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ABSTRACT

The finite-volume transport scheme of Miura, for icosahedral–hexagonal meshes on the sphere, is extended

by using higher-order reconstructions of the transported scalar within the formulation. The use of second- and

fourth-order reconstructions, in contrast to the first-order reconstruction used in the original scheme, results

in significantly more accurate solutions at a given mesh density, and better phase and amplitude error

characteristics in standard transport tests. The schemes using the higher-order reconstructions also exhibit

much less dependence of the solution error on the time step compared to the original formulation.

The original scheme of Miura was only tested using a nondeformational time-independent flow. The de-

formational time-dependent flow test used to examine 2D planar transport in Blossey and Durran is adapted

to the sphere, and the schemes are subjected to this test. The results largely confirm those generated using the

simpler tests. The results also indicate that the scheme using the second-order reconstruction is most efficient

and its use is recommended over the scheme using the first-order reconstruction. The second-order recon-

struction uses the same computational stencil as the first-order reconstruction and thus does not create any

additional parallelization issues.

1. Introduction

Equations describing the transport of fluid constituents

on the sphere arise in many applications. The spherical

geometry introduces a number of complications into the

discrete solution of transport equations or, more gener-

ally, into fluid-flow solvers. These discretizations require

some grid or mesh decomposition of the spherical sur-

face, and a number of options have been explored

(Williamson 2007). In this paper we present an extension

of the finite-volume transport scheme of Miura (2007,

hereafter M07) for use on icosahedral (hexagonal) meshes,

and we subject the original and extended schemes to a

broader range of tests. Grids based on hexagons allow a

more uniform discretization of the sphere compared to

the latitude–longitude grids, but the spherical icosahedral

grids are nonuniform. Finite-volume methods can be di-

rectly applied on nonuniform grids, but extensions of these

approaches to greater than second-order accuracy is dif-

ficult, and it is these higher-order accurate extensions that

we pursue here.

Within the finite-volume approach, we begin with the

flux (conservative) form of the transport equation:

›(rc)

›t
5�$ �Vrc,

where r is the fluid density, c is the mixing ratio of some

constituent in the fluid, and V is the fluid velocity. In-

tegration in space over the control volume (i.e., the finite

volume) and in time over the time step, along with the

use of Stokes theorum, yields
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where ^ indicates a volume-averaged quantity, G is the

cell boundary, ni is the unit vector normal to the cell

boundary, and Ai is the cell area. Applied to a discrete

mesh, (1) can be written as

d(rc)
t1Dt

i 5 d(rc)
t

i �
1

A
i

�
nei

d
e

i
(V � n

e
i
)rc Dt, (2)

where ne
i

refers to the edges of the control volume i (in

our case the edges of the icosahedral mesh cell i) and dei

is the length of edge e for cell i. No approximations have

been made developing (2) because we have not yet spec-

ified how we evaluate the term in the summation.

The second term on the right-hand side of (2) is the

sum of the fluxes through the control volume edge. M07

approximates the scalar mass flux d
ei

(V � nei
)rc Dt as

schematically described in the left-hand panel of Fig. 1.

The mass flux is approximated by the mass contained

within the shaded area Am. The area Am is the area

swept out by the edge moving at a constant velocity 2V

over a time period Dt. Evaluation of the mass integral

over the area is accomplished by first fitting a first-order

polynomial to represent the mass distribution in each

cell, using the cell-averaged values of a given cell and its

neighbors, as depicted in Fig. 2. The integral of the first-

order polynomial over Am equals the shaded area times

the polynomial evaluated at the center of mass of Am.

M07 uses the polynomial even when the shaded area

extends to regions outside the upstream cell.

The overall accuracy of this scheme is limited by the

reconstruction of the scalar mass in a given cell and by

the computation of Am, and M07 approximations are

nominally second-order accurate. To increase the for-

mal order of accuracy, both the reconstruction and the

computation of Am would have to be improved. In

applications, however, error from one component of the

scheme may dominate that from another; hence, possi-

ble improvements can follow one of two paths. One can

relax the assumption of a constant velocity V on a given

cell edge. Lipscomb and Ringler (2005, hereafter LR05)

and (Yeh 2007) both assume a linear velocity distribu-

tion along a cell edge, but use a linear polynomial fit

to the mass as in M07. Contrary to M07, both integrate

these polynomials only within the cells for which they

are constructed. This approach is schematically depicted

in the right-hand panel in Fig. 1. As might be expected,

the LR05 integration is significantly more complex and

costly. Comparison of the results from the two approaches

(M07, and LR05 and Yeh 2007) in simple tests indicates

that they produce results of similar accuracy. Indeed, M07

presented his scheme as a less-expensive simplification of

LR05 and Yeh (2007). Alternatively, one can increase the

order of the polynomial used to represent the scalar mass

distribution in a given cell to improve the approximation.

In his Ph.D. dissertation, Lashley (2002, hereafter L02)

pursued this approach using second- and fourth-order

reconstructions of the scalar mass field and using the same

scalar mass flux area determination as M07. In Lashley’s

work, which predated M07, LR05, and Yeh (2007), first-

order reconstructions were not considered, but his test

results showed that the scheme using the fourth-order

reconstruction produced significantly more accurate re-

sults compared to the scheme using the second-order re-

construction, and that the fourth-order-based scheme

appeared to be more efficient.

In this paper we present results from a scheme using

second- and fourth-order reconstructions of the scalar

mass field that are very similar to those used in L02, and

we compare these results to those generated using the

first-order reconstruction of M07. We verify the main

results of M07 and L02 and present results from more-

demanding tests to further discriminate between the

FIG. 1. Schematic showing the 2D scalar mass flux regions for (left) the M07 scheme and (right) the LR05 scheme.

The shaded areas show the mass fluxed through the cell edge e12 over a time step Dt.
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schemes to verify their robustness and to confirm that the

computation of Am is not a major source of scheme error.

2. Transport scheme

a. Numerical approach

To integrate the discrete version of (2) we must de-

termine the transport velocity V, the fluid density r, and

the scalar mixing ratio c. In models solving the hydrostatic

primitive equations or the Navier–Stokes equations, the

time-dependent velocity and density fields would be

computed by solving their own transport equations. We

will assume that the mass fluxes through the cell edges are

given along with the velocities; thus, our finite-volume

solution to (2), following L02 and M07, reduces to de-

termining the area-averaged value of the mixing ratio c in

the parallelogram with area Am (the shaded area) given

in the left-hand panel of Fig. 1. The time-integrated mass

flux in the summation in (2) is given by dei
(rV � nei

)c Dt,

where c is the area-averaged mixing ratio. Our procedure

does not directly integrate the scalar mass dei
(V � nei

)rc Dt

over this area. We choose to evaluate the area-average

mixing ratio c so that we can maintain consistency be-

tween the scalar mass conservation equation and the mass

conservation equation. If the mass conservation equation

is written in the form in (2) (with c [ 1) and integrated

with the same time step, the scalar mass could be directly

integrated but a higher-order quadrature scheme would

be needed for the quadratic quantity (rc; see LR05).

In L02, M07, LR05, Yeh (2007), and herein, the area-

averaged value is computed by integrating polynomials

representing the spatial distribution of c over the mass

flux area (Am in Fig. 1). For a first-order polynomial

c 5 c
0

1 c
x
x 1 c

y
y. (3)

M07 uses a least squares method to determine the co-

efficients of the polynomial following Stuhne and Peltier

(1996). A least squares fit to a quadratic polynomial is

used to obtain the coefficients for the linear polynomial

in (3) by M07 and for the results presented herein. Other

approaches are possible, including using the Stokes

method (Tomita et al. 2001) or by fitting planes to the

cell-averaged values lying at the vertices of the dual grid

(triangles) whose centers are the vertices of the hexagons,

and producing cell-averaged values of cx and cy by aver-

aging these vertex values (LR05; Yeh 2007). These ap-

proaches produce identical results for perfect hexagons on

a plane, but may produce different results on the imper-

fect hexagonal grid on the sphere. We have found very

little difference in the absolute errors or error convergence

rates in our tests using the different approaches, and we

have chosen to use a least squares fit to determine the

coefficients because it is easily extended to higher-order

polynomials.

For finite-volume transport schemes that compute mass

fluxes by integrating over cell-based reconstructions of the

scalar mass, it is important that the integral of the scalar

mass over the cell equal the mass in the cell, in this case the

(predicted) cell-averaged mass times the cell area, as is the

case, for example, in the piecewise parabolic method

(Woodward and Colella 1984) and the flux-form Crowley

schemes (Tremback et al. 1987). For the first-order re-

construction schemes using (3), if the cell center is the cell

center of mass, and if c0 is set equal to the cell-averaged

value, this constraint is automatically satisfied. For higher-

order polynomials this constraint will not be satisfied unless

it is part of the polynomial construction because integrals

of the higher-order terms over the cell area will not equal

zero. In our approach we compute the polynomial co-

efficients using a least squares fit after which we adjust the

constant term c0 such that the constraint is satisfied. L02

also constructs the polynomial using the least squares fit

but there the constraint is satisfied by including it directly,

as a constraint, in the least squares procedure. We conclude

that both approaches to satisfying the constraint are valid

because our results are very similar to those of Lashley.

In L02’s weighted least squares procedure for fitting

the polynomial, he weights the fit to the center point

(point 0 in Figs. 1 and 2) by a factor of 1000 relative to

the surrounding points. We have experimented with this

weighting for the second-, third-, and fourth-order poly-

nomial fits and verified that the weighting is necessary;

FIG. 2. Schematic showing a grid centered about cell 0. The

dark-shaded cells (1–6) are used in the reconstruction of polynomials

less than or equal to order 2. The lighter-shaded cells (7–17) are used

in the reconstruction of polynomials on the order of 3 and 4.
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if all points are weighted equally the solution accuracy

is dramatically degraded. We have also verified that no

obvious weighting of the nearest neighbors for the third-

and fourth-order polynomials (i.e., points 1–6 in Fig. 2)

produces better solutions compared to only weighting the

center point, again verifying the results of L02. Guided by

these results, we have chosen to require that c0 be the cell-

averaged values for the least squares fit polynomial so-

lution, and we accomplish this by writing the polynomial

in terms of the difference from the cell-centered value

(Majewski et al. 2002). For example, in the case of the

second-order polynomial

c 5 c
0

1 c
x
x 1 c

y
y 1 c

xx
x2 1 c

xy
xy� c

yy
y2, (4)

we set c0 5 c0 and construct the least squares problem

using the following polynomial:

c�c
0

5 c
x
x 1 c

y
y 1 c

xx
x2 1 c

xy
xy 1 c

yy
y2. (5)

In (5) there are 5 unknowns and 6 neighbor points to fit

(or 5 in the case of a pentagon), hence the least squares

problem is well posed for cells possessing $5 edges. In

practice we observe no discernible difference using (5)

or a weighted least squares approach using (4) and a

weight of 1000 for the center point as in L02. We will also

examine results using the fourth-order polynomial:

c�c
0

5 c
x
x 1 c

y
y 1 c

xx
x2 1 c

xy
xy 1 c

yy
y2 1 c

xxx
x3

1 c
xxy

x2y 1 c
xyy

xy2 1 c
yyy

y3 1 c
xxxx

x4

1 c
xxxy

x3y 1 c
xxyy

x2y2 1 c
xyyy

xy3 1 c
yyyy

y4, (6)

which has 14 unknowns. For a mesh constructed of

hexagons there are 18 points to fit and for a pentagon

surrounded by hexagons there are 15 points to fit, so the

least squares problem is well posed for the hexagonal–

icosahedral grid.

We note here that we are treating the cell-averaged

scalar values as point values in our polynomial fit, which

is second-order accurate. We could choose to constrain

the cell-integrated polynomial to reproduce the cell-average

value for each cell used in the polynomial reconstruction

rather than the cell-center point values (H. Weller 2010,

personal communication). We would still need to strongly

weight the central-cell constraint in the least squares fit

given its importance as indicated by L02 and in our in-

vestigations. Given the error associated with other aspects

of this scheme, such as the area determination and in the

projection from sphere to tangent plane (see section 2b),

we would not expect to observe increased accuracy using

this approach in general applications.

The integration of the polynomial over the parallelo-

gram (the shaded area in the left-hand panel of Fig. 1)

requires numerical quadrature. For the first-order poly-

nomial this requires evaluating the polynomial value at

the center of mass of the parallelogram. We use a 2D ten-

sor product of 1D Gauss quadrature points and weights

for integrating the higher-order polynomials. This re-

quires evaluating the polynomial at n2 points for a

polynomial of order n. The 1D weights and quadrature

points are given in Table 1 (also see Stroud 1971).

b. Integration sequence

To integrate (2) on the sphere, we begin by defining a

2D tangent plane that intersects the sphere at the center

of the cell for which we are producing a reconstruction.

The neighboring points used in the reconstruction are

projected onto the tangent plane using (preserving) the

great-circle distances between the cell-center point and

the neighbor points, and using (preserving) the angles at

the cell-center point defined by the great-circle arcs be-

tween these points and the cell-center point. L02 ex-

perimented with a number of approaches for projecting

the grid onto a tangent plane and found that the results

were relatively insensitive to the options he investigated.

For each cell reconstruction, our least squares fit poly-

nomial is defined by

Pf 5~s,

where

s 5 [c
0
, . . . , c

m
]T : Cell-averaged scalar mixing ratios, dimension m.

~s 5 [c
0
, . . . , c

m
]T : Least-squares-fit cell-averaged scalar mixing ratios, dimension m.

f 5 [f
0
, . . . , f

n
]T : Coefficients for the polynomial fit ( f

0
5 c

0
, f

1
5 c

x
, . . . ,), dimension n.

P : Polynomial matrix, P is (m 3 n).

TABLE 1. Gauss quadrature points and weights for integrating

a function over the interval 21 # x # 1.

Order xi wi

First 0 2

Second 6
ffiffiffiffiffiffiffi

1/3
p

1

Fourth 6(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3� 2
ffiffiffiffiffiffiffi

6/5
pp

)/7

6(
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3 1 2
ffiffiffiffiffiffiffi

6/5
pp

)/7

(18 1
ffiffiffiffiffi

30
p

)/36

(18�
ffiffiffiffiffi

30
p

)/36
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To determine the polynomial coefficients f as a function

of the scalar mixing ratios s, we use a least squares fit

following Strang (1980):

~f 5 (PTP)�1PTs 5 ~Bs, (7)

where ~B is an (n 3 m) matrix. Note that in practice we

solve (7) using a polynomial matrix P constructed from

the constrained polynomial where c0 5 c0 [e.g., (5) and

(6)], after which we expand the resulting matrix ~B to

include the constant. Following this least squares solu-

tion, we adjust the constant such that the integral of the

polynomial over the cell is equal to the cell-averaged

value c0. We denote this new matrix equation as

f 5 Bs,

where B is the polynomial generator matrix. The com-

putations to define the polynomial for each cell do not

depend on the cell values or the velocities; hence, prior

to the integration we compute the matrix B for each cell

and store it for later use.

For each time step we compute the mass fluxes and

update the cell-averaged values using (2). We begin by

defining a vector q which describes the interpolation

polynomial using the polynomial points. For example,

q 5 [wj, wj, xj, wjyj, wjxj
2, wjxjyj, wjyj

2]T for the second-

order polynomial, where wj are the Gauss quadrature

weights (see Table 1), (xj, yj) are the Gauss quadrature

points and j implies summation; q has dimension n. We

also define the quadrature vector gT 5 qTB; g has di-

mension m. Given the velocity at a cell edge, the quad-

rature points (xj, yj) can be computed followed by the

computation of q using the Gauss quadrature weights.

Next, the vector g is constructed using q and the time-

invariant matrix B. The integral of c over the area Am

in Fig. 1 is then evaluated by Gauss quadrature and cast

in terms of an area-averaged value:

A�1
m

ð

A
m

c dA 5 qTf 5 qTBs 5 gTs. (8)

Following M07, the mass flux for each scalar variable k is

evaluated using the vector multiplication Dtru?d
ei
gT

ei
s

k

for each scalar sk for that cell edge, where Dtd
ei

u? is the

area (Am in Fig. 1). The start-up cost per time step is that

incurred computing g; thereafter, each flux calculation

requires only a single vector multiply. This abstraction is

meant to be general; s can include values from any of the

cells in the mesh and f can include any order polynomial,

so long as the number of unknown coefficients in the

polynomial are less than or equal to the number of scalar

values (i.e., m $ n).

After all the fluxes used in a scalar update have been

computed, we use the monotonic limiter described in

Zalesak (1979; see also Skamarock 2006) to limit the

fluxes and guarantee monotonicity. All of the results

presented in this paper use this limiter.

3. Results

a. Cosine bell

The advection of a cosine bell is described in Williamson

et al. (1992), where the advecting wind, representing

solid-body rotation, transports the bell once around the

sphere, returning it to its initial location. Following

Williamson et al. (1992), we define the bell as

c 5
(c

0
/2)[1 1 cos(pr/R)] if r , R,

0 if r $ R.

�

(9)

Here c0 5 1000, the bell radius R 5 a/3, and a is the

radius of the sphere. The zonal velocity u 5 cos(l)2pa/

(12 days), where l is the latitude. The L2 and L‘ error

norms are computed in the standard way:

L
2

5 �
cells

A
cell

(c
cell
�c

exact
)2

� �1/2
,

�
cells

A
cell

c2
exact

� �1/2

and

L
‘

5 max
cells
jc

cell
� c

exact
j/max

cells
jc

exact
j.

FIG. 3. L2 and L‘ error norms for first-, second-, and fourth-order

reconstructions after a single revolution of the cosine bell. The

simulation parameters are listed in Table 2.
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Figure 3 shows the L2 and L‘ norms for the cosine bell

test case using the first-, second-, and fourth-order re-

constructions with time step and grid densities given in

Table 2. The time steps and grid densities are the same

as those used in M07, and the time steps are very near

the maximum allowable step on a given grid. The first-

order reconstruction produces results very close to those

presented in M07’s Fig. 4a. They are not identical be-

cause we use a different limiter and our grid is a spheri-

cal centroidal Voronoi tessalation (see LR05) that also

differs from M07. The scheme using the second-order

reconstruction produces a slightly more accurate solution

but almost the same convergence rate compared to the

first-order reconstruction-based scheme. The scheme us-

ing the fourth-order reconstruction produces solutions

that are significantly more accurate at a given grid density

than those produced using first- or second-order recon-

structions, although it shows a similar overall convergence

rate in both norms compared to the schemes using first- and

second-order reconstructions. Figure 4 presents the solu-

tions and solution errors for the schemes using first- and

second-order reconstructions on a grid with 10 242 cells.

The maximum errors for the second-order reconstruction

are only slightly lower than those using the first-order re-

construction, but the errors are more symmetrically

distributed for the second-order reconstruction.

M07 commented on the effect of simulation time step

on the solution error, noting that the error increased

significantly with decreasing time step. Figure 5 depicts

the error norms for schemes using the first- and second-

order reconstructions on the 40 962-cell mesh with a

constant time step Dt 5 50 s. The results from the

scheme using the first-order reconstruction reproduce

the results in M07’s Fig. 6. The results for the scheme

using the second-order reconstruction are very similar

to those produced using the variable time step given in

Fig. 3. The L2 and L‘ error norms for these schemes

using the 40 962-cell mesh are plotted as a function of

time step in Fig. 6. The scheme using the first-order re-

construction shows a significantly increasing solution

error with decreasing time step, whereas the scheme

using the second-order reconstruction shows only a very

small increase in error for decreasing time step. M07’s

attributes the first-order-reconstruction results to the

fact that, for these second-order schemes, the high-

wavenumber phase speed error increases substantially

with decreasing Courant number. We agree with M07’s

explanation and note that this is a common characteristic

of second-order forward-in-time finite-volume schemes

[e.g., van Leer (1977); the second-order flux-form schemes

in Tremback et al. (1987)].

b. Slotted cylinder

The slotted-cylinder test is the same as the cosine-bell

test except the cylinder replaces the cosine bell, and

results for this test were presented in LR05. Figure 7

depicts the initial cylinder that has a radius R 5 a/2, slot

width a/6, and slot length 5a/6. The simulation results for

the schemes using first- and second-order reconstruc-

tions are also depicted in Fig. 7. Because of the discon-

tinuous nature of the cylinder edges, the quality of the

results is largely determined by the monotonic limiter,

FIG. 4. Scalar field and error after one revolution of the cosine bell using first- and second-order reconstructions.

The grid contains 10 242 cells and has a mean cell spacing of approximately 240 km, and the latitude and longitude

lines are drawn every 158.

TABLE 2. Mesh and parameters for the cosine bell and

deformational flow test case simulations.

Cells Dxavg (m)

Cosine bell

Dt (s)

Deformational

flow Dt (s)

2562 480 514 7200

10 262 240 305 3600 900

40 962 120 158 1800 450

163 842 60 079 900 225

655 362 30 040 100
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and higher mesh densities result in a sharper depiction of

the discontinuity at the cylinder edges. For the schemes

using the first- and second-order reconstructions, the

final states are symmetric about the slot when using

large time steps (1800 s on the 40 962-cell mesh), and the

40 962-cell mesh results are very similar. For the scheme

using second-order reconstruction, a reduction in the

time step to 50 s for the 40 962-cell mesh results in more

smearing of the discontinuity, consistent with more ap-

plications of the limiter, but the solution maintains its

symmetry about the cylinder slot. For the scheme using

the first-order reconstruction and a 50-s time step on the

40 962-cell mesh, significant solution asymmetry about

the cylinder slot appears and more smearing of the edge

is apparent compared to the scheme using the second-

order reconstruction. The results for the first-order scheme

using the small time step are very similar to those pre-

sented in LR05, particularly the solution asymmetry evi-

dent in LR05’s Fig. 9d, and indicate that the low-order

reconstruction is responsible for these asymmetry errors

and not other aspects of the schemes.

c. Blossey and Durran deformational flow test

To provide a more demanding and more realistic test

case for these advection schemes, we have adapted the

2D deformational flow test case presented in Blossey

and Durran (2008) to the sphere. The test is depicted in

Fig. 8. A background solid-body rotation flow advects

the cosine bell in a counterclockwise direction about the

pole, and the cosine bell is deformed by an additional

time-dependent deformational flow. The deformational

component is designed such that the circularly sym-

metric cosine bell is recovered at the end of each revo-

lution, and the sign of the deformation alternates each

revolution. The deformation flow component is given by

u
u

5�4pa

T
cos

2pt

T

� �

1� (4f/p)6

1 1 (4f/p)6
, (10)

where uu is the longitudinal velocity, f 5 p/2 2 l is the

colatitude (l is the latitude), a is the radius of the

sphere, and T 5 24 days is the time scale for the de-

formational component. The solid-body rotation ve-

locity is the same as in the cosine-bell test case [u 5

cos(l)4pa/T], and the velocity scale for the deforma-

tional component is the same as that used for the solid-

body rotation. The streamfunction used to compute the

velocity on the icosahedral grid is adapted from Blossey

and Durran (2008):

C(~r, t) 5
4pa2

T
sinl 6 cos

2p

T

� �

(

3
~r2

2
1

1

96
log(1� 16~r2 1 256~r4)

"

� 1

48
log(1 1 16~r2)�

ffiffiffi

3
p

48
arctan

1� 32~r2

ffiffiffi

3
p

� �

#)

.

(11)

FIG. 5. L2 and L‘ error norms for first- and second-order re-

constructions after a single revolution of the cosine bell using

a constant time step of 50 s.

FIG. 6. L2 and L‘ error norms for first- and second-order re-

constructions after a single revolution of the cosine bell using

a variable time step on the 40 962-cell mesh.
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Here ~r 5 f/p, and the positive sign is used in the North-

ern Hemisphere and the negative sign in the Southern

Hemisphere. On the icosahedral grid, the streamfunction

is defined at the vertices of the cell, and the velocity on

a cell edge is computed by taking the difference between

the streamfunction values at the vertices of the edge

divided by the great-circle distance between these ver-

tices. The streamfunction is discontinuous and multi-

valued at the equator, so the discrete differentiation for

edges crossing the equator is accomplished by adding

the differences on both sides of the equator taking into

account the sign change in (11).

Figure 9 shows the L2 and L‘ norms for solutions

computed using the time step and mesh parameters given

in Table 2 and using first-, second-, and fourth-order re-

constructions. The norms are plotted for the solutions at

time T/2 (one revolution) and give the same relative re-

sults for scheme comparison as those from time T. The

different schemes show approximately second-order

convergence rates in both the L2 and L‘ error norms,

with the fourth-order-based scheme showing an overall

slightly greater than second-order convergence rate, the

second-order-based scheme almost exactly second-order

convergence, and the first-order-based scheme slightly

less than second-order convergence. The schemes using

second and fourth reconstructions exhibit much lower

solution errors compared to the scheme using the first-

order reconstruction for a given mesh density, with the

fourth-order-based scheme possessing solution errors less

than that for the first-order-based scheme at double

the resolution, and errors only slightly higher than the

second-order-based scheme at double the resolution.

FIG. 7. Scalar field initial condition and solutions after one revolution of the slotted cylinder using first- and second-order reconstructions.
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Plots of the solutions after two revolutions are shown

in Fig. 10. The centerline of the deformation flow is not

coincident with the center of the bell, and this is the

primary reason for the obvious latitudinal asymmetry

in the final shape of the bell for 40 962-cell mesh. The

asymmetries are very similar to those found in the 2D

planar test results reported in Blossey and Durran

(2008) in their Figs. 7–9. The 40 962-cell and 163 842-

cell meshes have average cell-center spacings, relative

to the width of the bell, of approximately R/17 and R/32,

and Blossey and Durran (2008) plot their results for grid

spacings of R/10, R/20, and R/40. The solutions for the

reconstruction-based schemes presented have accuracy

similar to those presented in Blossey and Durran (2008)

for a given resolution. The superiority of the schemes

using second- and fourth-order reconstructions over the

first-order reconstruction-based scheme is evident.

d. Efficiency

To assess the overall efficiency of transport schemes,

we need to consider the computational cost of the schemes

in addition to their accuracy as a function of grid density.

There are a number of problems encountered in trying

to quantify the cost of schemes, including trying to quan-

tify the effects of possible different codings of the schemes,

different compilers, and different processor and mem-

ory architectures. We cannot address all these problems

here, but we have run these tests on a single-processor

computer and recorded CPU timing statistics for the

main integration in order to give rough estimates of the

scheme costs. We have found that for a given grid den-

sity and time step, using our limiter and transporting

a single scalar, the scheme using the second-order re-

construction takes approximately 1.2 times the CPU

time of the scheme using the first-order reconstruction,

and the scheme using the fourth-order reconstruction

uses approximately 8 times the CPU time of the first-

order reconstruction scheme. These approximate scal-

ings hold for the mesh densities used in our tests. As

expected, the higher-order reconstructions cost more.

The fourth-order reconstructions cost significantly more

than the first- and second-order reconstructions because

of the need to evaluate function values at 16 quadrature

points, which requires the evaluation of a fourth-order

polynomial at each of these points.

FIG. 8. Blossey and Durran (2008) test problem mapped to the sphere.

FIG. 9. L2 and L‘ error norms for the spherical version of the

Blossey and Durran test case using first-, second-, and fourth-order

reconstructions. The simulation parameters are listed in Table 2.
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We have plotted the L2 error norms as a function of

relative cost using this scaling for the deformational test

case in Fig. 11. The plot indicates that the scheme using

the second-order reconstruction will always be more

efficient (cost for a given accuracy or accuracy for a

given cost) than the scheme using the first-order recon-

struction. The fourth-order reconstruction-based scheme

is slightly less efficient than the first-order-based scheme

for L2 errors higher than approximately 0.05, but it is

more efficient for lower errors. Given their better error

characteristics, such as solution symmetry (e.g., Figs. 4, 7,

and 10), we recommend using the second-order recon-

struction in this advection algorithm. The fourth-order

reconstruction is less efficient that the second-order re-

construction in all cases, and the larger stencil needed

by the fourth-order reconstruction (Fig. 2) may have an

impact on distributed memory implementations and

efficiency compared to the second-order reconstruction.

Since the second-order reconstruction uses the same

stencil as the first-order reconstruction, it should use the

same distributed memory implementation as the first-

order scheme.

The efficiency of the fourth-order reconstruction, as

well as its attractiveness, might be improved by in-

creasing the efficiency of the polynomial generation or

the quadrature. It also should improve relative to the

lower-order reconstructions as the number of scalars

being advected increases. L02 found that the scheme

based on the fourth-order reconstruction was more ef-

ficient than that using the second-order reconstruction.

Our results differ (see Fig. 11), but we are using different

test cases, and L02 does not provide sufficient in-

formation to reproduce his test results.

4. Summary

We have examined M07’s 2D transport scheme for

spherical icosahedral (hexagonal) meshes, and our ex-

tensions to the scheme. We have qualitatively reproduced

M07’s results, although with a different flux limiter.

FIG. 10. Solutions at time T for the Blossey and Durran (2008) test problem using first-, second-, and fourth-order reconstructions on

40 962- and 163 842-cell meshes. The thick black contours are the exact solution for c 5 100 and 800.
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Following the thesis of L02, we have produced simula-

tions using higher-order polynomial reconstructions than

used in M07, and these reconstructions produce signifi-

cantly more accurate solutions on a given mesh. The

schemes using the higher-order reconstructions also

produce more symmetric solutions and solution errors

(where symmetry should be maintained) compared with

the first-order reconstruction-based scheme. Importantly,

the solution errors for the higher-order reconstruction

schemes do not show significant dependence on the time

step, whereas the solution errors for the scheme using the

first-order reconstruction show a strong dependence. The

solution accuracy for the schemes using the higher-order

reconstructions is better than that produced with schemes

using a more accurate estimate of the mass-flux region

such as LR05 and Yeh (2007). This indicates that the er-

rors in the schemes using first-order scalar reconstructions

are dominated by errors in this reconstruction and not

geometrical errors in determining the fluxed mass area.

We have confirmed the results presented in the thesis

of L02. Specifically, we have verified the importance of

the constraints that the least squares fit polynomial pass

through the central cell value, and that the integral of

the polynomial over the cell must equal the cell-averaged

value times the area of the cell. We satisfy these con-

straints in a two-step procedure, first fitting the poly-

nomial subject to the first constraint and then adjusting

the constant to satisfy the second, whereas L02 builds

these into his weighted least squares minimization

procedure. The results presented herein and in L02 are

very similar, hence both approaches are viable.

We have subjected the reconstruction-based schemes

to a more demanding deformational flow test based on

the 2D planar deformational flow test used by Blossey

and Durran (2008). The tests show that these schemes

using the polynomial reconstructions are robust. As ex-

pected, all the schemes possess convergence rates of

approximately 2 or less as indicated in the deformational

flow tests, whereas the cosine-bell solid-body rotation

tests of M07 and those for schemes using higher-order

reconstructions reported here show convergence rates

approaching 3 for the time-independent nondeforma-

tional velocity field.

Finally, we have qualitatively examined scheme effi-

ciency, and we find that the scheme using the second-

order reconstruction is significantly more efficient than

either the schemes using the first- or fourth-order re-

constructions. The fourth-order reconstruction based

scheme is very expensive because of the larger stencil

used in the reconstruction, the need for higher-order

polynomial evaluation, and the need for fourth-order

accurate quadrature. Based on these results, we rec-

ommend using the second-order reconstruction in this

scheme.

Acknowledgments. We thank Dr. Hilary Weller for

bringing the L02 dissertation to our attention, and for

her careful review of this paper. We would also like to

thank Dr. Hiroaki Miura for his careful review of this

paper. Author Skamarock would like to acknowledge

the Max Planck Institute for Meteorology in Hamburg,

Germany, and Dr. Almut Gassmann for supporting a

short visit during which some of this work was accom-

plished. Author Menchaca performed this work under the

auspices of the Significant Opportunities in Atmospheric

Research and Science (SOARS) Program at the Uni-

versity Corporation for Atmospheric Research (UCAR)

during the summer of 2009.

REFERENCES

Blossey, P. N., and D. R. Durran, 2008: Selective monotonicity pres-

ervation in scalar advection. J. Comput. Phys., 227, 5160–5183.

Lashley, R. K., 2002: Automatic generation of accurate advection

schemes on unstructured grids and their application to mete-

orological problems. Ph.D. thesis, University of Reading,

Reading, United Kingdom, 223 pp. [Available online at http://

www.reading.ac.uk/maths/research/maths-phdtheses.aspx.]

Lipscomb, W. H., and T. Ringler, 2005: An incremental remapping

transport scheme on a spherical geodesic grid. Mon. Wea.

Rev., 133, 2235–2250.

Majewski, D., and Coauthors, 2002: The operational global

icosahedral–hexagonal gridpoint model GME: Description and

high-resolution tests. Mon. Wea. Rev., 130, 319–338.

FIG. 11. L2 error norms plotted as a function of normalized CPU

time for the spherical version of the Blossey and Durran test case

using first-, second-, and fourth-order reconstructions.

DECEMBER 2010 S K A M A R O C K A N D M E N C H A C A 4507



Miura, H., 2007: An upwind-biased conservative advection scheme

for spherical hexagonal-pentagonal grids. Mon. Wea. Rev., 135,

4038–4044.

Skamarock, W. C., 2006: Positive-definite and monotonic limiters

for unrestricted-time-step transport schemes. Mon. Wea. Rev.,

134, 2241–2250.

Strang, G., 1980: Linear Algebra and Its Applications. 2nd ed.

Academic Press, 414 pp.

Stroud, A. H., 1971: Approximate Calculation of Multiple Integrals.

Prentice-Hall, 431 pp.

Stuhne, G. R., and W. R. Peltier, 1996: Vortex erosion and amal-

gamation in a new model of large scale flow on the sphere.

J. Comput. Phys., 128, 58–81.

Tomita, H., M. Tsugawa, M. Satoh, and K. Goto, 2001: Shallow

water model on a modified icosahedral geodesic grid by using

spring dynamics. J. Comput. Phys., 174, 579–613.

Tremback, C. J., J. Powell, W. R. Cotton, and R. A. Pielke, 1987:

The forward-in-time upstream advection scheme—Extension

to higher orders. Mon. Wea. Rev., 115, 540–555.

van Leer, B., 1977: Towards the ultimate conservative difference

scheme. IV. A new approach to numerical conservation.

J. Comput. Phys., 23, 276–299.

Williamson, D. L., 2007: The evolution of dynamical cores for

global atmospheric models. J. Meteor. Soc. Japan, 85B, 241–

269.

——, J. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, 1992:

A standard test set for numerical approximations to the

shallow-water equations in spherical geometry. J. Comput.

Phys., 102, 211–224.

Woodward, P. R., and P. Colella, 1984: The numerical simulation

of two-dimensional fluid flow with strong shocks. J. Comput.

Phys., 54, 113–173.

Yeh, K.-Y., 2007: The streamline subgrid integration method: I.

Quasi-monotonic second-order transport schemes. J. Comput.

Phys., 225, 1632–1652.

Zalesak, S. T., 1979: Fully multidimensional flux-corrected

transport algorithms for fluids. J. Comput. Phys., 31, 335–

362.

4508 M O N T H L Y W E A T H E R R E V I E W VOLUME 138


