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ABSTRACT

Bends in coastal mountain ranges may diffract propagating atmospheric Kelvin waves and trapped coastal
currents. Analytic solutions exist for the diffraction of both linear Kelvin waves and linear nonrotating gravity
waves. Within the context of the single-layer shallow-water equations, we examine the diffraction of nonlinear
gravity waves and bores in a nonrotating reference frame and nonlinear Kelvin waves and coastally trapped
bores in a rotating reference frame. The diffraction process can significantly decrease the amplitude of linear
and nonlinear waves and bores in the nonrotating reference frame. Unlike for their linear counterpart, however,
the diffraction-related amplitude decay for the nonrotating nonlinear waves takes place entirely within the region
of the bend and does not produce a continuous decay after the bend. Moreover, theory predicts a critical bend
angle at which bore amplitudes will be zero at the wall after propagation around the bend, but shallow-water
model simulations do not confirm the existence of the critical angle. For Kelvin waves and trapped bores in the
rotating reference frame, we find robust wave and bore propagation around coastal bends in all cases. No critical
angles exist for the waves and bores in the rotating reference frame.

1. Introduction

There are many examples of atmospheric flows
where topography plays a crucial role in flow evolution.
Examples of flows interacting with topographic barri-
ers include marine-layer boundary currents and waves
observed on the U.S. West Coast (Dorman 1985,
1987), the southeast Australian coast (Holland and
Leslie 1986), and the South African coast (Gill 1977)
where coastal mountain ranges act as a barrier, and con-
tinental cold air damming with subsequent barrier flow
(Bell and Bosart 1988). In these cases the role of a
topographic feature is to act as a wall through which
the marine layer flow may not pass. The topography is
often irregular and may contain significant bends, and
in cases involving coastally trapped waves, the bends
may act to diffract the waves with a resulting loss in
wave amplitude. For example, Reason and Steyn
(1992) suggest that the diffraction of solitary Kelvin
waves may have been responsible for the cessation of
observed trapped waves for the California event of 3—
7 May 1982 and in the Australian event of 9—11 No-
vember 1982.

Theory exists describing wave diffraction for linear
gravity waves (no rotation) and linear Kelvin waves
(rotation), but there is little theoretical guidance on the
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nature of wave diffraction for nonlinear waves and
bores including or excluding the effects of rotation. In
order to clarify the role wave diffraction can play in
the propagation of trapped coastal disturbances, we ex-
amine and extend theory for the diffraction of horizon-
tally propagating waves bounded on one side by a wall
(barrier) that contains a convex bend. We examine
wave diffraction within the context of the single-layer
shallow-water equations (SWE). Use of the SWE is
appropriate because we are dealing with disturbances
that are propagating on a shallow inversion, and exist-
ing theory is based on longwave theory. For cases in-
volving bores and gravity currents, the SWE are sup-
plemented with front conditions that specify the rela-
tions across the discontinuities in the solutions. We
concern ourselves with waves initially propagating par-
allel to the wall where downstream the wall bends away
from the initial propagation vector (convex bend).
Where possible we compare theory with numerical
simulations of the shallow water equations, and where
no theory exists we examine the numerical simulations
to determine the diffraction characteristics. Our pri-
mary emphasis is to understand the nature of wave dif-
fraction for various wave types and to determine if
there are critical bend angles precluding disturbance
propagation around the bend, where the critical angle
is defined as being the bend angle where wave diffrac-
tion results in zero wave amplitude at the wall after the
wave is diffracted by the bend. Three general wave
types, depicted in Fig. 1, are examined— linear waves,
bores, and nonlinear waves of elevation having finite
wavelengths that steepen into discontinuities. For these
wave types we examine wave diffraction in rotating
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FIG. 1. Wave types: (a) linear wave with s, ~ h, < h,, (b) single-hump wave with a leading discontinuity, and
(c) a bore or hydraulic jump. #, is the depth of the quiescent fluid, and in the limit as h, — O the bore (c) becomes

a gravity current.

and nonrotating reference frames. Our primary interest
is in the waves with rotation that are trapped by the
rotational effects. We examine the nonrotating waves
to better understand the rotational case and because
over short timescales and space scales the waves with
rotation will behave as their nonrotating counterparts.
We begin, in section 2, by reviewing the existing
theory for linear wave diffraction in the rotating and
nonrotating reference frames. The case of nonlinear
breaking waves of finite wavelength is considered in
section 3, where a combination of existing linear and
nonlinear theory produce reasonable estimates of wave
decay associated with the wave-breaking processes.
The diffraction of bores, in a nonrotating reference
frame, is analogous to the diffraction of shock waves
in gasdynamics. In section 4 we modify the gasdynam-
ics theory of shock diffraction to describe bore propa-
gation and compare the theory with numerical simu-
lations of the shallow-water equations. We conclude
our consideration of bore diffraction by examining nu-
merical simulations of bores in a rotating reference
frame, a case for which no theory exists. A summary
and discussion of these results follows in section 5.

2. Linear theory

a. Exact solutions with no rotation

The nonlinear shallow-water equations, including
rotational effects, can be written as

du , Oh _

E-‘-g o fi=0, (1a)
dv , Oh _

Et—+g ay+ﬁ4—0, (1b)
dh ou
—(17+h(5;+5y—) =0, (1c)

where
4_90,,9,.,2
dr~ ot Ox Oy’

In (1), u and v are the horizontal velocities, 4 is the
height of the free surface, g’ is the reduced gravity, f

is the Coriolis parameter, and (x, y, ¢) are the two spa-
tial and temporal coordinates, respectively. The nonlin-
ear shallow-water equations (1) can be linearized and,
with f= 0 and no mean flow, reduce to the linear wave
equation

h,+ g'h\V*h =0, (2)

where 4, is the depth of the quiescent fluid, and & is
now the perturbation height field 2 = h, — h, (see Fig.
1). On the walls, a no-normal-flow boundary condition
results in

Oh

on ’
where n is the direction normal to the wall. Sommerfeld
(1896) derived an exact solution to (2) and (3) for the
problem of diffraction of an incident electromagnetic
wave impinging upon a perfectly conducting wedge of
arbitrary angle. The wedge geometry is given in Fig.
2, and we are interested in the magnetic-field compo-
nent of an electromagnetic field in which the angle of
incidence is zero, Sommerfeld’s solution is given in
terms of a complex integral and can be found, along
with an asymptotic solution, in Landau and Lifshitz
(1984, 305-307). The asymptotic solution for the dif-
fraction region II in Fig. 2 is

h(r, ¢)
ho

where h, is the incident wave amplitude. The dimen-
sionless wave amplitude is

(3)

= H(r, ¢) exp(—iwt),

, ) |
H(r, ¢) = W?ﬂfr?’—i exp[l(kr + g)]

y sin(7?/y)
cos(n?/y) — cos[n(¢p + m)/y]’

(4)

where v = 6, + 7 and the wavenumber k = 27/L. The

asymptotic analysis and (4) are valid when
 cos(w2/y) ~ cos[n(d + m)/y]> 1/kr,

Figure 3 shows the exact and asymptotic solutions for
a 45° bend in the wall. The diffraction produces both
constructive and destructive interference, and along
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F1G. 2. The wedge geometry in (¢, r) coordinates in the wedge-
diffraction theory. The wedge is the region with diagonal lines, and
the bend angle is denoted 8,. The incident wave travels from left to
right in region I, and the shadow-region is region II.

the wall the solution decays asymptotically with A
~ (kr)~'2. This solution also can be used for contin-
uous waveforms by Fourier decomposing the wave-
form and treating each mode separately. Thus, any
mode will exhibit a (kr) 2 decay with waves having
higher wavenumbers (shorter wavelengths) decaying
more rapidly. Also, the theory predicts that there is no
critical angle for wave diffraction, that is, there is no
angle at which the wave amplitude becomes zero after
the corner (except at infinite distance from the corner).

b. Exact solution with rotation

The waveform for the linear wave with rotation is
the same as in Fig. la except that the wave decays
exponentially away from the wall (+y) with the decay
factor being exp[—yf/(g'h,)""*]. Packham and Wil-
liams (1968) found an exact closed-form solution for
the linearized shallow-water equations that included ro-
tation and assumed no mean flow and an incident wave
with a sinusoidal waveform exhibiting exponential de-
cay away from the wall. They also derived an asymp-
totic solution that is a function of the bend angle 6, (see
Fig. 2) and the hyperbolic tangent of the ratio of the
frequency of the reference frame rotation to that of the
approaching wave, A\, = tanh(f/w). Unlike the non-
rotating case, there is no wave decay after the bend and
only wave decay at the bend. Given this behavior,
Packham and Williams solution can be expressed as a
transmission coefficient 7 (the ratio of the along-wall
wave amplitude after the bend to the wave amplitude
before the bend) for the asymptotic solution

_ (cosh2mho/y — cosm?/y\'"? tanh Ao
~ \cosh2mho/y + cosm?/y v

>
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where again y = 6, + 7 and the solution is valid for
large kr and w > f. Figure 4 shows the transmission
coefficient for two wave frequencies w > f. As in the
case with no rotation, there are no critical angles
wherein the wave amplitude is zero (for w/f— o, T
— 0 asymptotically). For w < f the transmission co-
efficient T = 1; there is no decay because Poincare
waves, responsible for the energy flux from the Kelvin
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FiG. 3. (a) The perturbation height field (#/h,) from the exact so-
lution (Sommerfeld 1896) for the linear wedge-diffraction problem
without rotation. The contour interval is 0.2 and absolute magnitudes
greater than 1 are in black. (b) |7| along the wall from the exact
solution along with the perturbation solution valid after the corner.



1330

Il T 7
*
I N N 7
) |
§ X Ny
g | N+ J
ST . ffw=2/3 1
[72]
2 | J
¥ =]
- flo=1/5 |
X
I
0 1 L ] MY 1 PR TR A "
Y bend angle (radians) n

FiG. 4. Asymptotic solution for the wedge diffraction problem with
rotation. The Xs and +s are results from numerical shallow-water
simulations using a smooth bend where the radius of curvature of the
bend is greater than the wavelength.

waves, are limited to frequencies less than f, and hence
the Poincare waves are evanescent (examples of Poin-
care waves can be found in Figs. 6 and 11 depicting
diffraction of the single-hump wave and bore, respec-
tively).

Packham and Williams’ exact solution was derived
for a sharp corner. Also shown in Fig. 4 are the trans-
mission coefficients obtained from simulations using a
curvilinear coordinate shallow-water model (described
in appendix A). The bend-is not sharp in the model,
and we have found that the bend’s radius of curvature
has little effect on the transmission coefficient. In the
simulations we also find that, in contrast to the case
without rotation, there is no wave decay except in the
immediate vicinity of the bend. The Kelvin wave his-
tory is propagation with constant amplitude before the
bend, decay with propagation around the bend, and
propagation with a constant, smaller, amplitude after
the bend.

3. Nonlinear theory and simulations for finite-length
discontinuous waves

Given adequate time, nonlinear effects will cause a
wave of elevation (depression) to steepen and break on
its upstream (downstream) side, forming a bore with
the height profile of the single-hump wave in Fig. 1b.
Whitham (1974, 42—48) has shown that if the speed
of the bore is approximated as a quadratic function, the
single-hump wave has the time-varying solution

== [
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where A is the area of the hump over the undisturbed
value \/7¢_1 and is constant in time, that is,

1 L
=@fo (Vhy — \hy)dx.

Next we address the wave diffraction resulting from
the propagation of this wave around a bend with and
without rotation.

a. Case with no rotation

Whitham’s analysis shows that the single-hump
wave will decay as ¢ ~!/? after it sharpens into a discon-
tinuity, where in this case we speak of the decay of the
quantity Vh; — Vhy. There is no theory that predicts the
wave decay after the bend. We would, however, expect
that the single-hump wave will decay after the bend by
the same mechanism, producing decay before the bend
(assuming that it retains its discontinuity), and that
there should be an additional decay associated with dif-
fraction of the finite-wavelength wave by the bend. We
have performed shallow-water simulations with the
curvilinear coordinate model and present the results
from two simulations in Fig. 5. The initial waves have
wavelengths that differ by a factor of four in the two
simulations, and there are three distinct regions in the
time—height plots in both cases. At early times, before
the wave reaches the bend, the wave steepens into a
bore and decays as approximately ¢!/, Well after the
bend the wave again decays at a constant rate that is
generally greater than t~/2, with the two cases shown
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FiG. 5. Time-height plot for the single-hump wave with no rota-
tion for two simulations. The data plotted at equal time intervals on
the log—log plot. The case with the smaller decay rate after the bend
has an initial wavelength four times that of the other case.
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in Fig. 5 exhibiting asymptotic decay rates of approx-
imately ¢>/¢ and ¢ =7, where the shorter initial-wave-
length disturbance has the higher decay rate. Finally,
during propagation around the bend there is additional
wave decay associated with the discontinuous nature of
the wave and its bore-like character. In the bend region
the decay rates are greater than those in the asymptotic-
decay regions upstream and downstream of the bend.
Both the theory and simulations of bore diffraction (see
section 4) show decay in the region of the bend but not
after the bend, and the discontinuous single-hump wave
is consistent with bore diffraction in that it has its larg-
est decay rate at the bend.

As in the previous case, we find that the bend’s ra-
dius of curvature has little effect on the wave evolution
away from the bend region. The simulations also sug-
gest that the wave decay after the bend is not sensitive
to the wave amplitude, but rather it is most sensitive to
the wavelength of the diffracting wave and the bend
angle, and we find that the waves with shorter wave-
lengths decay at higher rates after the bend. For very
short waves (w > f), the diffraction process is complex
and the decay rates often do not approach a steady rate
even after 101 7",

b. Case with rotation

For the rotational case, the waveform at the wall is
the same as in Fig. 1b, except now the wave is confined
to the vicinity of the wall. Figure 6 depicts a single-
hump wave before diffraction by the bend. The initial
waveform is linear with exponential decay in y. As the
wave steepens, the discontinuous wave front away
from the wall bends behind the front at the wall. Even
with this complex structure, the single-hump wave still
exhibits decay proportional to ¢ ~*/2 before encountering
the bend.

We might expect the wave to decay as ¢ ~'/? after the
bend according to Whitham’s analysis embodied in (5)
if the single-hump discontinuous wave behaves in an
analogous fashion to the linear waves because the lin-
ear analysis for rotational linear waves predicts that
there is no decay associated with the bend except that
confined to the region of the bend. Figure 7 is a time—
height plot of a shallow-water simulation of a single
Kelvin wave that steepens into a discontinuity. As in
the case without rotation, there are three regions of in-
terest in the wave evolution. First, the wave decays
approximately as ¢~'/? in the region before the bend
after bore formation. After the bend the wave again
decays approximately as ¢ ~'/?, as suggested by analogy
with linear theory. The wave behavior is complex in
the region of the bend. While there appears to be sig-
nificant decay associated with the bend, there also is an
adjustment where the wave returns to the r~'/? decay
and recovers the lost amplitude. The behavior at the
corner is a transient, temporary phenomena that has
little effect on downstream evolution. In this case as in
the other cases, we find no appreciable quantitative dif-
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ferences in the solutions when altering the curvature
radius of the bend angle, although the solution in the
region of the bend can change considerably; the ¢~'/2
decay remains both before and after the bend.

4. Bores
a. Theory without rotation

Whitham (1959, 1974, chapter 8) develops a theory
for the diffraction of shock waves in the context of
gasdynamics based on diffraction theory from geomet-
rical optics. The shock-diffraction theory is generaliz-
able to a bore by substituting the shallow-water equa-
tions for the compressible Euler equations and by sub-
stituting the bore conditions (relating the flows ahead
of and behind the bore) for the shock conditions. Whi-
tham (1974, 270) describes the generalization, and
based on this generalization we derive the bore-dif-
fraction theory in appendix B.

The principal result of the theory can be found in
Fig. 8, which can be directly interpreted as a plot of
the incident bore strength versus the critical bend angle,
where the bore strength is expressed in terms of a bore
Froude number F = U/a, U is the speed of the bore,
the wave speed a = (g'h,)"?, h, is the depth of the
fluid behind the bore, and the critical angle is in radians.
From Fig. 8 it can be immediately discerned that if the
approaching bore is close to a gravity current (4,/h,

— 0, F—2), then the critical angle is greater than 180°
and no physically realizable critical angle exists for the
case of a sharp bend (a discontinuous corner).

The theory also provides for the calculation of bore
decay from diffraction, using Fig. 8, for bend angles
less than the critical angle. For a bore of incident
Froude number F, and critical angle 6., its post-bend
Froude number will be F = F(6, — 0), where 8 is the
bend angle, and F(6, — &) is the Froude number as-
sociated with 6, — 8 in Fig. 8.

b. Simulations without rotation

Numerical model simulations of a bore propagating
around bends of 15° and 45° are plotted against the
theory in Fig. 9 where F is plotted as a function of Fj.
While the theory appears reasonably accurate for the
15° case, it is noticeably in error in the 45° case where
predicted Froude numbers are often less than one-half
the observed values. This inaccuracy is not entirely un-
expected. In the gasdynamics analysis of shock-wave
diffraction, Skews (1967) compared Whitham’s theory
with experiments and found that the theory also is rel-
atively inaccurate at low Mach number and high bend
angles (see Figs. 5a and 5c in Skews, which plotted
M,,, the wall Mach number after the bend, versus M,).
The gravity-induced bores are analogous to low Mach
number shocks because the highest Froude number that
can be produced using gravity alone as the motive force
is V2 and the Froude number is analogous to the Mach
number.
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F1G. 6. Height field for single-hump wave in the case with rotation.
The initial condition is the linear Kelvin wave, and the more complex
cross-shore structure develops as the nonlinear effects become impor-
tant. Diffraction has little effect on the wave amplitude and structure.

Further examination of Fig. 9 suggests that the crit-
ical angle predicted in the theory is not realized in the
simulations. For a 45° angle, an incident bore of Froude
number less than approximately 1.06 should not prop-
agate around the 45° bend. However, the numerical re-
sults show a bore with an incident Froude number of
approximately 1.03 propagating around the bend with
a Froude number of 1.01 after the bend. This is also
found in the experimental data of Skews for the shock-
diffraction problem. Figure 7 in Skews shows a critical
angle predicted by theory of ~110° for M, = 1.5,
whereas the data show no critical angle at all. More-
over, Skews states that in none of his experiments did
the shock separate from the wall or show zero shock
strength (M — 1).

Another feature of the shallow-water solutions for
the bore is a drop in the height field and an acceleration
of the fluid in the vicinity of the corner in the flow
behind the bore, with two such cases depicted in Figs.
10a and 10b.

If the flow behind the bore is subcritical with respect
to the corner (Fig. 10a), as determined by examining
the Froude number of the flow F = u,/(g'h,)"'?, then
both the acceleration and height drop are qualitatively
understood by analogy to potential flow solutions
around a sharp corner (see Batchelor 1967, 410-412).
In these potential flow solutions the flow accelerates in
the vicinity of the corner (with infinite velocity at the
corner, but we can take any streamline as the wall),
and the pressure drops as the fluid accelerates. In the
shallow water simulations the drop in the height field
is analogous to the pressure drop, and in both cases the
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fluid accelerates. However, the potential flow solutions
are nondivergent, whereas the shallow-water flow
around the bend is not, and thus the analogy is not
complete (we find that the flow diverges in the vicinity
of the bend).

If the flow is supercritical (Fig. 10b), an expansion
fan forms in the flow directly after the bend behind the
leading bore, similar to those discussed by Winant et
al. (1988), Samelson (1992), and Whitham (1974,
section 6.17) in the context of gasdynamics. The fans
are characterized by a drop in the height field and an
acceleration of the flow as it rounds the bend. Down-
stream of the bend, the leading bore sets the height to
which the flow around the bend must recover, and this
height is determined by the diffraction process. If the
accelerated flow around the bend in the expansion fan
is supercritical relative to the flow behind the leading
bore, a hydraulic jump (a second bore) must form if
the supercritical expansion fan flow is to return to a
subcritical flow dictated by the leading bore. This sec-
ond bore is evident in Fig. 10b. For large bend angles
(>135°) and large incident Froude numbers (F,
— 2), the expansion fan and second bore can interact
with the leading bore resulting in separation of the lead-
ing bore from the wall.

We do not believe that the shallow water model so-
lutions containing a second bore are physically realistic
with respect to the second bore. In the derivation of the
bore conditions (which are implicitly satisfied by the
advective formulation of the SWE numerical model)
the upper layer is assumed to be passive, and it also is
assumed that there is no shear between the flow ahead
of the bore and the passive upper layer; the velocity of

)
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FiG. 7. Time—height plot for the single-hump wave with rotation
with the data plotted at equal time intervals of 0.72f~" on the log—
log plot.
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Fic. 8. Plot of w(F) (or the critical angle 6,.) versus the Frounde
number F from the bore-diffraction theory (no rotation).

the lower and upper layers ahead of the bore are as-
sumed to be equivalent. However, there is a large ve-
locity ahead of the second bore in these simulations and
a large shear exists between the lower layer and the
passive upper layer. Thus, the assumptions that are
used to derive the bore conditions are not satisfied and
the evolution of this jump is not simulated correctly.
However, while the SWE model solutions appear phys-
ically unrealistic with respect to the second bore, we
believe that the evolving expansion fan may affect the
leading bore in some cases. A more sophisticated
model would be needed to examine this interaction.

c. Simulations with rotation

We do not have theory for the diffraction of bores
in a rotating environment. Theory for weakly nonlinear
waves, with irregular coastlines possessing bends with
curvature radii much greater than the Rossby radius,
are considered by Clarke (1977). He finds that wave
diffraction can produce significant phase changes but
little amplitude decay. Clarke does not consider bores
or strongly nonlinear disturbances. Qur simulations, us-
ing the shallow-water equations, strongly suggest that
the bores will experience minimal decay under all con-
ditions because the flows are always turned back into
the wall because of the rotation. As was the case for
the single-hump waves, the time period for reestablish-
ment of steady flow is less than 3f ! to 51! (see
Fig. 7).

For a steady boundary current with a leading bore,
the simulations show that if the radius of curvature of
the bend is equal to or greater than the Rossby radius
(R, = U/f), the bore will propagate smoothly around
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the bend with little adjustment evident. As the radius
of curvature decreases, an adjustment is observed such
that the bore decays as it propagates around the bend
but later returns to its original strength. In the case of
a sharp corner, depicted in Fig. 11, the bore and wall
current will separate at the corner and reattach down-
stream. There is a second weak bore behind the leading
bore in Fig. 11 that is similar to the second bore that
forms in the case without rotation, however, its scale
is much smaller. In the cases with rotation it requires
larger bore strengths, larger bend angles, and smaller
bend curvature to form the bores, and in no case that
we have simulated does it result in permanent separa-
tion of the primary bore because the flow inexorably
turns into the wall and reestablishes a wall current and
bore. As in the case without rotation, we do not believe
that the second bore is physically realistic, but in the
case with rotation the second bore plays no role in the
evolution of the leading bore.

5. Discussion

The wave-diffraction results for the nonrotating ref-
erence frame can be summarized as follows. Linear
waves are diffracted by the bend and decay as x~'/?
~ t7Y2 after the bend as a result of the diffraction.
Waves that steepen into discontinuities resemble a sin-
gle hump (Fig. 1b) where the quantity vk, — Vh;, a
measure of the wave amplitude, will decay as /2 be-
fore the bend, as >t~*/2 after the bend, and will expe-
rience an additional decay at the bend as a result of
their discontinuous nature. Bores decay as they prop-
agate around the bend but do not decay afterward.

1.5
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n

9b= 150
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1 1.5
FO

Fic. 9. Froude number of the incident bore (F,) versus the along-
wall Froude number of the diffracted bore (F) after propagation
around a smooth bend with no rotation. The solid line represents
theory and the points are results from shallow-water model simula-
tions for a 15° (X) and a 45° (+) bend angle.



1334

Generally, the numerical model simulations agree
with theory. However, the theory for bore diffraction
is not accurate; it is poor for anything but small bend
angles (in the small Froude number regime) and its
prediction of critical angles is not verified by the sim-
ulations where separation occurs based on effects not
included in the geometrical-optics theory of Whitham
(1959). The nonrobust nature of the bore-diffraction
theory is shared by the analogous shock-diffraction the-
ory (at low Mach numbers) as highlighted by the ex-
periments of Skews (1967).

Wave diffraction in a rotating reference frame is dra-
matically different than that in the nonrotating refer-

FiG. 10. Height field from the shallow water simulations showing
bores after propagation around a bend with an angle of 90° for inci-
dent Froude numbers of (a) 1.09 and (b) 1.18: #; = 500 m and the
contour interval for (&) c.i. = 30 m and (b) c.i. = 60 m. The leading
contour is 500 m in both plots. An expansion fan and second bore
are found imimediately after the bend in (b).
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Fic. 11. Height field for bores propagating around a convex bend
of 90° in a rotating framework with bend radius of curvature (a)
greater than the Rossby radius and (b) less than the Rossby radius.
The iength scales are approximately equal in (a) and (b), with the
dam being much closer to the bend in (b). The height field ahead of
the bore is 500 m and the contour interval is 50 m, with darker shad-
ing indicating a greater depth.

ence frame. In all cases, the diffraction effects are lo-
calized to the region of the bend and there is no con-
tinuous decay after the waves pass the bend. For
monochromatic linear waves, wave diffraction results
in wave decay for w/f > 1, that is, for short, high-
frequency waves. After leaving the influence of the
bend there is no further decay in contrast with the
x~"? decay in the nonrotating case. As in the nonro-
tating case, there is no critical angle. For the single-
hump wave there is decay associated with wave break-
ing (decay ~ ¢7"'?), and this decay rate is found both
before and after the bend. There is wave decay asso-
ciated with the leading discontinuity propagating
around the bend. There is no theory for bore diffraction
in the rotating reference frame, and the numerical sim-
ulations strongly suggest that there is no appreciable
decay associated with diffraction at the bend. In the
rotating frame, model simulations agree with the exist-
ing theory for wave diffraction for linear waves and
wave propagation for the single-hump wave before and
after the bend. Finally, there is no evidence of perma-
nent wave separation in any simulations in the rotating
reference frame in contrast to the observed bore sepa-
ration in the nonrotating frame and, while secondary
bores do form in the rotating case, they play no role in
the evolution of the leading bore. Overall, the rotational
theory and simulations suggest that diffraction can sig-
nificantly affect small-scale wave evolution for linear
waves, where small scale implies L < U/fand T < 1/
f. Diffraction does not affect strongly nonlinear waves
(bores) and large-scale waves (linear or nonlinear).
The diffraction theory and shallow-water model sim-
ulations presented herein have encompassed linear and
strongly nonlinear waves. We have not considered the
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weakly nonlinear solitary waves, where a solitary wave
is a single nonlinear translating wave that does not
change in shape and amplitude (its solitary nature tra-
ditionally resulting from a balance between nonlinear
steepening and wave dispersion). Reason and Steyn
(1992) suggest that rotational solitary waves ( Kubok-
awa and Hanawa 1984) have been observed in both
the 3~7 May 1982 California case and the 9~11 No-
vember 1982 Australian case and that the waves sep-
arated from the coast at a coastal bend and ceased
propagating as a result of wave diffraction. They ar-
gue that the critical angle, predicted in the analysis of
Miles (1977) for the propagation of nonrotating sol-
itary waves about a bend, is applicable to the observed
coastally trapped propagating waves. We do not be-
lieve that the nonrotating theory of Miles can be ap-
plied to the rotating case because both linear and
strongly nonlinear waves diffract very differently in
the rotating and nonrotating cases; the nonrotating
theory does not possess the correct dynamics to cap-
ture diffraction in the rotating case. We also observe:
1) it has not been demonstrated that the observed
waves are examples of the rotating solitary wave de-
scribed by Kubokawa and Hanawa; 2) the rotating
solitary wave is a perturbation solution on a mean cur-
rent, and the first question to be considered with re-
spect to diffraction is whether the current makes it
around the bend should the current exist; 3) the theory
of Miles is based on the geometrical-optics theory of
Whitham. Experiments and simulations have shown
that the critical angles predicted by the theory do not
exist in either shock dynamics (Skews 1967) or bores
(theory, shallow-water simulations in this paper).
Miles theory for solitary waves, including the result
concerning the critical angle, has not been verified ob-
servationally, experimentally, or numerically, thus it
is not clear if the critical angle prediction is accurate.
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APPENDIX A
Numerical Model Formulation

The curvilinear coordinate version of the shallow-
water model follows the formulation of Dietachmayer
(1992). The shallow-water equations (1) are trans-
formed from the coordinate system (x, y, ¢) to the sys-
tem (e, 7, t), with the new equations being

u  du (ahay 6h6y>_ﬁ)=o’

u,+u5 +UE

n \/5 66(977—57;—6;
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The transformed equations are differenced on a B grid
so that the discrete system is invariant with respect to
rotation. A wall (barrier) is specified along one bound-
ary of the domain (n = 0 boundary), and the other
boundaries are open and use gravity-wave radiating
boundary conditions (Klemp and Wilhelmson 1978).
The wall boundary is specified at the height points, and
the boundary condition needed to solve the height
equation along the wall is that the velocity normal to
the wall is zero. The time differencing is leapfrog. Both
fourth- and second-order filtering (in € and 7) have
been used along with a second-order dissipation in x
and y [see Dietachmayer and Droegemeier (1992) for
the formulation of the V? terms] with constant eddy
viscosity or hyper viscosity used in all applications.
The dissipation in the model is used to keep the com-
putations stable, and the solutions presented here have
been found to be insensitive to the form of the dissi-
pation and the values of the eddy viscosity.

APPENDIX B
Bore-Diffraction Theory

The bore-diffraction theory is a modification of the
shock-diffraction theory of Whitham (1974, chapter 8)
and we follow his outline. The theory is based on dif-
fraction theory from geometric optics combined with
the 1D gasdynamics equations and shock relations. We
modify this by substituting the shallow water equations
and bore relations into the theory, leaving the geometric
optics theory as is. We begin by briefly outlining the
geometric optics theory (Whitham 1974, section 8.4)
and conclude by presenting the shallow water equations
and bore relations necessary to complete the theory. In
presenting the optics theory, we use the shallow-water
terminology in place of the gasdynamics terminology.

For the 2D problem, the bore positions and rays or-
thogonal to the bore make up an orthogonal coordinate
system in which the theory is developed. This coordi-
nate system is depicted in Fig. B1. Whitham derives a
relationship between the normalized width of the ray
channel A and the normalized speed of the bore F (the
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Froude number F = U/a, where U is the bore speed,
the longwave speed a = (g'h)"?, and h is the height
of the fluid behind the bore). In Fig. B the increment
da denotes the change in the bore position in time dt
= da/a, thus the distance traveled is Udt = Fda and
the line element for da is Fda. Correspondingly, the
line element for dB is AdS. Next, consider the curvilin-
ear quadrilateral PQRS in Fig. B1 with corners (a, §),
(a + ba, B), (a, B + 68), and (a + ba, B + 66).
Defining 6(«, ) to be the angle between a ray and a
fixed direction, the change in the ray angle ¢ from P to
S is

0 ="50 “Faa'l
which can be written as
08 104
—_—=_-—, 1
08 F Oa (B1)

Similarly, given the orthogonality of the system, the
change in angle for the 3 curves leads to

The general problem is to determine 6, F, and A as a
function of « and §, and the next step in this process
is to determine the relationship A'= A(F). We will
consider this step in a moment, but first, having that
relationship, we can write the characteristic form of
(B1) and (B2) as

(‘L 66,6)(9 ffxf) >

where c 1s a function of F given by

-F
c(F) = WZAT’

and A' = dA/dF. The Riemann invariants for (B3) are

(B3)

0+ f% = const on df/da = *c.

Considering a wall with a single convex bend of 6,, (see
Fig. 2), and defining
FdF
Fy=1] —,
w(F) | Ac
the definition of the Riemann invariant along the wall
leads directly to the relation

w(F) = w(Fo) — by, (B5)

where Fj is the Froude number of the approaching bore,
and F is the Froude number of the bore after it has
passed around the bend. This is the result we desire
because it directly reveals the bore strength after prop-
agation around the bend; given the function w( F), Fy,
and 6, F is uniquely determined using (B5).

(B4)
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What remains is to determine w(F), and to do this
we must determine A = A (F). It is here that the shallow
water equations and bore conditions are substituted for
the gasdynamics equations and shock relations. Again
we follow Whitham (1974, section 8.1). First, the char-
acteristic equations for 1D flow in x with a cross section
slowly varying in x is derived. The addition of a slowly
varying cross section alters the height equation (1c)
such that it becomes

ho+ b+ i+ A

A(x)
where A (x) is the cross-sectional area perpendicular to
the flow. The characteristic equation for (1a) and (B6)
is

(B6)

l4

a 7] A
[at+(u_a)-—](u_2a)+au7‘— 0,

(B7)
where a = (g'h)!2.

We do not use the standard bore conditions (Ray-
leigh 1914), but rather we use the bore conditions de-
rived in Klemp et al. (1994, 1995) that give a solution
similar to the standard bore conditions when A, is of
the same order as /i, and that converge to Benjamin’s
result (1968) in the gravity current limit where &, — 0
(the standard bore condition predicts an infinite speed
or a vanishing bore height as 4, = 0). The bore con-
ditions from Klemp et al. are

2k2 1/2

=u + | g'h
U=u [g 2h,+h2]
2h,

1/2
h + hz] ’

and

~h
U, = u; + L [g’kz
)
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In the reference frame where u, is zero and h, is con-
stant, we can recast the bore conditions as

hF?
2-F?

1
u=2aF<1—;,—2>,

where u and % are the dependent variables. Following
Whitham, the bore conditions (B8) and (B9) are sub-
stituted into the characteristic equation (B7) (using the
positive characteristic), which results in an equation
relating A to F:

F dF
o1 )\(F)Ex_ +

h = (B8)

and

(B9)

=0, (B10)

>
SEES

where

1 1
ANF) = <3F-'F—,+ 1)'(1 +F>
1 - F?

1
‘(F‘T:”)F(z‘fﬁs-

The form of (B10) is identical to (8.25) in Whitham
(1974) except for different As. Also, in the gasdynam-
ics analysis Whitham assumes that «,/(u + a) and A4,/
(u + a) are small compared to the other terms in the
characteristic equation and discards them. We have in-
cluded these terms with the approximation u, = U,
and A, = Uh, and find better agreement with the model
results.

Finally, (B10) can be used to eliminate A from (B4),
which leads to the definition of w

F )\(F) 1/2
F) = f ——=| dF. Bl11
wF) = | ( T 1) (B11)
Figure 8 is a plot of w as a function of F and also
represents a direct solution of (B5).
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