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ABSTRACT

An assessment of a recently developed (by Miura) second-order numerical advection scheme for icosahedral-

hexagonal grids on the sphere is presented, and the effects of monotonic limiters that can be used with the

scheme are examined. The cases address both deformational and nondeformational flow and continuous and

discontinuous advected quantities; they include solid-body rotation of a cosine bell and slotted cylinder, and

moving dynamic vortices. The limiters of Zalesak, Dukowicz and Kodis, and Thuburn are tested within this

numerical scheme. The Zalesak and Thuburn limiters produce solutions with similar accuracy, and the

Thuburn limiter, while computationally less expensive per time step, results in more stringent stability

conditions for the overall scheme. The Dukowicz limiter is slightly more diffusive than the other two, but

it costs the least.

1. Introduction

Spherical icosahedral-hexagonal grids are potential

candidates for next-generation atmospheric models be-

cause they avoid the latitude–longitude grid pole prob-

lem and allow easier parallel computing. For global

models, the problem of performing accurate tracer trans-

port has received considerable attention, and there are

a number of numerical schemes available for simulating

advection on regular latitude–longitude grids. However,

the solution of the advection problem on icosahedral-

hexagonal grids has not received as much attention be-

cause of the complexity in extending schemes developed

for regular latitude–longitude grids to the icosahedral-

hexagonal grid geometry.

Miura (2007) developed an upwind-biased finite-volume

scheme for icosahedral hexagonal meshes that is regarded

as a simplification of the remapping scheme of Lipscomb

and Ringler (2005) and Yeh (2007). Miura’s scheme is

second-order accurate, and the method was shown to be

stable and computationally simple but has only been

tested using the solid-body rotation of a cosine bell. A

more comprehensive assessment of this scheme is needed

to evaluate its viability for global modeling. In our study,

Miura’s method is tested using a series of cases including

solid-body rotation of a cosine bell and a slotted cylinder

and a deformational-flow test case using dynamic trans-

lating vortices (Nair and Jablonowski 2008).

Two desirable properties of advection schemes are con-

servation and monotonicity. Miura’s scheme is a finite-

volume scheme, and it is locally and globally conservative

by design. For conservative finite-volume schemes, mono-

tonicity can be achieved either by modifying the tracer

value at the interfaces, where it is used to compute the

flux, or by adjusting the fluxes after they are computed.

We study the behavior of three different monoton-

icity constraints: Zalesak [1979; flux-corrected transport

(FCT)], van Leer [1977; extended to multiple dimen-

sions by Dukowicz and Kodis (1987), henceforth DK87],

and Thuburn (1996, henceforth T96). These three lim-

iters are suitable for unstructured grids and can easily be

used in icosahedral-hexagonal grid geometries. They dif-

fer significantly in their implementation. The FCT limiter

renormalizes a higher-order corrective flux to maintain

monotonicity, whereas the T96 and DK87 limiters modify

the interfacial tracer values such that the resultant flux

maintains monotonicity. DK87 and T96 use different ap-

proaches to estimate the tracer values on the cell faces.
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2. Numerical scheme

The advection equation for scalar variables in atmo-

spheric models can be expressed as

›rq

›t
1 $ � (rqV) 5 0, (1)

where ›/›t is the local time derivative, V is the velocity

field, r is the fluid density, and q represents the tracer

concentration. On applying Gauss–Green’s theorem

and integrating in time, the discrete form Eq. (1) may

be written as
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where (Arq)i is the mass of tracer q inside the polygon of

area Ai, q is the mean tracer mixing ratio, and Fn is the

flux of tracer mass through the nth face with length l of

the N-sided polygon over the time step Dt.

The numerical method of Miura (2007) consists of the

following steps: 1) determine the linear reconstruction

of tracer field q for each cell, 2) compute the fluxes at

each cell face by spatial integration over the recon-

struction as determined by the velocity field and time

step, and 3) update the scalar mass using Eq. (2).

For the linear reconstruction of the tracer field, con-

sider a cell as shown in Fig. 1a, where the center of the

cell is Q0, and Q1, . . . , Q6 represent the centers of the

nearest neighboring cells. The cell average mixing ratios

are defined at these cell centers as q0, q1, . . . , q6. The

vertices of the cell with center Q0 are represented by

P1, . . . , P6. The tracer field reconstruction for the cell

is obtained on a plane tangent to the sphere at Q0 with

the neighboring points projected onto the plane as de-

scribed in Lipscomb and Ringler (2005). The recon-

struction function q(x, y) is defined as

q(x, y) 5 q
0
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where (x0, y0) represents the coordinates of point Q0 and

q
x

and q
y

are the average gradients in the cell. The av-

erage gradient value in a cell is computed as the area

average over the gradients computed for the six triangles

centered on P1, . . . , P6 (viz.,4Q0Q1Q2,4Q0Q2Q3, . . . ,

4Q0Q6Q1, where 4 denotes a triangle):
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where the index i 1 1 is cyclic and qxji and qyji represent

the gradient components in each of these six triangles.

Our approach is the same as used by Yeh (2007) with the

only exception being that we use area averaging. Last,

the flux computation for each edge follows Miura’s

(2007) approach in which the tracer mass fluxes may be

written as

F
n

5 r
n
q

n
l
n
(v

R
� n̂)Dt, (5)

where vR is the velocity at the midpoint R of the edge n,

n̂ represents the unit vector normal to the edge, l is the

FIG. 1. Schematic describing (a) the grid and (b) the mass flux

calculation.
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length of the edge, and r and q are the mean values of

the density and tracer mixing ratio for the parallelogram

(Fig. 1b) computed from the reconstruction function

(for a linear reconstruction, this is the function evalu-

ated at the center of the parallelogram). The flux rep-

resents the mass of q advected through the edge over the

time interval Dt. This formulation leads to a conservative

scheme because the same flux is used to update both

cells sharing the edge. The scheme is formally second-

order accurate.

To preserve monotonicity, we have implemented gra-

dient limiting by DK87, FCT (Zalesak 1979), and the

multidimensional flux limiter of T96, which was also used

by Miura (2007). FCT first uses the monotonic but dif-

fusive first-order upwind scheme to advect the field fol-

lowed by adding a compensating antidiffusive flux that

reduces the numerical error. FCT limits these antidiffu-

sive fluxes before they are applied, so that no unphysical

extrema are created in the solution. T96 and DK87 in-

volve only one step, and intermediate values of diffusive

fluxes are not computed. In these two methods the in-

terfacial values of the tracer field used in the flux calcu-

lations are constrained such that the resulting fluxes are

monotonic. The T96 limiter examines the tracer values in

the neighboring cells to define the minimum and maxi-

mum permitted values of the interfacial mixing ratios on

the cell faces. The DK87 scheme limits the slopes in the

reconstruction such that monotonicity is maintained. This

scheme ensures that the reconstructions are monotonic

across cell boundaries (in one dimension), but it does not

guarantee monotinicity in two dimensions.

3. Test-case results

The experiments are performed at five different hori-

zontal resolutions corresponding to levels 4–8 in Thuburn

(1997) that have 642, 2562, 10 242, 40 962, and 163 842

cells on the sphere with radius a equal to 6371.229 km and

average cell-center spacings of approximately 960, 480,

240, 120 and 60 km, respectively. The solid-body rotation

wind component in these test cases is chosen such that

one complete revolution around the globe occurs in 12 days

with the angle of rotation equal to 0. The results are

insensitive to the rotation angle. The L‘ and L2 error

estimates (Williamson et al. 1992) are plotted for the test

cases.

a. Nondeforming flow: Solid-body rotation

The transport of a cosine bell by a solid-body rotation

flow field is given in Williamson et al. (1992). It is the

only case described in Miura (2007). The cosine bell is

given by

q(l, u) 5

1

2
[1 1 cos(pr/R)], if r , R

0 if r $ R

8

<

:
, (6)

where r represents the great circle distance from the

center of the cosine bell, (l0, u0) 5 (3p/2, 0), and the bell

radius R is 7pa/64.

The global error norms for the unlimited and limited

versions of Miura’s scheme are shown in Fig. 2. We used

a fixed time step of 900 s in these tests. These schemes

converge at a rate of higher than second order for this

case, especially at higher resolutions or where the CFL

number is higher. The DK87 limiter is more diffusive

than the other limiters and the effect is most noticeable

in the magnitude of L‘ norm, which is higher in this test

case. Also, as observed by Miura (2007), the L2 error

norms are appreciably reduced and higher convergence

rates are obtained when monotonic limiters are used,

especially with the T96 and FCT limiters.

Numerical transport schemes for the sphere have also

been tested with the transport of a slotted cylinder in

a solid-body rotation flow field (Lipscomb and Ringler

2005). This numerical experiment assesses the ability of

limiters to handle discontinuities in the tracer profile.

The cylinder has a tracer value of 1, and the tracer value

is 0 outside the cylinder (r $ R) as well as inside the slot.

A slot of width R/2 and length 3R/2 is used. The results

depicted in Fig. 3 show that all of the limiters success-

fully remove the oscillations produced by the unlimited

numerical scheme. The DK87 limiter is the most diffu-

sive. The FCT limiter best captures the minimum in the

FIG. 2. The L‘ and L2 error norms for the solid-body rotation of

the cosine bell with and without limiters. The norms are computed

after one revolution of the sphere.
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slot and gives the lowest error norms of the three limiters.

The L2 error norms (not shown) indicate approximately

first-order convergence for all schemes, as expected.

It was also observed by Miura (2007) that the global

error increases when increasing the number of time

steps (decreasing the time step) in the model integra-

tion. We observe the same behavior in our tests.

b. Deformational flow with moving vortices

In this test case described in Nair and Jablonowski

(2008), solid-body rotation and a deformational flow

field are combined to form moving vortices over the

surface of the sphere. The deforming vortices lie on

diametrically opposite sides of the sphere and move

along a predetermined great circle trajectory. In one

revolution around the sphere, the initially smooth

scalar field develops strong gradients. The initial field is

described as

q(l9, u9, 0) 5 1� tanh
r

d
sin(l9)

h i

, (7)

where (l9, u9) corresponds to the location of a point on

the sphere, which has been rotated such that the vortex

centers lie at the North and South Poles in the (l9, u9)

system. The transformation relation between the ro-

tated and unrotated system is given in the appendix of

Nair et al. (1999). As in Nair and Jablonowski (2008),

the deformational flow parameters are chosen as r 5 3

and d 5 5 and the time for a complete rotation is 12 days.

The initial and final locations of the center of the two

developing vortices lie on the equator at 6908 longitude

in the unrotated system.

Figure 4 shows the analytic and simulated tracer field

produced by the unlimited scheme at grid level 6 (10 242

cells, ;240-km cell spacing) on the sphere. The results

look very similar to Figs. 4b,c of Nair and Jablonowski

(2008) in which a semi-Lagrangian advection scheme on

regular latitude–longitude grids is used. Both the un-

limited and limited schemes successfully reproduce the

FIG. 3. One-dimensional cross section through the slotted cylinder

after one revolution of the sphere.

FIG. 4. Tracer field for the dynamic vortex case computed using the unlimited scheme. The

analytic solution is shaded, and the numerical solution is contoured.
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highly deformed vortices. One outcome of this case is

that the scheme using the T96 limiter could not maintain

the convergence order at high Courant number (Fig. 5).

The reason for this result is that the T96 limiter has

a more stringent criterion for outgoing fluxes that is vi-

olated with this time-varying flow field and time step.

When the same set of experiments is performed with

smaller time step, this problem does not appear (Fig. 5).

It has been found that this problem is alleviated if the

maximum Courant number is less than approximately

0.55. Also, the results with and without limiters are very

similar (Fig. 5), which implies that limiters have very

little effect in this test.

4. Conclusions

We tested the second-order numerical advection

method described by Miura (2007) for a number of ad-

vection test cases of varying complexity. We find that

this numerical method is robust and may be a viable

choice for use in global atmospheric models. In addition,

three different limiters have been implemented to en-

force monotonicity. On comparing results from the nu-

merical simulation of solid-body rotation of a cosine

bell with and without limiters, it was found that, by

monotonic limiting of the basic numerical scheme, the

L2 error norms are appreciably reduced. As expected,

the L‘ norms increase, which indicates that field ex-

trema are less well captured. In all the cases it was ob-

served that the DK87 limiter (gradient limiting) is the

most diffusive and produces the maximum errors in both

L2 and L‘. The T96 and FCT limiters produce similar

results if smaller step sizes are used for model integra-

tion, but the FCT limiter appears to be more robust,

especially for higher Courant numbers and for more

complex or discontinuous flow-field geometries.
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