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ABSTRACT

Several transport schemes developed for spherical icosahedral grids are based on the piecewise linear

approximation. The simplest one among them uses an algorithmwhere the tracer distribution in the upwind

side of a cell face is reconstructed using a linear surface. Recently, it was demonstrated that using second- or

fourth-order reconstructions instead of the linear one produces better results. The computational cost of

the second-order reconstruction method was not much larger than the linear one, while that of the fourth-

order one was significantly larger. In this work, the authors propose another second-order reconstruction

scheme on the spherical icosahedral grids, motivated by some ideas from the piecewise parabolic method.

The second-order profile of a tracer is reconstructed under two constraints: (i) the area integral of the

profile is equal to the cell-averaged value times the cell area and (ii) the profile is the least squares fit to the

cell-vertex values. The new scheme [the second upwind-biased quadratic approximation (UQA-2)] is more

accurate than the preceding second-order reconstruction scheme [the first upwind-biased quadratic ap-

proximation (UQA-1)] in most of the tests in this work. Solutions of UQA-2 are sharper than those of

UQA-1, although with slightly larger phase errors. The computational cost of UQA-2 is comparable to

UQA-1.

1. Introduction

Spherical icosahedral grids are usually generated by

grid partitioning, starting from the icosahedron (e.g.,

Heikes and Randall 1995). Recently, they are beginning

to be widely adopted for atmosphere and ocean models

(e.g., Ringler et al. 2000; Satoh et al. 2008; Skamarock

et al. 2012). One reason may be their quasi-uniform grid

structure, which enables higher computational effi-

ciency on massively parallel computers. A global high-

resolution simulation, which covered the entire sphere

with cells of several-kilometer scale and, thus, re-

quired huge computing power, was realized on the

grid (e.g., Miura et al. 2007). Although durations of

such high-resolution simulations are currently limited

from 1 to 3 months so far, increases in computer speed

will hopefully enable such high-resolution climate sim-

ulations in the near future. In terms of climate simula-

tions, accurate transports of water substances, aerosols,

and chemical species are crucial for a realistic hydro-

logical cycle and accurate radiation balance. Therefore,

accurate transport schemes are preferable to enhance

credibility of climate simulations.

Research on transport schemes may be regarded as

one of the central topics in numerical modeling on

spherical icosahedral grids. Stuhne and Peltier (1996)

andMajewski et al. (2002) developed transport schemes

using the advective form equations and second-order

polynomial fitting. It may be possible to develop higher-

order schemes by making higher-order polynomial fits

with larger stencils. However, it is very difficult for

transport schemes in the advective form to ensure con-

servation of transported quantities, and thus, they might
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be unsuitable for long-term simulations. In contrast,

transport schemes in the flux form are well suited for

conservation. The finite-volumemethod is widely adopted

to develop flux-form transport schemes on the spherical

icosahedral grids because it can deal with unstructured

grids in a relatively straightforward manner. There is

a large amount of literature on the finite-volumemethod

on unstructured grids and some approaches appear

attractive for future transport-scheme developments

(e.g., Iske and Sonar 1996; Friedrich 1998), but it is not

the purpose of this study to give an overall review of these

schemes. Here, we restrict out attention to the trans-

port schemes developed for the spherical icosahedral

grids.

For multistage time-stepping schemes, Masuda and

Ohnishi (1986) developed a spatial discretization method

that was equivalent to a second-order-centered scheme

on the regular rectangular grid, and Heikes and Randall

(1995), Tomita et al. (2001), and Ringler and Randall

(2002) followed their approach with somemodifications.

Lee andMacDonald (2009) andWeller et al. (2009) used

upwind-biased polynomial interpolations to have im-

proved results. Recently, Skamarock and Gassmann

(2011) provided third- and fourth-order discretization

methods. In contrast, for single-stage forward-in-time

schemes, Thuburn (1997) extended the Uniformly Third-

Order Polynomial Interpolation Algorithm (UTOPIA)

scheme (Leonard et al. 1993; Rasch 1994) to spherical

icosahedral grids although distortions of grid cells were

not taken into account; the interpolation constants de-

rived on the perfect hexagonal grid were used. Lipscomb

and Ringler (2005, hereafter LR05) and Yeh (2007) ap-

plied the piecewise linear approximation of van Leer

(1977) and reconstructed piecewise linear profiles inside

hexagonal or pentagonal cells. Miura (2007b, hereafter

M07b) introduced two simplifications, which will be

explained in the next section, to avoid complex condi-

tional branching in themethods of LR05 andYeh (2007).

Recently, Skamarock and Menchaca (2010, hereafter

SM10) improved the scheme of M07b by replacing the

linear reconstruction by second- or the fourth-order

reconstructions. SM10 showed that the fourth-order

reconstruction scheme was less diffusive than the second-

order one, but it hadmuch higher computational cost.We

will present a review of the M07b and SM10 schemes in

section 2.

In this paper, following M07b and SM10, we propose

another second-order reconstruction-based scheme that

produces more accurate simulations with only a moder-

ate increase in computational cost. The second-order

profile is reconstructed under two constraints. One is

that the area integral of the profile inside a hexagonal

or pentagonal cell is equal to the cell-center value

multiplied by the cell area. The other is that the profile is

the least squares fit to the cell-vertex values. We did not

choose the fourth-order reconstruction because of its

high computational cost demonstrated by SM10.

Section 2 describes about the schemes of M07b and

SM10 first, and then, introduces the algorithm of the

new scheme. Results from the new scheme are com-

pared to those from the schemes of M07b, SM10, and

other schemes in section 3. They are subjected to a

cosine-bell advection test (Williamson et al. 1992),

the slotted-cylinder advection test of LR05, and a

deformational flow test from Nair and Lauritzen (2010).

Computational performance is also compared on three

different computer architectures: Apple iMac, HP

ProLiant, and HITACHI HA8000. Section 4 presents

the summary.

2. Transport schemes

The prognostic equation for a tracer amount trans-

ported by velocity v can be written in the flux form as

›

›t
(rq)1$ � (rqv)50,

where r is density and q is mixing ratio. Assuming a

uniform distribution of r, we obtain a form that is often

considered in the researches of transport schemes as

›q

›t
1$ � (qv)50: (1)

If flow is divergent and density distribution is non-

uniform, it may be required to consider the consistency

between the discrete continuity and the transport equa-

tions (Gross et al. 2002; Niwa et al. 2011). The consistency

with continuity is beyond our scope here and we limit our

attention to (1). In this section, we first review the spatial

discretization methods of the flux-divergence operator

proposed byM07b and SM10, and then we introduce our

new method.

The finite-volume method is used for a hexagonal or

pentagonal cell to discretize the flux-divergence opera-

tor of (1) for the zeroth cell that includes the node point

H0 (Fig. 1a) as

›q0
›t

52
1

A0

�
N

0

i51

li~qi~vi �ni , (2)

where q0 is the mixing ratio at H0; A0 is the area of the

zeroth cell;N0 is the number of the cells surrounding the

zeroth cell; li is the length of the ith cell face shared by
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the zeroth cell and the ith surrounding cell; ni is the unit

vector normal to the ith cell face that points outward

from the zeroth cell; and ~qi and ~vi are the mixing ratio

and the velocity vector, respectively, estimated at the

center of the ith cell face Fi. We use a single-stage

forward-in-time scheme to discretize the left-hand side

of (2). The rest of this section describes about three

methods to determine ~qi.

a. Upwind-biased linear approximation
(ULA) by M07b

It is assumed that the flow is outward from the zeroth

cell along the ith cell face (~vi � ni . 0). One of the two

assumptions introduced by M07b is that the tracer

amount swept out from the zeroth cell through the ith

cell face during a time step Dt is equal to the tracer

amount contained in a parallelogram configured in the

upwind side. The parallelogram is defined by shifting the

ith cell face by 2~viDt, and an example is schematically

illustrated by the gray shaded areas in Figs. 1a,b. This

assumption gives the following form for ~qi:

~qi5

ð
PL

f dA

APL

, (3)

where APL is the area of the parallelogram and
Ð
PL f dA

means the area integral of a tracer profile f inside the

parallelogram. M07b and SM10 assumed the first- and

the second-order distributions for q, respectively, in a

neighborhood of H0:

f (x,y)5q01a1x1a2y, and (4)

f (x,y)5q01a1x1a2y1a3x
21a4xy1a5y

2 . (5)

The other assumption introduced by M07b is that the

tracer distribution about H0 represents the tracer dis-

tribution inside the parallelogram even if the parallelo-

gram overlaps other cells. These two assumptions hold

not only for the schemes of M07b and SM10 but also for

our new scheme.

FIG. 1. Schematic illustrations of a hexagonal grid and an

example of the parallelogram on the upwind side of a cell

edge, including the Gauss quadrature point(s) for (a) ULA

and (b) UQA-1. (c) A piecewise quadratic profile on one-

dimensional grid and its correction. Note that the dotted

lines in (c) do not pass through the values at X21 and X1

because those are common on the hexagonal grids.
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The least squares fit on the local two-dimensional

coordinate, following Stuhne and Peltier (1996) and

Majewski et al. (2002), is also a common procedure to

determine the first- or the second-order profile. One

simple method to project the position of the node point

of the ith surrounding cell Hi onto the local x–y co-

ordinate with an origin H0 is

xi5ne � (Hi2H0) and yi5nn � (Hi2H0) , (6)

where ne and nn constitute a pair of the orthonormal

basis, one choice of which can be the eastward and the

northward tangential unit vectors except for the poles.

Assuming qi 5 f (xi, yi) (i5 1, 2, . . . ,N0) about Hi, we

have the following matrix formula for (5):

q̂5Ba , (7)

where

q̂5

0
BBB@
q12q0

..

.

qN
0
2q0

1
CCCA, B5

0
BBB@
x1 y1 x21 x1y1 y21

..

. ..
. ..

. ..
. ..

.

xN
0
yN

0
x2N

0
xN

0
yN

0
y2N

0

1
CCCA,

and a5

0
BBB@
a1

..

.

a5

1
CCCA.

We determine the coefficient vector a using a5B21q̂

for the pentagonal cell or using a5B*q̂ for the hexagonal

cell. Here,B21 andB* are the inverse and pseudoinverse

matrices of B, respectively, which can be computed, for

example, by using the singular vector decomposition al-

gorithm (e.g., Golub and Reinsch 1970).

M07b reset the coefficients of the quadrature terms

(a3, a4, and a5) to zero for the linear reconstruction (4).

The area integral in (3) about this linear profile can be

computed as ð
PL

f dA5f (xg
1
,yg

1
)APL , (8)

where (xg1 , yg1 ) can be computed by substituting

g15Fi2~vi
Dt

2
, (9)

which is the center of the parallelogram and corresponds

to the Gauss quadrature point, in place of Hi in (6).

Substituting (8) into (3), we obtain a formula for ~qi as

~qi5 f (xg
1
,yg

1
) .

We call this method the upwind-biased linear approxi-

mation (ULA) in this paper.

b. The first upwind-biased quadratic approximation
(UQA-1) by SM10

SM10 used (5) after modifying it to satisfy a constraint

that the area integral of the profile f inside a hexagonal

or a pentagonal cell is equal to the tracer amount con-

tained in the cell. We confirmed that phase error was

reduced and accuracy was improved by this modification

(not shown). About the zeroth cell in Fig. 1, this con-

straint is written as

ð
H

0

f dA5q0A0 , (10)

where
Ð
H0

f dA means the area integral of f over the

zeroth cell. To satisfy this constraint, the second-order

profile is shifted, as schematically drawn in Fig. 1c,

by including a correction term, that is, by adjust-

ing the constant in the polynomial. The new profile

becomes

fc(x,y)5q01a1x1a2y1a3x
21a4xy1a5y

22Dq ,

(11)

where the subscript c means ‘‘corrected.’’ Because the

method to compute the correction term Dq was not ex-

plicitly provided in SM10 andwe use the samemethod in

our new scheme later, it is worth noting our algorithm

here.

It is known that the area integral of a second-order

profile over a triangle can be calculated by using three

Gauss quadrature points located at the center of each

edge of the triangle. From this fact, the area integral of

(5) inside the triangle Ti (Fig. 2), with verticesH0, Ti and

Ti21, is

ð
T
i

f dA5
f (xc

i

,yc
i

)1 f (xc
i21
,yc

i21
)1 f (xc

N01i

,yc
N01i

)

3
ai ,

(12)

where ai is the area of the triangle; and (xci , yci), (xci21
,

yci21
), and (xcN01i

, ycN01i
) are the coordinates of the quad-

rature points ci, ci21, and cN01i, respectively, in the local

coordinate system. Here ci is at the edge midpoint be-

tween the cell node H0 and the ith cell vertex Ti, and

cN01i is at the edge midpoint between Ti and Ti21.
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Substituting (11) into (10) and using A0 5�N0

i51ai, we

have
Ð
H0

fc dA5�N0

i51(
Ð
Ti
f dA)2A0 3Dq5 q0A0, and

the correction term is

Dq5
1

A0

�
N

0

i51

ð
T
i

f dA

 !
2q0 . (13)

Using (12), the first term on the right-hand side of (13)

can be rewritten as

1

A0

�
N

0

i51

ð
T
i

f dA

 !
5 �

2N
0

i51

wi f (xc
i
,yc

i
) , (14)

where

wi5

8>>>><
>>>>:

ai1ai11

3A0

for i51, . . . ,N0

ai2N
0

3A0

for i5N011, . . . ,2N0

.

Here it is assumed that the subscript i is cyclic for

i5 1, . . . ,N0, and thus, wN0
5 (aN0

1a1)/3A0. Because

the weights wi can be precomputed before the time loop,

the computational cost of this correction is small.

The parallelogram on the upwind side of a cell face

can be evenly split into two triangles (Fig. 1b), and thus

the area integral of the polynomial (11) over the paral-

lelogram can be calculated as

ð
PL

fc dA5
2fc(xg

1
, yg

1
)1 fc(xg

2
, yg

2
)1 fc(xg

3
, yg

3
)1 fc(xg

4
, yg

4
)1 fc(xg

5
, yg

5
)

6
APL , (15)

where (xg2 , xg2 ), (xg3 , xg3 ), (xg4 , xg4 ), and (xg5 , xg5 ) are the

coordinates of the Gauss quadrature points,

g25Fi , (16)

g35Fi2~viDt , (17)

g45Ti2~viDt/2, and (18)

g55Ti212~viDt/2 , (19)

respectively; and g1 is (9). Compared to another set

of the Gauss quadrature points chosen by SM10,

our choice requires one more point, but the compu-

tational cost is similar because the point g2 is fixed

and can be precomputed before the time loop. A

merit of our choice is that g1 is shared with ULA

and the program code is also shared. Substitut-

ing (15) into (3), we obtain a formula to determine
~qi as

~qi 5
2fc(xg

1
, yg

1
)1 fc(xg

2
, yg

2
)1 fc(xg

3
, yg

3
)1 fc(xg

4
, yg

4
)1 fc(xg

5
, yg

5
)

6
.

FIG. 2. (a) Schematic illustration of a subtriangle configured by H0, Ti21, and Ti, and the Gauss quadrature points to

compute the area integral of quadratic profiles. (b) Schematic illustration to define the interpolation operator.
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We call this method the first upwind-biased quadratic

approximation (UQA-1).

c. The second upwind-biased quadratic
approximation (UQA-2)

Next, we introduce a new scheme called the sec-

ond upwind-biased quadratic approximation (UQA-2).

UQA-2 might be regarded as a variant of the piecewise

parabolic method (PPM) of Colella and Woodward

(1984) because some ideas of PPM are used in its re-

construction procedure. The original PPM requires in its

initial stage that the quadratic profiles be reconstructed

for each cell so that they are continuous at the cell

interfaces in smooth parts of solution (discontinuities

at the cell interfaces are introduced later for mono-

tonicity). The cell interface values are determined by an

interpolation and, if the grid is equally spaced, they

constitute a fourth-order transport scheme under uni-

form flow. On the spherical icosahedral grids, we do

not have appropriate methods to reconstruct quadratic

profiles that are continuous along all cell faces for any

tracer distribution. Therefore, we consider reducing

discontinuities at cell vertices instead. As a result, two

differences exist between the algorithms of UQA-1

andUQA-2. The first is that UQA-2 uses mixing ratios

at the cell vertices Ti (i5 1, 2, . . . ,N0) (Fig. 3a) in the

least squares fitting. The second is in the correction pro-

cedure for the second-order profile, the algorithm that

we explain below. A schematic illustration is shown in

Fig. 3c.

The coordinate of the cell vertices Ti (Fig. 3a) can be

computed by

xi5ne � (Ti2H0) and yi5nn � (Ti2H0) .

The mixing ratio at the ith cell vertex, denoted by qyi , is

computed by combining two linear interpolations about

the smaller and larger triangles schematically illustrated

in Fig. 3b as

qy
i
5
3

2
I(q0,qi,qi11)2

1

2
I(qi21,qH

0
1i,qi12) , (20)

FIG. 3. Schematic illustrations of (a) a hexagonal grid and (b)

smaller (dark gray) and larger (light gray) triangles used in the

interpolation to the vertex T1. (c) A piecewise quadratic profile

constrained by q0 2Dq at the cell center and passing close to

the cell face values.
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where we assume that the subscript i is cyclic so that

qi21 5 qN0
for i5 1. Here the linear interpolation oper-

ator I, determining a scalar value q0 at a point P0 from

the scalar values q1, q2, and q3 at the vertices P1, P2, and

P3, respectively, of a triangle (Fig. 2b), is defined by

q05I(q1,q2,q3)[
q1A11q2A21q3A3

A11A21A3

,

where A1, A2, and A3 are the areas of the inner tri-

angles P0P2P3, P0P3P1, and P0P1P2, respectively. If

the hexagonal grid is regular, (20) could constitute a

fourth-order accurate gradient operator and a fourth-

order accurate transport scheme under uniform flow

(Miura 2007a). We use the pair of the constants, 3/2 and

2½, for all vertices of the spherical icosahedral grid,

but this choice may be a weak point of UQA-2 because

most of the hexagonal cells of the spherical icosahedral

grid are somewhat distorted (e.g., Miura and Kimoto

2005).

Using qyi (i5 1, 2, . . . ,N0) at the cell vertices in (5),

we have a matrix equation similar to (7) defining the

least squares fit: q̂y 5Bay . Here xi and yi in B are

those of the cell vertices Ti and q̂y [ qy 2 q0 5 (qy1 2
q0 � � � qyN0

2 q0)
T where T means transpose. In con-

trast to the UQA-1 scheme where the constant in the

polynomial is adjusted after the least squares fit to satisfy

the constraint in (10), we satisfy the constraint in the

UQA-2 scheme by adjusting the cell-center value by Dq
and using a least squares fit to the adjusted cell-vertex

values q̂y 1Dq. The resulting polynomial for the UQA-2

scheme can be expressed as

fy(x,y)5(1 x y x2 xy y2)

 
1 0

0 B#

!0@q02Dq

q̂y1Dq

1
A, (21)

where B#5B21 for pentagonal cells and B5B* for

hexagonal cells. The constant Dq is determined by in-

tegrating the polynomial over the cell in the application

of the constraint (10):

bT

 
21 0

0 B#

! 
2q0

qy2q0

!
1bT

 
21 0

0 B#

!
Dq5q0 ,

(22)

where Dq5 (Dq � � �Dq)T is the column vector of size

N0 1 1,

bT5

 
�
2N

0

j51
wj �

2N
0

j51
wjxj �

2N
0

j51
wjyj �

2N
0

j51
wjx

2
j �

2N
0

j51
wjxjyj �

2N
0

j51
wjy

2
j

!
,

and the summation is over the quadrature points defined

by (14). Introducing the row vector

(b0 b1 � � � bN
0
)5bT

�
21 0

0 B#

�
,

we modify (22) to be

2b0q01 �
N

0

i51

bi(qy
i

2q0)1Dq�
N

0

i50

bi5q0 .

Using the fact that b0 521 from �2N0

j51wj 5 1, this

equation can be solved for Dq as

Dq52�
N

0

i51

bi(qy
i
2q0) �

N
0

i50

bi .

,

Using this Dq in (21), the second-order profile fy is

defined. To summarize, the polynomial (21) is con-

structed using a least squares fit of the polynomial a1x1
a2y1 a3x

2 1 a4xy1 a5y
2 to the adjusted vertex values

qyi 2 q0 1Dq, the full polynomial equals q0 2Dq at the

cell node point H0, and its area integral over the cell

equals q0A0.

The flux value ~qi in (3) is integrated using (15) with the

polynomial fy replacing fc:

~qi5
2fy(xg

1
, yg

1
)1 fy(xg

2
, yg

2
)1 fy(xg

3
, yg

3
)1 fy(xg

4
, yg

4
)1 fy(xg

5
, yg

5
)

6
.

The Gauss quadrature points are the same as those

of UQA-1. We can precompute B21, B*, and bi(i5
0, . . . ,N0) before the time loop, and thus, the compu-

tational cost of UQA-2 is only slightly larger thanUQA-

1 about the profile reconstruction. It should be noted,

however, that UQA-2 requires larger stencils (13 for

hexagons and 11 for pentagons) than UQA-1 (7 for hexa-

gons and 6 for pentagons) because of the interpolation to

the cell vertices (20). In a test shown in the next section,

the computational cost of the data transfer, which accom-

panied the interpolation in our code, was not negligible

when a larger number of processor cores were used.
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3. Test results

The three transport schemes, ULA, UQA-1, and

UQA-2, have been subjected to a cosine-bell advection

test (Williamson et al. 1992), a slotted-cylinder advec-

tion test of LR05, and a deformational flow test (Nair

and Lauritzen 2010) to compare their behaviors on the

spherical icosahedral grids. The grids were generated by

the iterative splitting from the icosahedron (Heikes and

Randall 1995) and optimized by the spring method of

Tomita et al. (2001) that was slightly modified by Miura

and Kimoto (2005). After adjusting the positions of

the grid nodes, the cell vertices were positioned at the

barycenter of each triangle configured by three neigh-

boring nodes. Computations were performed on grids

having 2562, 10 242, 40 962, 16 382, and 655 362 hexagonal/

pentagonal cells on the sphere. Instead of the ‘‘glevel’’ no-

tation introduced by Tomita et al. (2001), we label them as

H16, H32, H64, H128, and H256 from the number of

hexagons plus one pentagon on each edge of the original

icosahedron that is projected onto the sphere. Because

it was incorporated into the derivations of ULA,

UQA-1, and UQA-2, the single-stage forward-in-time

scheme was used. The flux limiter of Thuburn (1995,

1996) was applied for monotonicity where not noted

explicitly. TheZM-grid arrangement (Ringler andRandall

2002) was used; mixing ratios on the cell centers and flow

velocities on the cell vertices.

a. Advection of a cosine-shaped bell

Williamson et al. (1992) proposed a cosine-bell advec-

tion test as one of their seven test cases for shallow-water

models.Most transport schemes on the icosahedral grids

were subjected to this test (e.g., Heikes and Randall

1995; Thuburn 1997; LR05; Yeh 2007;M07b;Mittal et al.

2007; Lee and MacDonald 2009; SM10; Skamarock and

Gassmann 2011). Because results were only weakly

sensitive to the flow angle, the angle between the axis of

the solid-body rotation and the pole axis of the sphere

was set to zero. The definitions of the l2 and l‘ norms to

evaluate accuracy are as follows:

l25

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
cells

Ai(qi2qi,true)
2

r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�
cells

Aiq
2
i,true

r

and

l‘5
max
cells

jqi2qi,truej
max
cells

jqi,truej
,

FIG. 4. Dependence of the l2 and l‘ norms on the time inter-

val. Results of the cosine-bell advection test after the 12-day

integration.

FIG. 5. Dependence of the l2 and l‘ norms on the grid refinement. Results of the cosine-bell advection test (a)

without and (b) with the flux limiter after the 12-day integration. The thick solid lines are references of the second-

order convergence. The l2 norms of the second- and the fourth-order reconstruction schemes of SM10 are also

included.
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FIG. 6. The cosine-bell advection test. True (dotted lines) and computed (solid lines) solutions of (a) ULA, (b) UQA-1, and (c) UQA-2

after the 12-day integration on the H32 grid. Errors of (d) ULA, (e) UQA-1, and (f) UQA-2 on the H256 grid with the flux limiter. Errors

of (g) ULA, (h) UQA-1, and (i) UQA-2 without the flux limiter.
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where qi and qi,true are the computed and exact solutions

of the ith cell node, respectively, andAi is the area of the

cell.

First, we examine the dependence of the solution errors

on the time interval. The grid used was H64 and the time

intervals were Dt 5 1800, 900, 450, 225, 100, and 50 s.

Figure 4 indicates that the solution of ULA degrades

rapidly as the time interval decreases, while the solution of

UQA-1 is relatively insensitive to the time interval. These

are the same features as those shown in Fig. 6 of SM10 and

the magnitudes of the error norms of ULA and UQA-1

are very similar to their first- and the second-order re-

construction schemes. As it was discussed by van Leer

(1977) and M07b, an overestimation of phase error with

aCourant number smaller than 0.5 is a common feature of

the schemes using the piecewise linear approximation, so

not only ULA but also the schemes of LR05 and Yeh

(2007) probably suffer from this error, as in Fig. 8a of

LR05. UQA-2 is more accurate thanUQA-1 for all of the

time intervals although the error norms of UQA-2 are

slightly more sensitive to the time interval than UQA-1.

Next, we compare the convergence properties of

ULA, UQA-1, and UQA-2. The grids used were H16,

H32, H64, H128, and H256 and the time intervals were

Dt 5 7200, 3600, 1800, 900, and 450 s, respectively.

Figure 5 includes not only the l2 and l‘ norms of ULA,

UQA-1, and UQA-2 but also the l2 norm of the second-

and the fourth-order reconstruction schemes of SM10

(Fig. 3 of SM10). Without the flux limiter (Fig. 5a),

UQA-2 is obviously more accurate than ULA and

UQA-1 because UQA-2 is less diffusive than the others

(Figs. 6g–i), but convergence of the error norms is al-

most second order commonly. With the flux limiter (Fig.

5b), convergence of the l2 norms of ULA and UQA-1 is

greater than the second order as already shown byM07b

and SM10, while that of UQA-2 is only slightly greater

than the second order. As a result, the l2 norm ofUQA-2

becomes almost equivalent to that of UQA-1 for H256.

The reason for the slower convergence is probably

explained as follows. The solution of UQA-2 is more

accurate than ULA and UQA-1 for coarser grids be-

cause UQA-2 is much less diffusive than ULA and

UQA-1 as is confirmed in the test results on theH32 grid

(Figs. 6a–c). Comparing Fig. 6d with Fig. 6g, Fig. 6e with

Fig. 6h, and Fig. 6f with Fig. 6i, we see that the flux

limiter corrects diffusive error effectively, but does not

correct phase error. It is suggested that UQA-2 accom-

panies significantly smaller diffusive error but slightly

larger phase error than UQA-1.

Compared to preexisting schemes, phase error of

UQA-2 is much smaller than that depicted in Fig. 6

of Heikes and Randall (1995) and Fig. 1 of Lee and

MacDonald (2009), and is almost equivalent to that in

Fig. 7 of Thuburn (1997), Fig. 5 of Mittal et al. (2007),

Fig. 3 of Skamarock and Gassmann (2011), and Fig. 4

of SM10. The diffusive error of UQA-2 is somewhat

smaller than all of the schemes listed above. It can

be seen in Fig. 5 that UQA-1 is almost equivalent to

the second-order reconstruction scheme of SM10, and

UQA-2 is generally more accurate than the fourth-order

reconstruction scheme of SM10. The l2 norm of UQA-2

is less sensitive to the use of the flux limiter than the

other schemes. With the flux limiter, however, conver-

gence of the l2 norm of UQA-2 is slower than the fourth-

order reconstruction scheme of SM10. This suggests

that phase error of UQA-2 is slightly larger than the

fourth-order reconstruction scheme of SM10.

b. Advection of a slotted cylinder

Following LR05, a harder test that includes sharp

discontinuities has been performed. The cosine bell in

the previous test was replaced with a slotted cylinder

FIG. 7. Dependence of the l2 and l‘ norms on the grid refinement. Results of the slotted-cylinder advection test

(a) using the time intervals depending on resolution and (b) using the constant time interval of 50 s after the 12-day

integration. The thick solid lines are references of the second-order convergence.
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FIG. 8. The slotted-cylinder advection test. Computed solutions after the 12-day integration of (a) ULA, (b) UQA-1, and (c) UQA-2 on

theH64 grid withDt5 1800 s. The same except for theH32 grid withDt5 50 s: (d) ULA, (e) UQA-1, and (f) UQA-2. The same except for

the H64 grid with Dt5 50 s: (g) ULA, (h) UQA-1, and (i) UQA-2.
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that had an initial height of 1000 m. Two series of tests

were performed with different settings in the time in-

terval. One series used Dt5 7200, 3600, 1800, 900, and

450 s, respectively, for H16, H32, H64, H128, and H256.

The other series used Dt5 50 s for all the grids.

Figure 7 shows that the l‘ norms ofULA,UQA-1, and

UQA-2 are almost the same for all resolutions regard-

less of the time interval. This lack of convergence in the

l‘ norm is due to the discontinuities along the edge of

the slotted-cylinder. Although the l2 norms decrease as

the grid becomes finer, their convergence rates are all

less than first order as was shown in Fig. 7 of LR05.

While ULA is as good as UQA-1 in the first series

(Fig. 7a), it is the worst in the second series (Fig. 7b)

because of the deformations of the solutions (Figs. 8d,g)

similar to Fig. 9d of LR05. The l2 norm of UQA-2 is

almost insensitive to Dt and always smaller than those of

ULA andUQA-1 (Fig. 7) because discontinuities around

the slotted cylinder are more sharply captured by

UQA-2. The solution of UQA-2 onH32 (Fig. 8f) appears

FIG. 9. The deformational flow test. (a) Computed solution of UQA-2 after the 6-day integration on the

H64 grid. True (dotted lines) and computed (solid lines) solutions of (b) ULA, (c) UQA-1, and (d) UQA-2 after

the 12-day integration on the H64 grid. Errors of (e) UQA-1 and (f) UQA-2 after the 12-day integration on the

H256 grid.
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similar to that of UQA-1 onH64 (Fig. 8h). The l2 norm of

UQA-2 onH32 is almost equivalent to that of UQA-1 on

H64 (Fig. 7b). Thus, the spatial resolution of UQA-2 is

better than that ofULAandUQA-1when discontinuities

are present.

c. Advection by a deformational flow

A test using a nondivergent deformational flow pro-

posed byNair and Lauritzen (2010) has been performed.

The initial distribution of the tracer is given by a super-

position of two Gaussian hills. The flow field is com-

posed of a superposition of a deformational flow and

a zonal background flow. These scalar and velocity fields

were computed by using Eqs. (14), (31), and (32) in Nair

and Lauritzen (2010). We set parameters not given in

their paper as same as in Harris et al. (2011). The time

intervals were Dt5 3600, 1800, 900, 450, and 225 s on

H16, H32, H64, H128, and H256 grids, respectively.

The initial pair of the Gaussian hills is strongly de-

formed until day 6, as depicted in Fig. 9a. Our result is

similar to the reference solution given by Nair and

Lauritzen (2010). UQA-2 produces a less diffusive so-

lution than those of ULA and UQA-1 for H64 after

12 days (Figs. 9b–d). With the flux limiter (Fig. 10b),

convergence rates of the l2 norm are less than the second

order for ULA, and between the second order and the

third order for UQA-1 and UQA-2. Convergence of

the l‘ norms is less than the second order for all of the

three schemes. Without the flux limiter (Fig. 10a), the l2
and l‘ norms of UQA-2 converge nearly in the third

order from H32 to H64, but their convergences degrade

as the grid becomes finer.

The reason for this degradation in convergence may

be explained by considering diffusive and phase errors.

When the horizontal resolution is not sufficient to

resolve deformations of the Gaussian hills, the dominant

source of error may be implicit diffusion. As suggested

in the previous tests, UQA-2 appears to reduce diffusive

error faster than phase error as the grid becomes finer,

thus the dominant source of error may become phase

error on finer grids. It is speculated that convergence

of phase error is almost in the second order, while that

of diffusive error is greater than the second order.

Some signatures of this phase error are seen for UQA-2

(Fig. 9f), but not for UQA-1 (Fig. 9e).

d. Computational cost

In this subsection, we compare the computational

costs of ULA, UQA-1 and UQA-2. It should be noted

that this comparison wasmade under limited conditions.

Results may strongly depend not only on the environ-

ment, such as architectures and compilers, but also on

coding skills. A single FORTRAN program coded for

this work was run on three different computers. The

computing environments were as follows. An Apple

iMac with Intel Core i7 processor was used for a single

process run. An Intel FORTRAN Compiler was used

with -fast option. An HP ProLiant with Intel Xeon

processors was used for a small multiprocess run. A PGI

FORTRAN Compiler was used with -fastsse option and

OpenMPI was used for parallelization. A HITACHI

HA8000 with AMD Opteron processors was used for

a large multiprocess run. A HITACHI FORTRAN

Compiler was used with -Oss -noparallel options and

MPICH-MX was used for parallelization. The numbers

of processor cores were 10 and 160 for the small and the

large multiprocess runs, respectively.

The pair of deformational flow tests from section 3c

was performed with and without the flux limiter and was

repeated three times. The grids used were H32 for iMac

FIG. 10. Dependence of the l2 and l‘ norms on the grid refinement. Results of the deformational flow test (a) without

and (b) with the flux limiter after the 12-day integration. References slopes for second-order and third-order conver-

gences are added.
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and ProLiant and H256 for HA8000. Figure 11 shows

the averages of the computing times. Preprocess includes

computations of the normal velocity, determinations of

quadrature point(s) and evaluations of the upwind side.

Flux divergence includes interpolations to the vertices

(UQA-2 only), profile reconstructions, estimations of the

cell face values, and computations of the flux divergence

and the flux limiter (if used).

Figure 11 indicates that ULA is the fastest and UQA-

2 is the slowest, as expected. On iMac and ProLiant,

computing costs were only weakly sensitive to the dif-

ferences in architecture, compiler, and parallelization.

Preprocess ofUQA-1 andUQA-2 consumed about 40%

more time than ULA because of the additional quad-

rature points.Without the flux limiter, the cost ofUQA-1

was about 40% larger than ULA in total, and that of

UQA-2 was about 10% larger than UQA-1. With the

flux limiter, those differences became smaller because

the significant cost of the flux limiter was common for

all. In this test, the cost of UQA-1 was about 25% larger

than that of ULA in total, and that of UQA-2 was about

5% larger than that of UQA-1. The cost of UQA-2 is

comparable to UQA-1 if the number of process cores is

small and if the flux limiter is used. On HA8000, flux

divergence of UQA-2 was obviously time consuming,

comparing to UQA-1. This is because the interpolations

to the cell vertices and necessary data transfers are

included in flux divergence. To reduce this cost, we

may need to improve this code for more efficient data

transfer.

FIG. 11. Computational costs ofULA,UQA-1, andUQA-2 on iMac (a) without and (b) with the flux limiter, onHP

ProLiant (c) without and (d) with the flux limiter, and onHITACHIHA8000 (e) without and (f) with the flux limiter.

Calculations included in preprocess and flux divergence are described in the text.
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4. Summary

This study proposed a new upwind-biased forward-in-

time transport scheme [second upwind-biased quadratic

approximation (UQA-2)] for the spherical icosahedral

grids. UQA-2 basically follows the ideas of ULA by

M07b and UQA-1 by SM10 and also benefits from basic

ideas of PPM (Colella andWoodward 1984). The second-

order tracer distribution on the upwind side of a cell face

is reconstructed by imposing two constraints. The first

one is that the second-order polynomial is the least

squares fit to the interpolated cell-vertex values. The

second one is that the area integral of the second-order

polynomial over the cell located in the upwind side is

equal to the cell-averaged value times the cell area. By

fitting the second-order polynomial to the cell-vertex

values (that have been interpolated from the cell-center

values), we significantly minimize the discontinuity at

the cell edges and vertices; PPM enforces this continuity

in its unlimited formulation.

Accuracy of UQA-2 was compared with those of

ULA and UQA-1 through a cosine-bell advection test

(Williamson et al. 1992), a slotted-cylinder advection

test of LR05, and a deformational flow test (Nair and

Lauritzen 2010). UQA-2 was more accurate than ULA

and UQA-1 in most of the tests. UQA-2 showed nearly

third-order convergence of the error norms for a C-

infinity function in a lower-resolution range although

convergence rates degraded as the grid becomes finer.

For discontinuities, UQA-2 reproduced sharper solu-

tions than ULA and UQA-1. Because of its higher

spatial resolution, UQA-2 is more suitable than ULA

andUQA-1 for high-resolution atmospheric simulations

that contain sharp boundaries between cloudy and

cloud-free regions.

Computational cost of UQA-2 was compared with

those of ULA and UQA-1 on three different architec-

tures using different compilers. Single process and

multiprocess runs were also compared. General features

of the results were not sensitive to the differences in

architectures, compilers, and parallelization, but per-

formance of UQA-2 degraded as a result of the cost of

data transfers when many processors were used. With-

out a flux limiter, UQA-2 was more costly than ULA

and UQA-1 by about 50% and about 10%, respectively.

With a flux limiter, the cost differences were less because

of the significant cost of the flux limiter, but UQA-2 was

still more costly by about 30% compared toULA and by

about 5% compared to UQA-1.

Acknowledgments.Hiroaki Miura thanks Prof. David

Randall for supporting his visit to Colorado State Uni-

versity; a part of this work was done during that visit.

Dr. Takanobu Yamaguchi and Dr. Ross Heikes are also

acknowledged for fruitful discussions. This work was

supported by the Grant-in-Aid for Young Scientists (B)

of MEXT (22740310). The HA8000 supercomputer of

The University of Tokyo was used in a test.

REFERENCES

Colella, P., and P. R. Woodward, 1984: The Piecewise Parabolic

Method (PPM) for gas-dynamical simulations. J. Comput.

Phys., 54, 174–201.
Friedrich, O., 1998: Weighted essentially non-oscillatory schemes

for the interpolation of mean values on unstructured grids.

J. Comput. Phys., 144, 194–212.
Golub, G. H., and C. Reinsch, 1970: Singular value decomposition

and least squares solutions. Numer. Math., 14, 403–420.

Gross, E. S., L. Bonaventura, and G. Rosatti, 2002: Consistency

with continuity in conservative advection schemes for free-

surface models. Int. J. Numer. Methods Fluids, 38, 307–327.

Harris, L. M., P. H. Lauritzen, and R. Mittal, 2011: A flux-form

version of the conservative semi-Lagrangian multi-tracer trans-

port scheme (CSLAM) on the cubed sphere grid. J. Comput.

Phys., 230, 1215–1237.

Heikes, R., and D. A. Randall, 1995: Numerical integration of the

shallow-water equations on a twisted icosahedral grid. Part I:

Basic design and results of tests. Mon. Wea. Rev., 123, 1862–

1880.

Iske, A., and T. Sonar, 1996: On the structure of function spaces in

optimal recovery of point functionals for ENO-schemes by

radial basis functions. Numer. Math., 74, 177–202.

Lee, J.-L., and A. E. MacDonald, 2009: A finite-volume icosahedral

shallow-water model on a local coordinate. Mon. Wea. Rev.,

137, 1422–1437.
Leonard, B. P., M. K. MacVean, and A. P. Lock, 1993: Positivity-

preserving schemes for multidimensional advection. NASA

Tech. Memo. 106055/ICOMP-93-05, Institute for Computa-

tional Mechanics in Propulsion, Lewis Research Center,

Cleveland, OH, 62 pp.

Lipscomb, W. H., and T. D. Ringler, 2005: An incremental re-

mapping transport scheme on a spherical geodesic grid. Mon.

Wea. Rev., 133, 2335–2350.

Majewski, D., and Coauthors, 2002: The operational global

icosahedral-hexagonal gridpoint model GME: Description

and high-resolution tests. Mon. Wea. Rev., 130, 319–338.
Masuda, Y., and H. Ohnishi, 1986: An integration scheme of the

primitive equations model with an icosahedral–hexagonal

grid system and its application to the shallow water equa-

tions. Short- and Medium-Range Numerical Weather Pre-

diction, T. Matsuno, Ed., Japan Meteorological Society,

317–326.

Mittal, R., H. C. Upadhyaya, and O. P. Sharma, 2007: On near-

diffusion-free advection over spherical geodesic grids. Mon.

Wea. Rev., 135, 4214–4225.

Miura, H., 2007a: A fourth-order-centered finite-volume scheme

for regular hexagonal grids. Mon. Wea. Rev., 135, 4030–
4037.

——, 2007b: An upwind-biased conservative advection scheme for

spherical hexagonal–pentagonal grids. Mon. Wea. Rev., 135,

4038–4044.

——, and M. Kimoto, 2005: A comparison of grid quality of opti-

mized spherical hexagonal–pentagonal geodesic grids. Mon.

Wea. Rev., 133, 2817–2833.

846 MONTHLY WEATHER REV IEW VOLUME 141



——, M. Satoh, T. Nasuno, A. T. Noda, and K. Oouchi, 2007: A

Madden-Julian oscillation event realistically simulated by

a global cloud-resolving model. Science, 318, 1763–1765.

Nair, R. D., and P. H. Lauritzen, 2010: A class of deformational

flow test cases for linear transport problems on the sphere.

J. Comput. Phys., 229, 8868–8887.

Niwa, Y., H. Tomita, M. Satoh, and R. Imasu, 2011: A three-

dimensional icosahedral grid advection scheme preserving

monotonicity and consistency with continuity for atmospheric

tracer transport. J. Meteor. Soc. Japan, 89, 255–268.

Rasch, P. J., 1994: Conservative shape-preserving two-dimensional

transport on a spherical reduced grid. Mon. Wea. Rev., 122,
1337–1350.

Ringler, T. D., and D. A. Randall, 2002: A potential enstrophy

and energy conserving numerical scheme for solution of the

shallow-water equations on a geodesic grid. Mon. Wea. Rev.,

130, 1397–1410.

——, R. P. Heikes, and D. A. Randall, 2000: Modeling the atmo-

spheric general circulation using a spherical geodesic grid: A

new class of dynamical cores.Mon.Wea. Rev., 128, 2471–2490.

Satoh,M., T. Matsuno, H. Tomita, H.Miura, T. Nasuno, and S. Iga,

2008: Nonhydrostatic icosahedral atmospheric model (NICAM)

for global cloud resolving simulations. J. Comput. Phys., 227,
3484–3514.

Skamarock,W. C., andM.Menchaca, 2010: Conservative transport

schemes for spherical geodesic grids: High-order reconstruc-

tions for forward-in-time schemes.Mon.Wea. Rev., 138, 4497–

4508.

——, and A. Gassmann, 2011: Conservative transport schemes for

spherical geodesic grids: High-order flux operators for ODE-

based time integration. Mon. Wea. Rev., 139, 2962–2975.

——, J. B. Klemp, M. G. Duda, L. Fowler, S.-H. Park, and T. D.

Ringler, 2012: A multiscale nonhydrostatic atmospheric model

using centroidal Voronoi tesselations and C-grid staggering.

Mon. Wea. Rev., 140, 3090–3105.
Stuhne, G. R., and W. R. Peltier, 1996: Vortex erosion and amal-

gamation in a new model of large scale flow on the sphere.

J. Comput. Phys., 128, 58–81.

Thuburn, J., 1995: Dissipation and cascades to small scales in nu-

merical models using a shape-preserving advection scheme.

Mon. Wea. Rev., 123, 1888–1903.

——, 1996: Multidimensional flux-limited advection schemes.

J. Comput. Phys., 123, 74–83.
——, 1997: A PV-based shallow-water model on a hexagonal–

icosahedral grid. Mon. Wea. Rev., 125, 2328–2347.

Tomita, H., M. Tsugawa, M. Satoh, and K. Goto, 2001: Shallow

water model on a modified icosahedral geodesic grid by using

spring dynamics. J. Comput. Phys., 174, 579–613.

van Leer, B., 1977: Towards the ultimate conservative difference

scheme. IV.Anew approach to numerical convection. J. Comput.

Phys., 23, 276–299.

Weller, H., H. G. Weller, and A. Fournier, 2009: Voronoi, De-

launay, and block-structured mesh refinement for solution of

the shallow-water equations on the sphere. Mon. Wea. Rev.,

137, 4208–4224.

Williamson, D. L., J. B. Drake, J. J. Hack, R. Jakob, and P. N.

Swarztrauber, 1992: A standard test set for numerical ap-

proximations to the shallow water equations in spherical ge-

ometry. J. Comput. Phys., 102, 211–224.

Yeh, K.-S., 2007: The streamline subgrid integration method:

I. Quasi-monotonic second-order transport schemes. J. Comput.

Phys., 225, 1632–1652.

FEBRUARY 2013 M IURA AND SKAMAROCK 847


