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ABSTRACT

The NCAR Community Climate System Model (CCSM) finite-volume atmospheric core uses a C–D-grid
discretization to solve the equations of motion. A linear analysis of this discretization shows that it behaves
as a D grid to leading order; it possesses the poor response of the D grid for short-wavelength divergent
modes, the poor response of the C and D grids for short-wavelength rotational modes, and is only first-order
accurate in time and damping. The scheme combines a modified forward–backward time integration for
gravity waves with forward-in-time upwind-biased advection schemes, and the solver uses a vector-invariant
form of the momentum equations. Other approaches using these equations are considered that circumvent
some of the problems inherent in the current approach.

1. Introduction

Solvers for the Navier–Stokes equations on the
sphere are used as the basis for both climate and global
numerical weather prediction models. For these appli-
cations there is a growing appreciation of the need for
conservative positive-definite and/or monotonic trans-
port of chemical species, aerosols, and moisture. In the
National Center for Atmospheric Research (NCAR)
Community Climate System Model (CCSM), a second
dynamical core incorporating a finite-volume-based
solver, described in Lin (2004), was introduced to sat-
isfy the need for conservative scalar transport (Collins
et al. 2004, 2006). This hydrostatic primitive equations
solver was developed from a shallow-water equations
solver (Lin and Rood 1997, hereinafter LR97) that uses
a multidimensional transport scheme based on the
piecewise parabolic method (PPM; Lin and Rood 1996)
that is analyzed in Lauritzen (2007). In this paper we
perform a linear analysis of the spatial–temporal dis-
cretization used in LR97 to illustrate its characteristics,
and we consider alternative approaches.

Linear analyses are often used to determine how well

the structure, propagation, and transport of large-scale
rotationally dominated waves (Rossby waves and iner-
tial oscillations), smaller-scale gravity waves (horizon-
tally divergent motions), and inertia–gravity waves are
handled in the spatial and temporal discretizations of
global atmospheric dynamical cores. Although good
linear response characteristics are not sufficient to en-
sure good performance in more complex nonlinear ap-
plications, they are widely regarded as a necessary re-
quirement for the model numerics. In the solvers, dis-
cretization choices often represent a trade-off in the
accurate representation of one class of motions over
another, and this trade-off is quantifiable through the
linear analyses. For example, divergent motions (grav-
ity waves) contain little energy at large scales, where
rotational modes dominate the kinetic energy spec-
trum. Models for these applications have usually been
constructed with formulations that are most accurate
for rotational modes (that may be poorly resolved on
coarse grids), and are designed to be stable and perhaps
damping for divergent modes. As model resolution is
increased, divergent motions begin to become resolved
(the mesoscale is where kinetic energy associated with
divergent motions is of similar magnitude to that asso-
ciated with rotational modes). At these resolutions, ro-
tational modes are well resolved while divergent modes
are marginally resolved, and hence discretizations are
often chosen to accurately represent the marginally re-
solved divergent modes, with the understanding that
rotational modes will be well resolved even with a sub-
optimal discretization.
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The discretization scheme used in the finite-volume
(FV) core of the CCSM uses a “reverse engineering”
approach (see LR97) in order to accurately resolve
both rotational and divergent modes. In the following
sections we examine the behavior of this discretization.
The temporal–spatial discretization is described in sec-
tion 2 along with its relationship to standard discretiza-
tions. In section 3 we examine the damping properties
and stability characteristics for the gravity waves in the
solver. We consider the properties of advected gravity
waves in section 4 followed by an examination of the
nonlinear aspects of the LR97 solver as they relate to
other solvers in section 5. A summary is presented in
section 6.

2. Inertia–gravity wave analysis

We can examine the LR97 solver by considering the
linearized shallow-water equations using the standard
linearization of the height (H � h) and the velocities
(U � u and V � �), and we first consider the simplest
case with no mean advection,

U, V � 0.

The appropriately linearized shallow-water equations
on an f plane are

ht � H�ux � �y� � 0, �1a�

ut � f� � ghx � 0, and �1b�

�t � fu � ghy � 0, �1c�

where subscripts denote partial differentiation.

The horizontal grid is described in LR97 as a C–D
grid and is depicted in Fig. 1; in this paper we follow the
spatial grid-staggering naming convention of Arakawa
and Lamb (1977). A critical aspect of the C–D-grid
scheme is that the velocities on the C-grid component
(denoted by subscript c) are defined using four-point
averages from the D grid at the beginning of each time
step:

uc � uxy and �c � �xy.

The full LR97 time–space discretization for the linear-
ized shallow-water equations is given as follows: First,
the midpoint predictor step used in LR97 involves in-
terpolating the velocities from the D grid to the C grid
and advancing the C-grid variables over a time step
�t/2:

h* � hn � ��t�2�HDn xy
, �2a�

u*c � un xy
� ��t�2��g�xh* � f�n�, and �2b�

�*c � �n xy
� ��t�2��g�yh* � fun�, �2c�

where D is the divergence operator

Dn xy
� �xun xy

� �y�n xy
� �xun � �y�n xy

,

�x	 � (	x��x/2 � 	x��x/2)/�x is a difference operator,
and the averaging operator 	

xy
� 	

x y
� 	

y x
is an

average over x and y, where the average is defined as
	

x
� (	x��x/2 � 	x��x/2)/2. The predictor step (2) is

followed by the full forward–backward step on the D
grid:

hn�1 � hn � �tHD*c, �3a�

un�1 � un � �t�g�xhn�1
xy

� f�*c�, and �3b�

�n�1 � �n � �t�g�yhn�1
xy

� fu*c�, �3c�

where D*c is the divergence using (u*c , �*c ). Eliminating
the predictor (*) variables, casting the right-hand-side
(rhs) variables at time level n, and dividing by �t results
in

hn�1 � hn

�t
� �H�Dn xy� �

�t

2

�fH��x�n � �yun� � gH��x

2hn � �y
2hn�� � O��t2�, �4a�

un�1 � un

�t
� f�n xy

� g�xhn xy
�

�t

2

f 2un � gf�yhn � 2gH��xDn xy xy

�� � O��t2�, and �4b�

�n�1 � �n

�t
� �fun xy

� g�yhn xy
�

�t

2 
f 2�n � gf�xhn � 2gH��yDn xy
xy

�� � O��t2�. �4c�

FIG. 1. The two component grids in the C–D-grid model. (left)
The D grid and (right) the C grid. Here, u, �, and h on the D grid
are the prognostic variables in the LR97 model, whereas �, the
vorticity, is diagnosed.
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The leading-order height-gradient and Coriolis terms in
the momentum equations (4b) and (4c) use four-point
averaged quantities, and the leading-order velocity di-
vergence term in the height equation (4a) uses four-
point averaged velocities. Thus, to first order in time
this is a D-grid discretization. As �t → 0, the spatial
discretization corresponds exactly to the D grid.

LR97 state that the C–D grid has properties similar
to the Z grid analyzed in Randall (1994). Randall’s Z-
grid formulation solves the shallow-water equations us-
ing vertical vorticity, divergence, and height as prog-
nostic variables, as opposed to horizontal momentum
and height. The Z-grid formulation possesses accuracy
similar to that of the A grid for inertial oscillations (or
any grid for which the velocities are collocated and no
averaging is needed for the Coriolis terms in the mo-
mentum equations), and it possesses the properties of
the C grid for gravity wave motions (the C-grid stag-
gering allows for a very accurate discretization of the
divergence and height-gradient terms). The analysis in
the previous section shows that LR97’s C–D grid be-
haves fundamentally as a D grid, and hence it does not
appear to possess the properties of Randall’s Z grid.
We confirm this behavior by comparing the analytic
results found in Randall’s paper with the behavior of
LR97’s scheme (2)–(3).

The primary results from Randall (1994) are pre-
sented in several plots where the dimensionless inertia–
gravity wave frequency 
 /f is plotted as a function of
the dimensionless wavenumbers kd and ld, where 
 is
the frequency, f is the Coriolis parameter, k and l are
the dimensional wavenumbers, and d is the grid length.
As is standard practice, exact and approximate solu-
tions to the linearized equations are determined by as-
suming wave solutions of the form 	 � 	̂ exp[i(kx �

ly � wt)]. Using (2) and (3) and assuming wave solu-
tions, we can cast the LR97 equations into the form

�n�1 � A�n, �5�

where 	 � (h, u, �)T and A is the amplification matrix.
The eigenvalues of A (which we denote as �) are di-
rectly related to the frequency and amplitude response
in the discrete system:

� � exp��i��t�,

r � |� | , and

��t � arg���.

Three modes are present in the solution: the two
inertia–gravity waves and the stationary mode. Figure 2
depicts the results for the two values of �/d � (gH)1/2/
fd � (2, 0.1) examined in Randall (1994) (where d � �x
and � is the deformation radius in Randall’s notation).
For these results we have used �t � 300 s, d � �x � 100
km, and f � 10�4 s�1, which, along with �, are sufficient
to specify the two dimensionless parameters that ap-
pear in (5), f�t and gH�t2/d2. Where the gravity wave
modes dominate the solution (� � 2), the C grid and
Randall’s Z grid give the best response. The C–D grid
from LR97 gives a frequency response that is essen-
tially that of the D grid except at the highest wavenum-
bers—where the response is marginally poorer than the
poor D-grid response. Where the rotational modes
dominate (� � 0.1), the C–D-grid and D-grid responses
are essentially indistinguishable, and the C, D, and C–D
grids all show a very poor response. Thus, LR97’s C–D
grid behaves as a D grid, not as Randall’s (1994) Z grid.

The averaging involved in the height-gradient terms
in the momentum equations and in the divergence term
in the height equation causes the 2�x inertia–gravity

FIG. 2. Dimensionless frequencies of linear inertia–gravity waves for the LR97 C–D grid using the scheme (2)–(3)
along with the exact frequency and the Z-, C-, and D-grid frequencies assuming no temporal discretization (from
Randall 1994). The results are for waves propagating diagonally across the grid (k � l).
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waves to be stationary on the grid as shown in Fig. 2,
where the frequency response as a function of dimen-
sionless wavenumber is plotted for waves propagating
diagonally across the grid (k � l). Essentially, the grid
does not see these waves except for some damping of
the height field from the time-stepping scheme appear-
ing in the height equation (4a). The CCSM finite-
volume core based on LR97’s integration scheme (Col-
lins et al. 2004) uses explicit horizontal divergence
damping to filter these stationary modes from the mo-
mentum fields. Horizontal divergence damping filters
gravity waves (Skamarock 2004) and, while perhaps ap-
propriate at large scales where there is little energy in
the divergent modes, is inappropriate at smaller scales,
beginning at the mesoscale, because of the increasing
importance of the divergent motions.

3. Damping and stability characteristics for gravity
waves

Spatial filtering terms appear in (4a)–(4c) in the form
of a second-order spatial filter in the height equation,
that is, the term (�t/2)gH(�2

xhn � �2
yhn) in (4a), and

horizontal divergence-damping terms in the momen-
tum equations, that is, the terms �tgH�xDn xy xy

and
�tgH�yDn xy xy

in (4b) and (4c), respectively. In order to
examine the damping and stability characteristics of the
scheme for gravity waves, we have analyzed the one-
dimensional (x) linearized gravity wave equations (1a)
and (1b) with f � � � 0. For the 1D (x) case, the C–D
grid collapses to an unstaggered (A) grid where u and h
are defined at the same location. In this case (4a) and
(4b) reduce to

hn�1 � hn � �tH��xun x� �
�t2

2
gH��x

2hn� �6a�

and

un�1 � un � �tg��xhn x� � �t2gH��x
2un x x

�. �6b�

For comparison, the forward–backward scheme of
Mesinger (1977) on an unstaggered (A) grid is

hn�1 � hn � �tH��xun x� and �7a�

un�1 � un � �tg��xhn�1 x�

� un � �tg��xhn x� � �t2gH��x
2un x x

�, �7b�

and on the C grid is

hn�1 � hn � �tH��xun� and �8a�

un�1 � un � �tg��xhn� � �t2gH��x
2un�. �8b�

The stability constraint for Mesinger’s forward–
backward scheme on the A grid is �gH�t/�x � 2 and
for the C grid is �gH�t/�x � 1. Additionally, the am-
plification factors are identically equal to 1 in the stable
regime—the schemes are neutral. The reduced stability
limit for the C grid compared with the A grid is the
result of the lack of averaging (and higher accuracy) in
the C-grid scheme. Importantly, the diffusion term
gH�t�2

xun in (8b) does not result in damping in the for-
ward–backward scheme—rather it exactly offsets the
unstable amplification of the pure forward-in-time
scheme. This point can be appreciated by combining
(8a) and (8b), which results in

un�1 � 2un � un�1

�t2
� gH�x

2un,

which is easily recognized as the spatially and temporally
centered discretization for the wave equation that is sec-
ond-order accurate in both time and space and is neutral.

In the LR97 variant of the forward–backward
scheme, the third term on the rhs of (6a) is an addi-
tional diffusion term that does not appear in the for-
ward–backward schemes (7a) and (8a). This additional
term renders the LR97 scheme temporally first-order
accurate and it also affects the stability of the scheme.
Forming an amplification matrix A as in (5) for the
scheme (6), we plot the magnitude of the eigenvalues of
A in Fig. 3. A number of characteristics can be deter-
mined from this result. The stability of the LR97
scheme is �gH�t/�x � 1 (see the 2�x mode at k�x �
�). Because Mesinger’s scheme has a stability limit

FIG. 3. Amplification factor for 1D linear gravity waves using
the LR97 scheme. The contour interval is 0.05 and the shaded
region is stable. The thick contour indicates where the eigenvalues
change from being complex conjugates, below and to the right, to
being real, above and to the left. Modes possessing real eigenval-
ues do not propagate.
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�gH�t/�x � 2, the inclusion of LR97’s predictor step
(2) halves the maximum stable time step. Also, the
scheme is damping, and shorter-wavelength modes are
stationary on the grid as also found for wave propaga-
tion in section 2.

4. Waves and advection

The addition of advection will alter the stability of
time-integration schemes, and we can examine the im-
pact of advection by including nonzero U and V in (1).
For simplicity we restrict ourselves to the 1D equations
without rotation. The linearized LR97 height equation
and the u-momentum equation in the vector-invariant
form are

ht � Uhx � Hux � 0 and

ut � 	x � ghx � 0,

where the linearized kinetic energy gradient �x �
�x(Uu). The predictor step in the LR97 scheme can be
written as

h* � hn �
�t

2

H�xun x

� U�xPx�U, �t�2; hn�� �9a�

and

u*c � un x
�

�t

2 �g�xh* �
1
2


U�xPx�U, �t�2; un x�

� U�xun x x

��, �9b�

followed by the full time step

hn�1 � hn � �t
H�xu*c � U�xPx�U, �t; hn�� �10a�

and

un�1 � un � �t�g�xhn�1 x
�

1
2


U�xPx�U, �t; un�

� U�xu*c
x x

��. �10b�

LR97 use the PPM for transport, and we have written
the PPM time-integrated flux of tracer 	 as �t[UPx(U,
�t ; 	 )], where 	 is the fluxed quantity, U is the flux
velocity, and Px1 is the operator defining the average
value of 	 integrated over the distance U�t of the
piecewise parabolas (see Carpenter et al. 1990; Wood-
ward and Colella 1984). Note that the linearization of
the time-integrated nonlinear flux divergence

�t�x 
�U � u�Px�U � u, �t; � � �
��

is

�t�U�x 
Px�U, �t; �
�� � ��xu�,

hence the form of the rhs of (9a) and (10a). LR97 also
use the operator Px to calculate the kinetic energy in
(9b), where the nonlinear term �x is discretized as

�x�1
2
�U � un x x

�Px�U � un x x

, �t�2; U � un x��,

which linearized yields the far rhs terms in (9b) and
similarly in (10b).

A linear analysis of the stability of the scheme (9)–
(10) is carried out by forming the amplification matrix
A as in (5). Figure 4 shows the maximum amplitude of
the eigenvalues of A as a function of the advective and
gravity wave Courant numbers. The stability for the
discretization (9)–(10) is |U�t/�x | � 1.5 and |�gH�t/
�x | � 1. The rectangular stable region is a desirable
feature of the scheme and can be contrasted with that
of a forward–backward scheme coupled with leapfrog
advection that would have a stability constraint |U�t/
�x | � |�gH�t/�x | � 1, where the Courant numbers
are added together in the stability constraint.

LR97 use the predictor step (9) to time center the
advective velocities in (10), resulting in a temporally
second-order-accurate treatment of advection. Skama-
rock and Klemp (1992) examined the use of upwind
advection schemes (e.g., PPM) with the Mesinger
(1977) forward–backward scheme and determined that
the upwind schemes were unstable for essentially any
nonzero values of both Courant numbers. Thus, steps (9a)
and (9b) are crucial to the stability of the LR97 scheme.

5. Nonlinear considerations and alternative approaches

The fully nonlinear shallow-water equations, for the
vector invariant form used in LR97, can be written as1 LR97 define the PPM operator �(U, �t ; 	 ) � UPx(U, �t ; 	 ).

FIG. 4. Stability space for gravity wave propagation with advec-
tion for the LR97 scheme. The shaded region is stable, and am-
plification factor values of 1 and 1.05 are contoured.
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ht � �uh�x � ��h�y � 0,

ut � �� � 	x � ghx � 0, and

�t � �u � 	y � ghy � 0,

where u, �, and h are here the full variables, � � f �
�x � uy is the absolute vorticity, and � � (u2 � �2)/2 is
the kinetic energy. The LR97 discretization of these
equations for the full step (after the predictor step for
u*c and �*c ) is given as

un�1 � un � �t���*c 
Py��*c, �t; ��� � �x	*

� g�xhn�1 xy� and �11a�

�n�1 � �n � �t�u*c 
Px�u*c, �t; ��� � �y	* � g�yhn�1 xy�,
�11b�

where the terms involving the vorticity are computed
using the PPM scheme. The kinetic energy is also de-
fined using the PPM scheme by

	* �
1
2 �u*c

y
Px�u*c
y
, �t; un�� � �*c

x
Py��*c
x
, �t; �n���.

�12�

In (11) and (12) and in what follows, the transport op-
erators Px and Py denote the full multidimensional op-
erators used in LR97, described in Lin and Rood (1996)
(also see Leonard et al. 1996).

It is illustrative to consider the C-grid version of this
discretization,

un�1 � un � �t���*
xy
Py��*

xy
, �t; ��� � �x	*

� g�xhn�1� and �13a�

�n�1 � �n � �t�u*
xy
Px�u*

xy
, �t; ��� � �y	*

� g�yhn�1�, �13b�

where we have removed the subscript c because veloc-
ities are here defined explicitly at the C-grid points
only. The vorticity is naturally defined on the C grid at
the corner points, which is at the same location, relative
to the velocities u and �, as on the D grid. Recalling that
to first order u*c � uxy and �*c � �xy in the LR97
scheme, we see immediately that (11) and (13) are
nearly identical in their treatment of the vorticity term,
and the obvious difference is their treatment of the
height-gradient terms in (11a) and (13a). The kinetic
energy terms, however, are also treated differently. The
kinetic energy on the C grid is defined as

	* �
1
2


u*
x
Px�u*

x
, �t; un� � �*

y
Py��*

y
, �t; �n��.

�14�

The C-grid kinetic energy calculation involves less av-
eraging when compared with LR97; a four-point aver-
age is used to compute u*c in (12) while no averaging is
needed for u* in (14).

If we disregard the height-gradient terms, it is pos-
sible to discretize the momentum equations on the C
grid exactly as in LR97 (recall that the C and D grids
are identical except for the location of the height
points). On the C grid this would require predicting u*d
and �*d as opposed to having all predicted velocities at
their C-grid locations as given in (13) and (14). This
approach would increase the leading-order truncation
error terms associated with the kinetic energy gradi-
ents, and would require averaging the height-gradient
terms in the u*d and �*d equations, but not in the un�1

and �n�1 equations. Overall, more averaging is intro-
duced and truncation error is increased, but not as
much as that associated with the full LR97 scheme.

The increased averaging in the LR97 scheme com-
pared with a pure C-grid scheme does have the benefi-
cial aspect of increasing the stability region for gravity
wave propagation from |�gH�t/�x | � 1⁄2 (the C-grid
constraint for an LR97 type integration) to |�gH�t/
�x | � 1. The detrimental effects of using the LR97 D
grid are that the grid does not see 2�x modes in the
momentum fields and height fields, as discussed in sec-
tion 2. The nonlinear terms in (11) and (12) associated
with the use of PPM transport may provide some damp-
ing of the 2�x modes, although the need for horizontal
divergence damping suggests that PPM damping, even
with monotonic limiters, is not sufficient. It should also
be noted that the PPM scheme is only first-order accu-
rate (it reverts to the first-order upwind scheme) when
the limiters are active.

When developing solvers that work well for both
large and small scales, we wish to resolve both the ro-
tational and divergent modes as accurately as possible
throughout the discrete wavenumber range, and it is
the highest wavenumbers (shortest wavelengths) that
are the most problematic. In comparison with the LR97
discretization, other approaches using the vector-
invariant form possess better phase and amplitude re-
sponses for the short wavelength inertia–gravity waves
than the LR97 scheme. For example, Randall’s (1994)
Z grid possesses both the desirable properties of the C
grid for divergent modes and of an unstaggered grid for
inertial oscillations, as indicated in Fig. 2. It uses vor-
ticity and divergence for prognostic variables as op-
posed to momentum and thus requires the solution of
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an elliptic equation each time step, so the simplicity of
a fully explicit time step, used in LR97, is lost. The ZM
grid, examined by Ringler and Randall (2002), uses mo-
mentum and height equations and has properties simi-
lar to the Z grid. Both components of velocities are
defined at twice as many points than the height field;
hence a computational mode exists that needs filtering.

Most mesoscale models, and many global models, use
a C-grid discretization because of its accurate discreti-
zation for divergent modes. Adcroft et al. (2004) de-
scribe a hydrostatic solver for both ocean and atmo-
sphere general circulation models using the vector-
invariant form of the momentum equations and a
C-grid discretization. As discussed in section 2, the C
grid suffers from poor resolution of inertial oscillations.
Adcroft et al. (1999) design a scheme that solves the
momentum equations using both a C and a D grid that
resolves this problem. Importantly, the D-grid veloci-
ties are carried over between time steps; hence this
approach does not suffer from the deficiencies of the
LR97 scheme. The introduction of a second set of ve-
locities, however, introduces a computational mode
that must be filtered. The solver makes use of an in-
compressibility constraint; thus, an elliptic equation is
solved each time step and the solution procedure can-
not be directly compared to LR97’s explicit scheme.

Tripoli (1992) describes a model that solves the fully
compressible nonhydrostatic equations using momen-
tum equations cast in a vector-invariant form. The
model uses a C grid and a time-split scheme that inte-
grates terms associated with the high-frequency gravity
and acoustic waves with a small time step and all other
(lower frequency) terms with a larger time step. This is
a mesoscale/cloud-scale model and it is typically con-
figured such that the large-scale inertial modes are well
resolved and no problems with inertial oscillations are
reported.

General approaches to improving the C-grid re-
sponse for inertia–gravity waves are given by Nechaev
and Yaremchuk (2004) and Dobricic (2006) in the con-
text of ocean modeling, where typical horizontal grid
lengths are often not much smaller than the Rossby
radius. The Nechaev and Yaremchuk (2004) scheme
makes use of an averaged symmetrized shifts approxi-
mation (ASSA), which results in damping of the grid-
scale noise associated with the four-point averaging of
the velocities for the C-grid computation of the Coriolis
term, in addition to increased accuracy for the longer
waves. The Dobricic (2006) scheme uses a different av-
eraging of the velocity components in the Coriolis
terms to improve the accuracy of the inertial frequen-
cies, although the scheme does not improve the re-
sponse for the shortest waves.

As noted by Nechaev and Yaremchuk (2004), there
is a nonzero null space for the averaging operator used
on the velocities for the C-grid Coriolis terms; thus, the
C-grid solutions are prone to noise when the horizontal
grid spacing is not significantly smaller than the Rossby
radius. Improvements to the C-grid response need to
remove or damp the nonzero null space in addition to
increasing the accuracy of modes that can realistically
be resolved by a finite-difference or finite-volume
scheme. The LR97 scheme does not address the D-grid
problems with the inertial modes (which it shares with
the C grid), nor the D-grid problem with the divergent
modes (for which the CCSM core makes use of hori-
zontal divergence damping). The Adcroft et al. (1999)
scheme removes the C-grid nonzero null space only to
insert another and proposes filters for the new compu-
tational mode. The Nechaev and Yaremchuk (2004)
scheme directly filters the null space. Dobricic (2006)
does not directly filter the null space, but he states in his
conclusions that the scale-selective filters used in the
full models should be sufficient to address the noise,
especially if the improved schemes further concentrate
the errors in the shortest wavelengths. Thus higher ac-
curacy, combined with physically appropriate, scale-
selective filtering, appears to be the necessary compo-
nent to improved model discretizations with regard to
the representation of inertia–gravity waves.

6. Summary

Various linear analyses, and inspection of the non-
linear formulation, of the LR97 scheme for integrating
the shallow-water equations lead us to the following
conclusions:

1) To first order in time, the LR97 discretization be-
haves as a D grid. The leading-order height-gradient
and Coriolis terms in the momentum equations (4b)
and (4c) use four-point averaged quantities, and the
leading-order velocity divergence term in the height
equation (4a) uses four-point averaged velocities.
As �t → 0, the spatial discretization is exactly that of
the D grid.

2) The scheme does not possess the desirable proper-
ties of Randall’s Z grid as outlined in Randall
(1994). It possesses the poor C-grid response for
marginally resolved rotational modes, and the poor
D-grid response for marginally resolved divergent
modes.

3) The scheme is temporally first-order accurate and
damping for horizontally divergent motions (gravity
waves).

4) The modified LR97 forward–backward integration
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scheme has a stability region twice as restrictive as
Mesinger’s forward–backward scheme for its spatial
discretization, and is less accurate.

5) The LR97 scheme possesses a desirable stability
condition, for the wave propagation coupled with
advection, of |U�t/�x | , |�gH�t/�x | � constant, as
opposed to the more restrictive constraint |U�t/�x | �

|�gH�t/�x| � constant.
6) The first step in the LR97 scheme that predicts the

midpoint velocity is necessary for scheme stability.
The forward–backward scheme of Mesinger (1977)
cannot be used directly with the Lin and Rood
(1996) transport.

7) The C-grid formulation, using the vector-invariant
momentum equations in LR97 has a similar treat-
ment of vorticity, and a more accurate representa-
tion of the kinetic energy gradient, compared with
the LR97 C–D-grid formulation.

The deficiencies of the LR97 scheme are partially
alleviated by using a C grid, particularly deficiencies
associated with divergent modes, and for grid spacings
much smaller than the Rossby radius, deficiencies in
the C-grid representation of the Coriolis terms vanish
because little rotational energy is contained near the
grid scale. In atmospheric simulation, divergent modes
become increasingly important as grid resolutions reach
into the mesoscale, and horizontal divergence damping
(as needed in the LR97-based models) is no longer ap-
propriate for filtering at these resolutions. For these
reasons, we recommend that the C grid be used in place
of the LR97 C–D grid. The C grid is used in most
mesoscale and cloud-scale atmospheric models, and in
many global atmospheric models as well as many ocean
models. In applications where the grid spacing is not
much smaller than the Rossby radius, a number of ap-
proaches exist to improve the inertial response of the C
grid. These approaches (e.g., Adcroft et al. 1999;
Nechaev and Yaremchuk 2004; Dobricic 2006) rely on
increasing the accuracy of the inertial mode response
and filtering the nonzero null space that results from
averaging the velocity components in the Coriolis
terms. Last, all atmospheric models need filters because
of the down-scale nonlinear cascade of energy and en-
strophy. These filters are typically designed to be very
scale selective so as to maximize the resolving power of
the models, and they do not preferentially target im-
portant dynamical modes (e.g., horizontally divergent
modes in high-resolution applications).
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