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ABSTRACT

A forward-in-time splitting method for integrating the elastic equations is presented. A second-order Runge–
Kutta time integrator (RK2) for the large-time-step integration is combined with the forward–backward scheme
in a manner similar to the Klemp and Wilhelmson method. The new scheme produces fully second-order-accurate
integrations for advection and gravity wave propagation. The RK2 scheme uses upwind discretizations for the
advection terms and is easily combined with standard vertically semi-implicit techniques so as to improve
computational efficiency when the grid aspect ratio becomes large. A stability analysis of the RK2 split-explicit
scheme shows that it is stable for a wide range of advective and acoustic wave Courant numbers.

The RK2 time-split scheme is used in a full-physics nonhydrostatic compressible cloud model. The implicit
damping properties associated with the RK2’s third-order horizontal differencing allows for a significant reduction
in the value of horizontal filtering applied to the momentum and pressure fields, while qualitatively the solutions
appear to be better resolved than solutions from a leapfrog model.

1. Introduction

In atmospheric models integrating the hydrostatic or
nonhydrostatic equations, physical modes of meteoro-
logical importance are often of much lower frequency
than the highest-frequency modes admitted by the equa-
tions. For the hydrostatic system the high-frequency
mode is the external mode (the Lamb wave), while for
the nonhydrostatic system the high-frequency modes are
the acoustic waves. In numerical models, the time step
needed to stably integrate the high-frequency modes are
often 2–10 times smaller than the time step needed for
stable and accurate integration of the low-frequency
modes. A common strategy for improving computa-
tional efficiency is to employ explicit numerical
schemes that integrate the high-frequency modes using
a small time step while integrating the lower-frequency
modes using a larger, and therefore more economical,
time step. These methods are often called splitting meth-
ods (Marchuk 1974), and several different splitting
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methodologies based on explicit integration schemes ex-
ist.

One of the most commonly used splitting methods
for the compressible nonhydrostatic equations was in-
troduce by Klemp and Wilhelmson (1978, hereafter
KW), and it employs a leapfrog time discretization for
the terms associated with the low-frequency modes and
a forward–backward scheme (Mesinger 1977) for the
terms responsible for the propagation of the high-fre-
quency acoustic modes. Skamarock and Klemp (1992,
hereafter SK92) analyzed the stability of the KW
scheme as well as other potential split-explicit schemes.
They found that the KW scheme possessed the best
combination of stability, simplicity, and minimal filter-
ing of the schemes they considered.

SK92 also analyzed explicit time-splitting schemes,
based on the KW methodology, that used forward-in-
time methods for the slow modes and the forward–back-
ward scheme for the fast modes. They found that the
schemes had significant instabilities and that even with
filtering, these splitting methods were not suitable for
explicit time-split models. However, forward-in-time
methods, such as Smolarkiewicz (1984) and Tremback
et al. (1987), represent viable approximations for the
advection terms in the momentum equations if suitable
time-splitting approaches can be found. These forward-
in-time schemes are often formulated using upwind and/
or monotonic techniques that reduce phase errors and
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reduce or eliminate the presence of spurious oscillations
generated from underresolved gradients. The pure for-
ward schemes have the attractive advantage that the
number of small steps needed to integrate the high-
frequency modes would potentially be half that needed
for the KW scheme when used with the forward–back-
ward scheme of Mesinger because the fast modes are
integrated from t to t 1 Dt as opposed to t 2 Dt to t
1 Dt. Therefore, combining forward-in-time schemes
for the advective terms with the forward–backward
method for the high-frequency modes would present an
attractive alternative to KW.

In this paper we describe a forward-in-time split-ex-
plicit scheme that is a viable alternative to the KW
scheme for the integration of the nonhydrostatic com-
pressible equations. A second-order Runge–Kutta meth-
od is used as the time integration scheme for the ad-
vective terms and the forward–backward scheme is used
for the acoustic terms. The Runge–Kutta method retains
the advantages associated with many forward schemes;
for example, it uses upwind discretizations for the spa-
tial differences and can be formulated as a monotonic
method (Hundsdorfer et al. 1995), although it requires
three-quarters the number of the small time steps com-
pared with KW. Tests using this new scheme in both
two- and three-dimensional nonhydrostatic models
show the scheme is stable and accurate.

2. Scheme formulation and stability

The formulation and stability of the scheme can be
considered using a simplified one-dimensional set of
equations that describe the propagation and advection
of acoustic waves:

]u ]p ]u
1 5 2u . (1)

]t ]x ]x

]p ]u ]p
21 c 5 2u . (2)s]t ]x ]x

Equations (1) and (2) are the horizontal momentum and
pressure equations, respectively, where u is the fluid
velocity in the x direction, p is the perturbation Exner
pressure, t is time, and cs is the sound speed. A linear
version of the system (1) and (2) is equivalent to the
system used by SK92 to analyze the basic properties of
various time-splitting schemes. We will concern our-
selves with discretizations on the C grid. Although the
computation of advection terms is more expensive on
the C grid than on a nonstaggered grid, the C grid has
the advantage of accurately resolving the gravity wave
modes (Haltiner and Williams 1980, 227).

a. Formulation

We wish to retain, in the Runge–Kutta–based scheme,
the core methodology associated with the KW scheme,
that is, to evaluate the terms responsible for advection

using a single large time step while integrating the terms
responsible for the acoustic problems using a smaller
time step. We choose a second-order Runge–Kutta
method [Press et al. (1986), 550; hereafter RK2] as the
large-time-step scheme used to integrate the dependent
variables in (1) and (2) from t to t 1 Dt. There are
several formulations for second-order Runge–Kutta
methods; the RK2 scheme used here is sometimes re-
ferred to as the ‘‘improved polygon’’ method and can
be written as

Dt
t tf* 5 f 1 F(f ), (3a)

2
t1Dt tf 5 f 1 DtF(f*), (3b)

where F is a forcing vector of the dependent variables,
the superscripts indicate the time level, and the forcing
can be a function of all the relevant dependent variables.
The RK2 scheme is absolutely unstable for the pure
oscillation equation, f t 5 ivf. Pure linear advection
can be represented by the oscillation equation where v
is replaced by kU (k is the wavenumber 2p/L). Thus for
pure advection, the RK2 method is only stable when
combined with spatial discretizations that are upwind
biased, that is, the leading truncation error term is even
ordered and dissipative. Thus the effective frequency in
the discrete system possesses complex frequencies with
negative real parts that, taken together with the imag-
inary parts, produce a stable scheme. Conversely, the
RK2 scheme is unstable when the spatial derivatives are
centered because the real part of the discrete frequency
is 0. While any upwind discretization can be used, we
have found the third-order upwind spatial discretization
to be a good compromise between efficiency and ac-
curacy. For positive flow (u . 0), the third-order RK2
scheme can be written as

uDt
t tf* 5 f 2 R(f ), (4a)

12Dx

uDt
t1Dt tf 5 f 2 R(f*), and (4b)

6Dx

R(f) 5 f 2 6f 1 3f 1 2f . (4c)i22 i21 i i11

A more general version of the R operator for both pos-
itive and negative flows, which requires no special
switches for the upwind direction, can be found in
Hundsdorfer et al. (1995). Figure 1 shows the ampli-
fication factor for the third-order RK2 scheme for the
case of pure advection. This scheme is stable for all
wavenumbers when the advective Courant number is
less than 0.88. As expected from the Taylor series anal-
ysis, the scheme heavily damps wavenumbers greater
than p/2 (wavelengths less than 4Dx). Linear advection
tests (not shown) indicate that the scheme has small
phase errors and that the scheme’s inherent numerical
damping helps control oscillations generated from un-
derresolved gradients in the advected quantity. We find
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FIG. 1. Amplification factor for RK2 scheme with third-order spatial
discretization. Contour interval is 0.05. Maximum and minimum val-
ues are plotted at the lower left. The shaded region indicates where
the scheme is unstable.

that the third-order scheme performs satisfactorily in
our full Navier–Stokes models.

Similar to KW, a forward–backward time scheme
with centered spatial derivatives is used to integrate the
pressure gradient and divergence terms in (1) and (2).
We divide the new scheme into two major steps. First,
the large time step tendencies are defined using the third-
order spatial differencing,

tuit tf 5 2 R(u ) and (5a)u 6Dx
x

tuit tf 5 2 R(p ), (5b)p 6Dx

where f x 5 ½(f x1Dx/2 1 f x2Dx/2). The middle-time-
level predictors are produced by integrating the slow
and fast modes forward, to the midpoint of the time step
(Dt/2), using a small time step with the slow-mode ten-
dencies (5a) and (5b) held fixed. The fast-mode scheme
is the forward–backward scheme of Mesinger (1977),
and the small-time-step equations are

Dt
t1Dt t t tu 5 u 2 d p 1 Dt f and (5c)i i x uDx

2c Dtst1Dt t t1Dt tp 5 p 2 d u 1 Dt f , (5d)i i x pDx

where dxf 5 (1/Dx)(f x1Dx/2 2 f x2Dx/2). Here the small
time step Dt 5 Dt/ns, and ns/2 small time steps1 are

1 Note that for the RK2 time-split scheme, ns must be an even
number.

used to advance to the midpoint of the large time step.
To complete the large time step, the advective tendencies
are now recomputed using the predicted midpoint values

t1Dt /2uit1Dt /2 t1Dt /2f 5 2 R(u ) and (5e)u 6Dx
x

t1Dt /2u
t1Dt /2 t1Dt /2f 5 2 R(p ), (5f)p 6Dx

and the small step integration is then repeated starting
with the values at the original time level t and advanced
to t 1 Dt using

Dt
t1Dt t t t1Dt /2u 5 u 2 d p 1 Dt f and (5g)i i x uDx

2c Dtst1Dt t t1Dt t1Dt /2p 5 p 2 d u 1 Dt f , (5h)i i x pDx

through ns small time steps. The complete RK2 time-
split scheme is described by (5a) through (5h).

b. Stability analysis

Using the methodology presented in the appendix of
SK92, a stability analysis was performed on scheme (5).
For this analysis, a linearized version of (1) and (2) is
used:

]u ]p ]u
1 c 5 2U and (6a)s]t ]x ]x

]p ]u ]p
1 c 5 2U , (6b)s]t ]x ]x

where U is the mean advective velocity, cs is a constant
sound speed, and for convienence we have redefined p
to be p/cs. The analysis examines a spatial Fourier de-
composition of the discretization (5). For example, the
small-time-step counterparts to (5c) and (5d) lead to

i
t1Dt t t tu 5 u 2 il p 2 l u and (7a)cx uns

i
t1Dt t t1Dt tp 5 p 2 il u 2 l p , (7b)cx uns

where

2c Dt kDxsl 5 sin andcx 1 2Dx 2

UDt 1 4pDx 2pDx
l 5 i cos 2 4 cosu 5 1 2 1 2[ ]Dx 6 L L

4pDx 2pDx
1 sin 2 8 sin ,1 2 1 2 6[ ]L L

where k 5 2p/L is a horizontal wavenumber. Using this
formalism, the amplification matrix is constructed as in
SK92 and its eigenvalues are computed numerically.
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FIG. 2. Maximum amplification factor for the split-explicit third-order RK2 scheme. The
contour interval is 0.1 and Cru and Crcs are the advective and sound speed Courant numbers,
respectively; (a) ns 5 4, (b) ns 5 12, (c) ns 5 12, with a divergence damping coefficient a 5
0.025. The lines AB are plotted using U/cs 5 1/12, and shaded regions indicate where the
amplification factor is greater than 1.

The results of this stability analysis are presented in
Fig. 2 where the maximum absolute value of the ei-
genvalues is contoured as a function of advective (UDt/
Dx) and acoustic (csDt /Dx) Courant numbers from (7a)
and (7b) for the case of ns 5 4 and ns 5 12. Schemes
are stable when the absolute value of the eigenvalues
are less than or equal to 1, and here the maximum ab-
solute eigenvalue is for spatial wavelengths 2Dx through
20Dx. With four small time steps per large time step
(Fig. 2a), there exists a large region where the ampli-
fication matrix is less than or equal to 1. The stability
region of interest is below and to the right of the thick
lines in Fig. 2, where the slope of the line is the UDt/
csDt .2 As the number of small time steps are increased
to 12 (Fig. 2b) there are regions of instability entering
the lower right-hand portion of the domain that are trou-
blesome. SK92 showed that the unfiltered KW scheme
also has similar instabilities and that the Asselin time
filter stabilizes the scheme. SK92 introduced a diver-
gence damping filter that also stabilizes the KW scheme.
Divergence damping has the advantage that it only
damps acoustic modes and not the nondivergent modes,
and preserves the second-order temporal accuracy of
the scheme. Including a divergence damping filter in
the RK2 scheme also significantly reduces the instabil-
ities. Divergence damping takes the form of a second-
order dissipation term for the pure 1D acoustic system
(6), and its inclusion results in replacing (6a) by

]u ]p ]u ]D
1 c 5 2U 1 n , (8)s]t ]x ]x ]x

where D is the velocity divergence (here D 5 dxu).
Stability results with divergence damping included are
given in Fig. 2c for the case ns 5 12 and a nondimen-

2 The advective velocities in a simulation can vary up to Umax,
while the sound speed cs is fixed. So while in the linear case with
fixed U and cs we are technically interested only in the stability along
the thick lines in Fig. 2, in practice the schemes must be stable below
these lines because U , Umax. If cs were similarily variable, we would
need to examine the stability across the entire space.

sional divergence damping coefficient a 5 0.025 (a 5
nDt /Dx2). Stability is recovered in most of the param-
eter space.

3. Numerical tests

a. Propagating gravity wave simulations

Skamarock and Klemp (1994, hereafter SK94) ana-
lyzed the efficiency and accuracy of the KW scheme by
simulating the propagation of inertia–gravity waves on
both nonhydrostatic and hydrostatic scales. Analytical
solutions for their examples are given in SK94 and here
we compare solutions for the RK2 and KW schemes
with the analytical solutions in both regimes.

The test problem simulates the propagation of an in-
ertia–gravity wave in a Boussinesq atmosphere of con-
stant Brunt–Väisälä frequency with N 5 1022 s21, in a
periodic channel with solid, free-slip upper and lower
boundaries, with a mean wind U 5 20 m s21 translating
the waves. In the small time step of the RK2 and leap-
frog models, w, p, and u are advanced using the ver-
tically implicit scheme described in SK92, which is time
centered [b 5 0 in SK92 Eqs. (28) and (29)], thus
removing any vertically propagating acoustic wave or
buoyancy-oscillation time step restrictions. The hori-
zontal advection terms for the RK2 scheme are com-
puted using the third-order upwind spatial discretiza-
tion. For vertical advection, second-order centered finite
differences are combined with the RK2 time differenc-
ing. This vertical discretization was chosen for sim-
plicity. Formally maintaining third-order accuracy in z
is complicated; however, third-order differencing in
computational space could be used, resulting in third-
order accuracy in the transformed coordinate. We dis-
cretize the Coriolis terms in the simple model using a
forward-in-time approach, which is also formally un-
stable. However, linear stability analysis shows that for
the size of the time steps used below, the amplification
rate is so small that instabilities would require more
than 104 time steps before significant growth in the so-
lution would be observed. Simulations requiring long-
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FIG. 3. (a) Perturbation u at t 5 0 for the nonhydrostatic gravity
wave test, plotted with a contour interval of 1023 K. The plotted
domain is 300 km by 10 km. (b) Analytical solution for perturbation
u at t 5 3000 s, plotted with a contour interval of 0.5 3 1023 K, for
the analytic solution. (c) Perturbation u at t 5 3000 s for the RK2
model. (d) Same as (c), except for the leapfrog model.

TABLE 1. Efficiency and accuracy statistics for the leapfrog and RK2 time-split schemes for hydrostatic and nonhydrostatic inertia–gravity
wave tests. Abbreviations LF and RK2 refer to the Runge–Kutta and leapfrog models described in the text.

Dt
(s)

Mean
UDt/Dx

Time
steps

No. of
small steps

CPU time (s)

Nonacoustic Acoustic Total
rms

error (K)

Nonhydrostatic inertia–gravity wave
LF
RK2

12
12

0.24
0.24

250
250

6
6

1.75
4.84

8.37
6.27

10.12
11.11

2.177 3 1023

1.950 3 1023

Hydrostatic inertia–gravity wave
LF
RK2
LF
RK2
LF
RK2

200
200
200
200
600
600

0.2
0.2
0.2
0.2
0.6
0.6

300
300
300
300
100
100

6
6

12
12
12
12

2.10
6.54
2.10
6.54
0.69
2.19

10.13
7.53

20.15
15.17
6.64
5.01

12.23
14.08
22.25
21.72
7.34
7.20

2.952 3 1024

2.796 3 1024

2.974 3 1024

2.811 3 1024

3.174 3 1024

2.050 3 1024

term integrations may require a more stable treatment
of the Coriolis terms. One possibility is a forward–back-
ward integration of these terms on the small time step
(Pielke 1984, 291). We have not encountered any sign
of instability in our simulations using these methods in

our simple model or in our complete compressible full-
physics models.

In these tests, no horizontal or vertical filtering is used
in either model and the only numerical filter included
in the RK2 scheme is a divergence damping filter
(SK92), with a damping coefficient a 5 0.02. The leap-
frog scheme uses spatially centered fourth-order hori-
zontal and second-order vertical differencing for the ad-
vection terms. The same divergence damping filter is
applied to the leapfrog scheme, and an Asselin time filter
with a value of 0.1 is used to couple successive time
levels together. Both models use a C grid staggering,
and finite differencing of the divergence and pressure
gradient terms are approximated to second order as in
SK92. The small-time-step algorithms are identical in
the leapfrog and RK2 models.

Figure 3 shows the results for a grid aspect ratio of
Dx 5 Dz 5 1 km, the nonhydrostatic inertia–gravity
wave case. The parameters used are identical to those
used for the nonhydrostatic case in SK94 and are listed
in Table 1. The initial condition and analytical solution
at t 5 3000 s are shown in Figs. 3a and 3b, and Fig.
3c shows the u solution from the RK2 scheme at 3000
s. The RK2 scheme appears to closely reproduce the
analytical solution shown in Fig. 3b. The u perturbations
are symmetric about the center of the domain. In con-
trast, the solution from the leapfrog scheme (Fig. 3d)
is not symmetric, with the u perturbations being some-
what reduced in the right half of the domain. Table 1
shows that for ns 5 6, the RK2 model is about 10%
more expensive and u perturbation rms error is about
10% smaller than in the leapfrog model.

Figure 4 shows the results at 60 000 s from simula-
tions using a grid aspect ratio of (Dx/Dz) 5 20, the
hydrostatic inertia–gravity wave case. The first exper-
iments use a 200-s time step as in SK94, and the RK2
solution, shown in Fig. 4b again reproduces very closely
the analytical solution shown in Fig. 4a as well as main-
taining symmetric u perturbations about the center of
the domain. The solution from the leapfrog scheme (Fig.
4c) is again not symmetric, with the u field having re-
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FIG. 4. (a) Perturbation u at t 5 60 000 for the hydrostatic inertia–
gravity wave test, plotted with a contour interval of 0.5 3 1023 K.
The plotted domain is 6000 km by 10 km. (b) Perturbation u at t 5
60 000 s for the RK2 model. (c) Same as (b) except for the leapfrog
model.

duced perturbations in the right half of the domain. The
rms solution errors are similar in the cases that use the
200-s time step and ns 5 6. Also shown in Table 1 are
rms errors for the same simulation with time steps of
200 s with ns 5 12 and 600 s with ns 5 12. The solution
error in the RK2 scheme increases about the same as
the leapfrog scheme when ns increases. Interestingly, as
the large time step increases, the rms error in the leap-
frog scheme increases slightly, while the error in the
RK2 solution is reduced by 30%. This is likely due to
the fact that as the advective Courant number increases,
the phase errors in the leapfrog scheme also increase.
The total amount of dissipation in the RK2 scheme is
proportional to the number of time steps taken, therefore
the RK2 solution error decreases as the number of time
steps is reduced from 300 to 100.

b. Rising thermal simulations

Using the same codes as in the gravity wave simu-
lations, the RK2 scheme’s accuracy and stability is ex-
amined for a strongly nonlinear flow, the numerical sim-
ulation of a rising thermal in an adiabatic atmosphere.
This problem is similar to the one presented by Car-
penter et al. (1990), except that here a uniform hori-
zontal flow of 20 m s21 is introduced so that the thermal
is transported laterally in a horizontally periodic do-
main. The grid spacing is 125 m in both the x and z
directions, and the domain is 20 km wide and 10 km

deep. The initial thermal has a radius of 2 km and is
placed in the center of the domain at a height of 2 km
with a potential temperature excess of 28. A time step
of 2 s is used and the mean horizontal Courant number
is 0.32. The solution is integrated for 1000 s, such that
the rising thermal should be located in the center of the
domain and the solution should remain symmetric. Fig-
ure 5 shows the solutions for the leapfrog and the RK2
schemes. Both thermals have risen nearly to the top of
the domain (Figs. 5a,c). The RK2 u field is nearly sym-
metric with some numerical oscillations located near the
strong vertical gradients. The leapfrog u field is much
less symmetric than the RK2 solution, and even more
significant spurious oscillations are noted. Larger dif-
ferences are seen in the vertical velocity fields (Figs.
5b,d). The leapfrog vertical velocity is clearly not sym-
metric, and there are numerical oscillations in the trail-
ing wake behind the thermal. The RK2 vertical velocity
field is nearly symmetric, with no oscillations present
in the solution. These results indicate that the inherent
damping and reduced phase errors associated with the
RK2 scheme generate a more accurate solution than the
fourth-order leapfrog solution, and the RK2 scheme has
remained stable, even when the flow is strongly non-
linear.

All of these test problems indicate that the RK2
scheme performs as well, or even better than the fourth-
order leapfrog scheme. As expected, the tests show that
two evaluations of the advection terms in the RK2
scheme result in a considerably more costly advection
algorithm than in the leapfrog formulation. However,
the RK2 scheme requires only three-quarters the number
of small time steps (per large time step) compared with
the leapfrog scheme, thus the costs of the two schemes
are comparable, especially when ns . 10. Given the
ability to easily incorporate limiters (monotonicity), the
more selective dissipation in the RK2-based third-order
upwind advection scheme compared with the filters used
in leapfrog models, and the full second-order temporal
accuracy of the advection operators, the RK2 scheme
is computationally competitive with the leapfrog
scheme.

4. Discussion

We have presented a new forward-in-time splitting
method for integrating the elastic equations. Using the
RK2 scheme as the time integrator for the large time
step, this method has been combined with the forward–
backward scheme in a manner similar to the KW method
such that the scheme produces fully second-order-ac-
curate integration for advection and gravity wave prop-
agation. The RK2 split scheme uses upwind discreti-
zations for the advection derivatives and can be easily
combined with standard vertically semi-implicit tech-
niques so as to improve computational efficiency when
the grid aspect ratio becomes large. A stability analysis
of the RK2-based split scheme shows that it is stable
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FIG. 5. (a) Perturbation u at t 5 1000 for the leapfrog solution to the rising thermal problem, plotted with a contour
interval of 0.25 K. (b) Vertical velocity at t 5 1000 for the leapfrog solution to the rising thermal problem, plotted
with a contour interval of 1.5 m s21. Thick lines are positive contours, thin lines are negative contours. (c) Same as
(a) except for the RK2 solution. (d) Same as (b) except for the RK2 solution.

for a wide range of advective and acoustic wave Courant
numbers, and integrations reveal that the RK2 and KW
leapfrog schemes generate similar solutions when the
advective Courant number is small. As the time step
and the advective Courant number increase, the RK2
scheme generates a somewhat more accurate solution
than the KW leapfrog scheme.

The RK2 scheme is being used successfully in a full-
physics nonhydrostatic model—the Collaborative Mod-
el for Multiscale Atmospheric Simulation [COMMAS,
Wicker and Wilhelmson (1995)]. The implicit damping
properties associated with the RK2’s third-order hori-
zontal differencing allows for a significant reduction in
the value of horizontal fourth-order filtering applied to
the momentum fields (typically by a factor of 20). As
was the case for the leapfrog version of COMMAS, the
RK2 scheme for momentum and pressure is combined

with a monotonic upwind-biased forward time scheme
for the advection of scalar variables. The combination
of the RK2 splitting scheme for the momentum and
pressure equations with forward-in-time advection and
mixing for the scalar equations has shown to be an
accurate and robust methodology for a wide variety of
simulations. We have found that the RK2 model requires
about 10% more CPU time for the dynamics than the
leapfrog model for a given computational grid and time
step, while qualitatively the solutions appear to be better
resolved than solutions obtained from the COMMAS
leapfrog model.

Aspects of the full-physics model formulation using
the RK2 scheme deserve further comment. In both the
RK2 and leapfrog formulations, the turbulent mixing
terms are handled forward-in-time (i.e., forward Euler).
This is only first-order accurate in time, but this ap-
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proach engenders only half the error of the leapfrog
scheme for a given time step because the mixing is
advanced from t to t 1 Dt in the RK2 model as opposed
to t 2 Dt to t 1 Dt in the leapfrog model. Full second-
order accuracy for the mixing terms can be obtained by
integrating these terms using RK2 (like the advection
terms), but this doubles the cost of the turbulence pa-
rameterizations because two evaluations of the mixing
terms per time step are required. As noted in section 3,
the Coriolis terms are differenced in a manner that is
mildly unstable. The temporally first-order-accurate for-
ward-in-time scheme can be replaced by the second-
order-accurate RK2 scheme (at the cost of an additional
Coriolis evaluation), resulting in a scheme that is less
(although still) unstable. A stable treatment for the Cor-
iolis terms using a forward-in-time scheme would re-
quire using a velocity estimate that is uncentered toward
the t 1 Dt velocity; this would introduce damping and
a return to first-order accuracy but would guarantee sta-
bility. As with the advection terms, the stability of any
terms that possess purely imaginary frequencies require
that their discrete counterpart possess complex frequen-
cies with negative real parts (damping). Another solu-
tion would be to use a forward–backward scheme for
the Coriolis terms (Pielke 1984, 291), which is condi-
tionally stable for a large range of time steps and is a
neutral scheme. This would require placing the com-
putation of the Coriolis terms on the small time step.

Higher-order Runge–Kutta methods (such as the
fourth-order Runge–Kutta method) could also be em-
ployed in a manner similar to the RK2 split scheme but
would require additional evaluations of the large time
step processes and additional small time steps. Estimates
of the computational efficiency gained by using a high-
er-order Runga–Kutta scheme suggest that the increased
cost in evaluating the advection is only marginally com-
penstated by the increased time step allowed. Therefore
we believe that the RK2 scheme is a good compromise
between accuracy, efficiency, and complexity, given the

prevailing view that truncation errors associated with
spatial discretizations are generally much larger than
those associated with the temporal discretization in at-
mospheric models.
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