW scheme is no more efficient (and possibly much
more costly) than the fully explicit leapfrog scheme
and may be highly inaccurate in certain applications,
and they suggest the use of an alternative equation set,
proposed by Browning and Kreiss (1986), for simu-
lating all scales of atmospheric motion. We demon-
strate that the alternative set is highly inaccurate for
nearly hydrostatic inertia—gravity waves and, there-
fore, is not appropriate for most mesoscale and many
larger-scale applications.

2. The methods

To demonstrate the efficiency and accuracy of the
KW method for integrating the nonhydrostatic equa-
tions, we examine a simplified two-dimensional Bous-
sinesq equation set:

%L:+?}_;r=*u%z—wg—:+fv (1)
%:—u%—wg—z— (2)
00 a0 o0 (5)

Yo Yoz

Equations (1) - (5) are the horizontal and vertical mo-
mentum, pressure, and thermodynamic equations, re-
spectively; u, v, and w are the fluid velocities in x, y,
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FiG. 1. (a) Perturbation 9 at t = O for the nonhydrostatic gravity
wave tests, plotted with a contour interval of 10~ K. The plotted
domain is 300 km X 10 km. The perturbation 8 at ¢ = 3000 s, plotted
with a contour interval of 0.5 X 107* K, for (b) the analytic solution,
(c) the fully explicit model with Az = 1 s, and (d) the semi-implicit
KW model with Az = 12 s. Negative contours are dashed.

and z; 6 is the potential temperature; #(z) is the mean
potential temperature; 7 is a perturbation pressure [I1
=11+ 7 = c,80(p/po)®]; g is the gravitational con-
stant; ¢ is time; and c; is the speed of sound. This system
is appropriate for shallow convection (Ogura and Phil-
lips 1962) and is a Boussinesq system except that we
have retained compressibility for computational con-
venience. While we use this simple equation set to fa-
cilitate direct comparison of numerical solutions with
analytic solutions, the numerical methods we consider
apply directly to the fully compressible Navier—Stokes
equations.

We concern ourselves with discretizations on the C
grid, which is used in many nonhydrostatic and hydro-
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static models. Although the computation of advection
terms is more expensive on the C grid than on a non-
staggered grid, the C grid has the advantage of accu-
rately resolving the gravity wave modes (Haltiner and
Williams 1980, p. 227). Defining averaging and dif-
ferencing operators,

1
¢t = 3 (Peracrn + de-nen)

and

6£¢ - 6 (¢£+A£l2 ¢£ﬂA£/2)a

a fully explicit leapfrog discretization of (1)—(5) is

Ut = A AN — F1) (6)
YA = YA L DAGF (M
Wit = Wi _ IAf(6' — FL) (8)
TS = A _ OAL(e2D' ~ FY) (9)
grat = 9= + DALFY, (10)

where
o X —_ &2 —x
F,=—i@'6u —w 6u +fv

F,= —uby" — wby* — fu*

Z

F,= —a6w —wow + % (6" —0)

X z
F, = —ubn" — wo,r

Fo=—ubf8" — wb f*

and
D =6u+ bw.

The terms F,, F,, F,,, F,, and Fj, on the right-hand
sides of (6)—(10), are evaluated at time ¢. Leapfrog-
based models also include a time filter analyzed by
Robert (1966).

The KW method advances the continuous set (1) —
(5) from ¢ to t + At by integrating the discretized
momentum and pressure equations

uT+AT=u —AT(_(SX’]TT_adD;-FL) (II)
WA = W — Ar(87 — a,DT — F') (12)
AT = T — A7(ciDTTAT — F) (13)

from ¢t — At to t + At (over the leapfrog step) using
several small time step A7 and holding the rhs terms
F,, F,, and F, fixed at time ¢ over these small time
steps. Equations (11)-(13) are called the ‘‘small-
time-step equations,”” and A7 is chosen so as to be
stable for the acoustic-mode integration, where typi-
cally A7 is 2-10, or more, times smaller than Az (cho-
sen so as to be stable for advection and gravity modes),
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depending on the application. The terms responsible for
the acoustic modes, on the lhs of (1), (3), and (4), are
active in these small time steps, while the low-fre-
quency terms, including all advection, buoyancy, and
Coriolis terms [the rhs terms in (1), (3), and (4)}], are
fixed. The remaining continuous equations, (2) and
(5), are discretized as in the explicit leapfrog scheme
and are stepped forward only on the large time step
using (7) and (10). Thus, the integration procedure is
to step forward the large time-step equations (7) and
(10) (for the acoustically inactive variables ), evaluate
the rhs terms F7,, F),, and F},, and advance equations
(11)-(13) from ¢t — At to t + At using n, = 2(Az/
AT) time steps. Finally, to control the weak instability
analyzed by SK for this splitting scheme, divergence
damping terms are included [these are the terms mul-
tiplied by a, in (11) and (12); see SK for details].
Divergence damping does not compromise the accu-
racy of the modes of physical interest since it damps
only the physically unimportant acoustic modes.

First, we emphasize that by using forward—back-
ward differencing on the horizontal pressure and di-
vergence terms in (11) and (13) (KW; Mesinger
1977), only half as many time steps are required be-
cause the advection terms are removed from the small
time-step calculations. This occurs because without the
advection terms no terms need be evaluated at the mid-
dle time level |7 + 1/2A7in (11)-(13)] in a leapfrog
time step. Since the even and odd time steps are then
totally decoupled, the time stepping for the small time
steps can advance using only the even levels, and this
procedure produces results identical to the full leapfrog
scheme but with only half the calculations. The use of
the forward—-backward scheme in a fully explicit leap-
frog model does not result in any efficiency gain, be-
cause the slow-frequency terms must be evaluated at
the midpoint of the time step.

For grids with an aspect ratio (Az/Ax) significantly
less than 1, the efficiency of the KW scheme is in-
creased by using an implicit time discretization for the
termas responsible for vertically propagating acoustic
modes. In this case, (12) and (13) are replaced by

WITAT = T — A'rl:%(ézﬂ’ + 6w AYy — aD, — F'w]
(14)

,n.T+AT =7 — AT[636XMT+AT

2
+ % (Sw™ + S w707) — F;] . (15)

3. Efficiency and accuracy of the KW scheme

To demonstrate the efficiency and accuracy of the
KW scheme, we have simulated a propagating iner-
tia—gravity wave in a Boussinesq atmosphere of cor-
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stant Brunt-Viisild frequency N = 107%2s™! in a
periodic channel of length L with solid, free-slip up-
per and lower boundaries at z = 0, H. The waves are
excited by an initial § perturbation of the form

sin(wz/H)
1+ (x —x.)%/a*’

0x,z,0) = Ab, (16)
and a small amplituce initial perturbation, Ay = 1072,
is used to facilitate quantitative comparisons with an-
alytic solutions of the linearized equations

u, + Uu, + 7, = fu (17)
v, + Uv, = — fu (18)
w,+UwX+7rz—g—0=0 (19)
bo
6o\ . »
0, +U6,+|— |IN'w=20 (20)
g
m + U, + c2(u, + w,) = 0. (21)

Ignoring the acoustic modes, (21) may be approxi-
mated by u, + w, = 0, in which case the solution to
these equations, subject to the initial condition (16), is
given by

0(%, z,t) = (X, z, 0) + Abya sin(lz)
2A72

XJ:) m—zexp(—ak)(cos)\t — 1) coskxdk,

(22)

where | = w/H, ¥ = x — Ut reflects the translation of
the x-coordinate framework due to the mean advection
velocity U, and

k2N2 + 12f2

2:
A k* + 17

(23)

First, consider the case of a grid with an aspect ratio
(Az/Ax) = 1. Figure 1 shows the solutions at ¢
= 3000 s of the linear analytic model, the fully explicit
leapfrog model, and the KW semi-implicit model {the
KW semi-implicit and KW explicit (not shown) mod-
els give almost identical solutions]. The simulations use
a channel of length L = 300 km and H = 10 km, Ax
= Az = 1 km, a perturbation half-width @ = 5 km, c;
=300 ms™',and U = 20 m s~'. The parameters for
the model runs, along with timing and efficiency sta-
tistics, are given in Table 1. The 1-s time step for the
fully explicit leapfrog method is slightly less than the
maximum allowable (At = =Ax/ 2\/§cs). The small
time step for the split-explicit KW model is twice the
explicit model time step (AT = 2 s) because the KW
model uses the forward—backward scheme. The small
time step for the semi-implicit KW model is not con-
strained by the vertically propagating acoustic waves;
hence, it is larger by approximately a factor of \/5 (AT
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TasLe 1. Efficiency statistics for the split-implicit KW, split-

explicit KW, and fully explicit leapfrog models, for the
nonhydrostatic simulation (Ax/Az = 1, T = 3000 s).
Split Split
implicit explicit Explicit

Parameters

At (large) (s) 12 12 1

A7 (small) (s) 3 2 —

Steps (large) 250 250 3000

Steps (small) 2000 3000 —
Timings (CPU s)

Large steps 5.51 5.47 70.56

Small steps 15.52 13.47 —

Total 20.76 18.94 70.56

CPU(s) per step

Large step 220 X 1072 2,18 X 1072 2.35 x 1072

Small step 7.62 X 107 631 x 1073 —
FLOPS per step per point

Large step 104 104 112

Small step 39 25 —

FLOPS per point

Total for integration 1.04 X 10° 1.01 X 10°

= 3 s). The large time step At in the KW explicit and
semi-implicit models is not constrained by the acoustic
modes, and At = 12 s, appropriate for advection and
gravity wave modes, is used. As revealed in Table 1,
both KW models are faster than the fully explicit leap-
frog model by approximately a factor of 3. Surpris-
ingly, the semi-implicit KW model realizes this effi-
ciency gain because the extra overhead of solving the
tridiagonal system for each column is offset by the
larger small time step allowed with its use. The data in
Table 1 also reveal that the operation counts for the
schemes are a reasonable predictor of their cost in an
actual computation.'

The accuracy of the schemes is qualitatively revealed
in comparative solutions in Fig. 1. The fully explicit
and semi-implicit KW models have a mean Courant
number for advection of UAt/Ax = 0.02 and 0.24,
respectively. Note that there are small errors in both
simulations compared with the analytic solution but
that the errors are similar; hence, it is the spatial res-
olution that is limiting the solution accuracy and not
the temporal resolution. Also note that the symmetry
in the analytic solution is not maintained in any of the
numerical solutions; phase errors arising from the ad-
vection scheme produce the asymmetry. Figure 2
shows the time evolution of the normalized rms errors
for the simulations. The errors for the splitting schemes
and for the fully explicit leapfrog scheme are similar,

' The simulations were performed on an SGI R4000 workstation,
and the relative efficiencies are similar on DEC Alpha/5000 and IBM
590 workstations.
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and further investigation reveals that the slight increase
in the explicit model error is due to the fact that the
larger temporal error in the split schemes may be can-
celing some of the spatial error, as opposed to increas-
ing the overall error, although this cannot be expected
in other cases. Also shown in Fig. 2 is the error for the
semi-implicit KW model using a large time step of 30 s
(UAt/Ax = 0.6). Here the errors are significantly
larger, because the errors from the time integration
scheme are beginning to dominate those from the spa-
tial discretization.

The preceding results demonstrating the efficiency
and accuracy of the KW time-splitting technique con-
tradict those of Browning and Kreiss (1994). We be-
lieve the primary reasons for this contradiction are our
use of a staggered grid (in which the advection terms
are computationally more expensive than on a nonstag-
gered grid) and our efficient coding of the small-time-
step algorithm (which takes advantage of the odd-
even time-step decoupling in the small time steps as
described in the previous section).

Next, consider the case of a smaller aspect-ratio grid.
In this case the simulations use a channel of length L
= 6000 km and H = 10 km, Ax = 20 km and Az = 1
km, a perturbation half-width a = 100 km, ¢, = 300
ms~', and U = 20 m s~'. The analytic solution, the
solution using the semi-implicit KW model, and a hy-
drostatic model solution are shown at 60 000 s in Fig.
3. The semi-implicit model uses a 200-s large time step,
an advection Courant number of 0.2, and a 40-s small
time step, resulting in a CPU time of approximately
29.3 s. Thus, while we have increased the horizontal
scale and the simulation time by a factor of 20 over the

0.1 : T | T T :
< F 1
DD - 3
ar 3
S implicit KW, At=30's ]
S E
o [ ]
v -
s ]
o 7
- explicit, At=1s -

E implicit KW, At=12 5 ]

o L 1 1 I L ]

o
W
(=3
[=]
o

Time (s)

FiG. 2. Normalized rms errors for the nonhydrostatic simulations.
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previous problem, the simulation takes a similar
amount of CPU time because it is not limited by the
vertically propagating sound waves. In the hydrostatic
model, two vertical integrations of a continuity equa-
tion and an integration of a hydrostatic equation replace
the small time steps and vertical momentum equation.
However, the time step is reduced to 25 s since it is
limited by the horizontally propagating acoustic modes,
and the total integration CPU time is 54.4 s. For the
split-explicit KW model and fully explicit leapfrog
model (models that are time step limited by the verti-
cally propagating acoustic modes), the CPU time
would increase by a factor of approximately 15 over
that in the previous simulations with a grid aspect ratio
of unity. Thus, for grid aspect ratios significantly less
than 1, the explicit methods are prohibitively expensive
compared with the vertically semi-implicit schemes for
compressible nonhydrostatic model applications. In
practice, grid aspect ratios span a broad range in non-
hydrostatic applications and often include selective re-
duction of the vertical grid length near the ground to
better resolve boundary layer structure.

Other factors may alter the efficiency of the methods
when implemented in a fully compressible cloud,
mesoscale, or large-scale nonhydrostatic model. When
moving from two to three dimensions, the costs of the
advection terms increases relative to the acoustic terms
because five new advection terms are added to the low-
frequency terms, while a third short equation and only
a single additional divergence calculation is added to
the small-time-step equations. Moreover, the differenc-
ing used in the advection operators is quite simple in
these examples, and more complex operators (with im-
portant numerical properties such as energy and en-
strophy conservation, higher-order accuracy, etc.) are
often used in application models. The small-time-step
equations in the application models are very similar to
what we have presented. Thus, overall, greater effi-
ciency gains can often be obtained in the full models
compared to the simpler models.

The accuracy of the nearly hydrostatic simulations us-
ing the semi-implicit KW model can be appreciated qual-
itatively by examining Fig. 3, and is quantitatively illus-
trated in Fig. 4, which depicts the normalized rms error
for the semi-implicit KW model and for the hydrostatic
model. The errors are comparable in magnitude to the
models run at nonhydrostatic scale. Also shown in Fig. 4
is the solution error for an incompressible (u, + w, = 0)
hydrostatic Boussinesq model that uses a 200-s time step.
The lower error in the Boussinesq model indicates that a
significant portion of the difference between the com-
pressible KW model and analytic solutions may be a re-
sult of the KW model compressibility.

4. Hydrostatic-scale simulations with nonhydrostatic
models

For problems in which the horizontal length scale is
much larger than the vertical length scale, the vertical
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FiG. 3. (a) Perturbation 4 at t = O for the hydrostatic gravity wave
tests, plotted with a contour interval of 107 K. The plotted domain
is 6000 km X 10 km. The perturbation 4 at t = 60 000 s, plotted with
a contour interval of 0.5 X 1073 K, for (b) the analytic solution, (¢)
the semi-implicit KW model with Az = 200 s, and (d) the hydrostatic
model. Negative contours are dashed.

sound speed becomes crippling to explicit schemes for
solving the 3D Euler equations; this limitation provided
the original motivation for using the primitive (hydro-
static) equations in numerical weather prediction mod-
els. However, as shown in the previous section, the
nonhydrostatic Euler equations can also resolve the
slow modes accurately and efficiently at large horizon-
tal length scales by treating implicitly the terms re-
sponsible for vertical sound wave propagation.

The implicit differencing admittedly distorts the ver-
tically propagating acoustic modes but does so in a
manner that is not disruptive to the slower modes of
physical interest. Consider semi-implicit differencing
in the vertical for terms responsible for acoustic modes
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FiG. 4. Normalized rms errors for the hydrostatic simulations.

in the linearized equations (17) —(21), where leapfrog
time differencing takes place between time levels ¢
— Arand ¢ + At, and Coriolis and advective effects
(f=0and U = 0) are ignored. Assuming disturbances
of the form exp[i(k.x + k,z — wt)] leads to the fol-
lowing dispersion equation for the semi-implicit dif-
ferencing :

sin®wAzr
NAN BRI+ + 602
— 4N (1 +
_ - g(g) DB
where \, = k.c,At, N\, = k.c,At, and 8 = NAtr. Here,

we have assumed perfect resolution in the spatial de-
rivatives; for specific finite differencing, the wavenum-
bers can be replaced by the appropriate approximation
[that is, for second-order centered differencing, k.
would be replaced by 2 sin(k,Ax/2)/Ax]. Recogniz-
ing that the first term within the radical is much greater
than the second yields

1N [ 2 2 2 271/2
sinw, At ~+ (ki + ke; + N (25)
At | 1 +A2- ’
and
sinw, At [ kiN? 12 (26)
At TR +E+ N

Notice that no artificial amplification occurs (i.e., the
frequencies remain real) in both the gravity wave (w,)
and acoustic (w,) modes as long as the magnitudes of
the rhs of (25) and (26) multiplied by At remain less
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than unity. The semi-implicit scheme has slowed the
acoustic modes by the factor 1 + \Z in the denominator
of (25), but the gravity wave frequency has the same
form as a fully explicit representation.

Browning and Kreiss (1994, hereafter BK) point out
that for large differences between horizontal and ver-
tical length scales (termed ‘‘badly skewed”’ by BK),
“‘the semi-implicit approximation is equivalent to scolv-
ing the primitive equations.”” We agree, and belicve
this is the correct limit for the Euler equations in the
limit of large horizontal length scale. Moreover, BK
suggest that because solutions to the Euler equations at
large horizontal length scales behave like the primitive
equations, they are ill posed in the presence of lateral
boundaries in the integration domain [see Oligér and
Sundstrom (1978) for a discussion of the ill posedness
of the initial value problem]. To remedy this dlfﬁculty,
BK advocate the use of an approximate equation set in
which the fast modes are artificially slowed down
(Browmng and Kreiss 1986; BK; Browning and Mac-
Donald 1993). This is accomplished by adding a pa-
rameter « that multiplies the pressure and buoyancy
terms in the vertical momentum equation (i.e., the only
terms that would be present if the system were hydro-
static). For example, the linear system (17)—(21) can
be recast with the BK approx1mat10n by replacing (19)
with

g0

w, + wa+a<7rz———> = 0. Q7

by

By specifying the speed reduction factor « as the square
of the aspect ratio (i.e., H*/L* or Az?/Ax?, where H
and L are the vertical and horizontal length scales, re-
spectively) the gravity wave modes are artificially al-
tered such that they become nonhydrostatic, thereby
removing the ill posedness of the hydrostatic modes in
the presence of lateral boundaries. This is readily illus-
trated through the linear dispersion equation for iner-
tia—gravity waves in the 3D Euler equations. Employ-
ing the same approach as used in deriving (25) and
(26), the dispersion relation for the linear 2D differ-
ential equations, including the speed reduction factor
a, the mean advection terms, and the Coriolis terms,
yields

We = kU * [(k2+ k2 + ak?)c? + a®N? + f2]'72
~ (28)
(k2 + k2)N? + (k2 + N*/c2)f2 7"
a (k2 + k%) + k2 + N¥/c?

ngkXUi[

(29)

Equation (29) recovers the proper dispersion relation
for the gravity wave modes for &« = 1, in which case
the hydrostatic response arises when the firstterm. 1n :
the denominator becomes negligible as k2 = k2 <'i2. .
By specifying « as the square of the aspect. ratio; 1he B
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acoustic frequency is reduced, and the gravity waves
become artificially nonhydrostatic as the first term in
the denominator of (29) becomes the same order
as k2.

The problem with this approach is that it cannot be
used for any applications in which inertia—gravity
waves are of physical interest or importance in the sim-
ulation, since specifying a < 1 will produce first-order
errors in gravity wave structure and propagation. For
example, the evolving flow depicted in Fig. 3 is greatly
distorted if the BK equation set is employed. This can
be illustrated through the linear analytic solution ob-
tained by using (27) instead of (19) to derive (22),
which remains the same except

k2N2 + 12f2
a 'k + 17

replaces (23). Specifying a = (Az/Ax)*=25x 1073
yields the structure shown in Fig. 5b, which bears little
resemblance to the reference solution with @ = 1 (re-
peated in Fig. 5a). Physically, the inértia—gravity
waves radiating outward from the initial perturbation
are being artificially slowed, and consequently, the ad-
justment toward a geostrophically balanced flow (evi-
dent in the central portion of Fig. 5a) is significantly
retarded.

Inertia—gravity waves are the primary means by
which ageostrophic motions are realized, and fre-
quently these waves are essentially hydrostatic in na-
ture. For example, hydrostatic mountain waves are of-
ten the dominate modes contributing to the vertical
transport of momentum (Lilly et al. 1982; Klemp and
Lilly 1980). The impact of BK speed reduction on
these large-scale mountain waves is particularly dra-
matic. This is illustrated from (29) for steady 2D flow
(ignoring the small terms divided by c¢? and Coriolis
forcing), which reduces to the well-known Scorer
equation

A= (30)

N K
k= 7 o (31)
modified by a. For nearly hydrostatic modes, the sec-
ond term in (31) is negligible and the vertical wave-
number for all &, in the terrain forcing is just the Scorer
parameter (N/U). However, if « is chosen to make the
modes -artificially nonhydrostatic, k, will be signifi-
cantly reduced. If « is specified as the square of the
aspect ratio, the two terms on the rhs of (31) will have
the same magnitude, causing the vertical wavelength
to increase dramatically and, in regions where the sec-
ond term might exceed the first, causing artificial duct-
ing of the wave. '
Mesoscale gravity waves also have been docu-
mented as the source of a variety of severe weather
events (e.g., Stobic et al. 1983; Bosart and Seimon
198k; Schineider 1990). Even when gravity waves can-
not be resolved in the observational data used to ini-
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FI1G. 5. (a) Perturbation 6 at ¢ = 60 000 s for the hydrostatic gravity
wave tests, plotted with a contour interval of 0.5 X 107 K. (b) The
analytic solution for the Browning—Kreiss approximate equations for
a = (1/20)% at t = 60 000 s. The plotted domain is 6000 km X 10
km.

tialize weather prediction models, as the models de-
velop mesoscale structure, inertia—gravity waves will
begin to play an important role. Although BK intend
their speed reduction approach to be used for large-
scale applications, in the atmosphere this will limit its
usefulness to situations in which the minimum hori-
zontal scales of interest are O(1000 km) or greater;
with the continually decreasing mesh sizes in both
mesoscale and global-scale models, it is not clear that
this approach will have broad utility. We believe that
in most mesoscale applications, nearly hydrostatic in-
ertia—gravity waves are a ‘‘fact of life’’ and must be
resolved accurately within the integration domain, even
if it causes numerical difficulties at the lateral bound-
aries.
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