
A Compressible Nonhydrostatic Cell-Integrated Semi-Lagrangian Semi-Implicit
Solver (CSLAM-NH) with Consistent and Conservative Transport

MAY WONG

University of British Columbia, Vancouver, British Columbia, Canada

WILLIAM C. SKAMAROCK, PETER H. LAURITZEN, AND JOSEPH B. KLEMP

National Center for Atmospheric Research,* Boulder, Colorado

ROLAND B. STULL

University of British Columbia, Vancouver, British Columbia, Canada

(Manuscript received 27 June 2013, in final form 26 September 2013)

ABSTRACT

A cell-integrated semi-Lagrangian (CISL) semi-implicit nonhydrostatic solver for the fully compressible

moist Euler equations in two-dimensional Cartesian (x–z) geometry is presented. The semi-implicit CISL

solver uses the inherently conservative semi-Lagrangian multitracer transport scheme (CSLAM) and a new

flux-form semi-implicit formulation of the continuity equation that ensures numerically consistent transport.

The flux-form semi-implicit formulation is based on a recent successful approach in a shallow-water equations

(SWE) solver (CSLAM-SW). With the new approach, the CISL semi-implicit nonhydrostatic solver

(CSLAM-NH) is able to ensure conservative and consistent transport by avoiding the need for a time-

independent mean reference state. Like its SWE counterpart, the nonhydrostatic solver presented here is

designed to be similar to typical semi-Lagrangian semi-implicit schemes, such that only a single linear

Helmholtz equation solution and a single call to CSLAM are required per time step. To demonstrate its

stability and accuracy, the solver is applied to a set of three idealized test cases: a density current (dry),

a gravity wave (dry), and a squall line (moist). A fourth test case shows that shape preservation of passive

tracers is ensured by coupling the semi-implicit CISL formulation with existing shape-preserving filters.

Results show that CSLAM-NH solutions compare well with other existing solvers for the three test cases,

and that it is shape preserving.

1. Introduction

Semi-Lagrangian semi-implicit (SLSI) schemes have

been widely used in climate and numerical weather

prediction (NWP) models since the pioneering work of

Robert (1981) and Robert et al. (1985). The more le-

nient numerical stability condition in these schemes al-

lows larger time steps and thus increased computational

efficiency. Traditional semi-Lagrangian schemes are not

inherently mass conserving because of their use of grid-

point interpolation, and the lack of conservation can lead

to accumulation of significant solution errors (Rasch and

Williamson 1990; Machenhauer and Olk 1997). To ad-

dress this issue, conservative semi-Lagrangian schemes,

also called cell-integrated semi-Lagrangian (CISL)

transport schemes (Rancic 1992; Laprise and Plante

1995; Machenhauer andOlk 1997; Zerroukat et al. 2002;

Nair andMachenhauer 2002; Lauritzen et al. 2010), have

been developed. Although CISL transport schemes,

when applied in fluid flow solvers, allow for locally (and

thus globally) conservative transport of total fluid mass

and constituent (i.e., tracer) mass, a lack of consistency

arises between the numerical representation of the total

dry air mass conservation, to which we will refer as the
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continuity equation, and constituent mass conservation

equations (J€ockel et al. 2001; Zhang et al. 2008; Wong

et al. 2013). Numerical consistency in the flux-form

equation for a tracer requires the equation for a con-

stant tracer field to correspond numerically to the mass

continuity equation; this consistency ensures that an

initially spatially uniform passive tracer field will remain

so. The lack of numerical consistency between the two

can lead to the unphysical generation or removal of

model constituent mass, which can introduce significant

errors in applications such as chemical tracer transport

(Machenhauer et al. 2009).

Recently, Wong et al. (2013) introduced a new flux-

form formulation of the semi-implicit CISL height

conservation equation for the shallow-water equations

(SWE) solver. They showed that the scheme is accurate

and stable even for highly nonlinear barotropically un-

stable jets and large Courant numbers. They also found

that the use of a shape-preserving filter in an inconsistent

formulation of the continuity equations is ineffective,

highlighting the importance of numerical consistency in

these models.

In this paper, the flux-form semi-implicit SWE for-

mulation is extended to the fully compressible two-

dimensional (x–z) moist nonhydrostatic equations for

the atmosphere. A nonhydrostatic model permits fast-

moving internal gravity and acoustic waves. Here, we

integrate the terms responsible for the acoustic waves in

a semi-implicit manner to allow large time steps while

maintaining stability for these waves. As in Wong et al.

(2013), our nonhydrostatic solver is based on CSLAM,

a CISL transport scheme developed by Lauritzen et al.

(2010) that has been implemented in the National

Center for Atmospheric Research (NCAR)High-Order

Methods Modeling Environment (HOMME; Erath

et al. 2012). We refer to this new conservative and

consistent nonhydrostatic solver that uses CSLAM for

transport as CSLAM-NH.

The semi-implicit CISL nonhydrostatic solver has

six main advantages and desirable properties. As we will

show, our nonhydrostatic cell-integrated semi-Lagrangian

solver is 1) inherently mass conserving, 2) shape pre-

serving, and, with the new formulation, 3) has numeri-

cally consistent transport. 4) The discretization does not

depend on a mean reference state, but maintains the

same framework as typical semi-implicit CISL solvers,

where 5) a single linear Helmholtz equation is solved

and 6) a single application of CSLAM is needed per time

step.

The paper is organized as follows. The governing

equations of the two-dimensional fully compressible

nonhydrostatic system are first described in section 2.

We then present the proposed discretization of the

governing equations, including a consistent formulation

of the moisture conservation equations (section 3). The

desirable properties of the nonhydrostatic solver are

discussed in section 4. We test the nonhydrostatic solver

with three idealized test cases and compare results with an

Eulerian split-explicit time-stepping scheme (section 5).

A fourth test case on numerical consistency is also pre-

sented in section 5 to demonstrate the shape-preserving

ability of the solver with additional passive tracers. A

summary is given in section 6.

2. Governing equations

Themodel governing equations are the two-dimensional

(x–z) moist Euler equations in Cartesian geometry:
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where p 5 (p/p0)
k is the Exner function, k5 Rd/cp, g 5

cp/cy 5 1.4, Rd 5 287 J kg21K21, cp 5 1003 J kg21K21,

and g 5 9.81m s22. Perturbation variables from a time-

independent hydrostatically balanced background state

are used to reduce numerical errors in the calculations of

the pressure gradient terms (Klemp et al. 2007). The

hydrostatically balanced background state is defined as

dp(z)/dz52rd(z)g. Perturbation variables are defined

as Qm 5 rd(z)u(z)1Q0
m, p5p1p0, rd 5 rd(z)1 r0d,

and the moist density rm 5 rd(1 1 qy 1 qc 1 qr), where

qy, qc, and qr are themixing ratios for water vapor, cloud,

and rainwater, respectively. The F(�) terms represent

diffusion, and any diabatic effects and parameterized

physics when moisture is present.

As in Klemp et al. (2007), fluxes are coupled to the dry

density rd. The flux variables are given as
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Qm 5 rdum and Qj 5 rdqj ,

where um is the modified potential temperature um 5
u(11 a0qy), where a0 [Ry /Rd’ 1.61 and qj5 (qy, qc, qr).

The momentum equations are cast in their advective

form, and all other equations (i.e., for density, potential

temperature, and moist species) are cast in their con-

servative flux form. Pressure is a diagnostic variable

given by the equation of state. The governing equations

are based on Klemp et al. (2007); the pressure gradient

terms in Eqs. (1) and (2) have been recast in terms ofQ0
m

using Eq. (6) to derive the relation

$p5 gRdp$Qm ,

which enables us to form an implicit equation for Q0

(section 3). The equations are still exact and no approx-

imations have been applied. The only difference from the

governing equations in Klemp et al. (2007) is that their

momentum equations are cast in the conservative flux

form, whereas the advective form is used here to facilitate

the use of the traditional semi-Lagrangian method.

3. A consistent and mass-conserving
nonhydrostatic solver

a. CSLAM—A conservative transport scheme

To ensuremass conservation, we utilize the inherently

conservative semi-Lagrangian multitracer transport

scheme (CSLAM; Lauritzen et al. 2010). The CSLAM is

a backward-in-time CISL scheme,1 where the departure

grid cell area dA* is found by tracing the regular arrival

gridcell area DA back in time one time step Dt (Fig. 1a).
The CSLAM discretization scheme for the lhs of Eqs.

(3), (4), and (5) is given by

fn11
exp DA5

ð
dA*

fn dA5fn
*dA*,

where f 5 Qm, rd, or Qj. The superscript denotes the

time level, and fn11
exp is the explicit cell-averaged trans-

port term computed by integrating the field fn over the

departure cell area dA*, which gives the cell-averaged

departure value fn
*.

The departure cell area dA* in CSLAM is found

through iterative trajectory computations from the four

vertices of an arrival grid cell (unfilled circles in Fig. 1b)

to their departure points (filled circles in Fig. 1b). The

departure cell area is then approximated using straight

lines as cell edges2 (dark gray region dA in Fig. 1b). To

integrate the field fn over dA, CSLAM implements

a remapping algorithm that consists of a piecewise

quasi-biparabolic subgridcell reconstruction of fn in the

two coordinates as inNair andMachenhauer (2002) with

an additional cross term as described in Jablonowski

(2004) that helps smooth subgrid distribution near sharp

gradients:

fn(x, z)5 hfni1 axx1bx
�
1

12
2 x2

�

1 azz1 bz
�
1

12
2 z2

�
1
1

2
(cxz 1 czx)xz , (7)

where coefficients ax, bx, az, and bz of the reconstructed

parabolic function in the two coordinates are obtained

as in Nair and Machenhauer (2002), and the cross-term

coefficients cxz and czx are obtained as in Jablonowski

(2004). An average of the two coefficients of the cross

term, cxz and czx, is taken to avoid a directional bias

(Jablonowski 2004). The cell-average value over the

Eulerian grid cell is denoted as hfni.

FIG. 1. (a) Exact departure cell area (dA*, dark gray region) and the corresponding arrival

grid cell (DA, light gray region). (b) Departure cells in CSLAM (dA) are represented as

polygons defined by the departure locations of the arrival gridcell vertices (Wong et al. 2013).

1Note that CSLAM may also be cast in flux form (Harris et al.

2011).

2Higher-order edge approximations have been explored in

Ullrich et al. (2012).
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The integration of the reconstruction function over

the departure cell area is then computed. The area in-

tegration in CSLAM is transformed into a series of line

integrals using the Gauss–Green theorem, and involves

solving for a set of weightsw(i,j) that depends only on the

departure cell boundary. As described in Lauritzen et al.

(2010), the discrete conservative transport scheme for

departure cell k is

ð
dA*

fn dA5 �
L

k

l51

"
�

i1j#2

c
(i,j)
l w

(i,j)
kl

#
,

where c
(0,0)
l , c

(1,0)
l , c

(0,1)
l , c

(2,0)
l , and c

(0,2)
l are the coeffi-

cients for the constant, x, z, x2, and z2 terms, respec-

tively; c
(1,1)
l is the coefficient for the xz term in Eq. (7);

and l is the index for the Eulerian grid cell(s) with which

departure cell k overlaps (of a total of Lk overlapping

Eulerian grid cells). The partitioning of the areal in-

tegration into computation of coefficients and weights

greatly enhances the transport scheme’s computational

efficiency formultitracer transport, as the weights can be

reused for the remapping of all tracer species in the

model. For full details on the basic CSLAM, see

Lauritzen et al. (2010); for high-resolution spherical

implementations of CSLAM, the reader is referred to

the modifications to the scheme documented in Erath

et al. (2013). A rigorous assessment of the accuracy of

linear transport using CSLAM [for the test case in

Lauritzen et al. (2012)] and a comparison of CSLAM to

a collection of state-of-the-art transport schemes can be

found in Lauritzen et al. (2013).

b. Trajectory algorithm

To find the departure cell area, we trace the vertices of

each arrival grid cell back one time step Dt using a tra-

jectory algorithmdescribed inLauritzen et al. (2006). The

trajectory is approximated and split into two segments:

departure grid point to trajectory midpoint, and trajec-

tory midpoint to arrival grid point. The split-trajectory

approximation facilitates the semi-implicit formulation of

the flux-form conservation equation (section 3d).

The displacement in the two linear segments are de-

termined using velocities at time-level n and velocities

extrapolated to time-level n 1 1, respectively. The first

segment (from the departure point position rnD to mid-

point trajectory rn11/2
D/2 ) is approximated as

rn11/2
D/2 5 rnD 1

Dt

2
vnD . (8)

We iterate Eq. (8) three times to increase the accuracy

of the computation of vnD. At each iteration, the veloci-

ties are interpolated to the estimated departure location

using bicubic Lagrange interpolation. The second seg-

ment (from midpoint trajectory rn11/2
D/2 to the arrival

point rn11) is approximated using

rn11/2
D/2 5 rn112

Dt

2
~vn11 , (9)

where ~vn11 is evaluated at the arrival grid point and

denote velocities extrapolated to time-level n 1 1 using

a two-time-level extrapolation:

~vn115 2vn 2 vn21 .

To find rnD, we take the sum of the two half-trajectories

[Eqs. (8) and (9)]:

rnD 5 rn112
Dt

2
(vnD 1 ~vn11) .

Higher-order approximations to the trajectory can be

made by including an acceleration term as described in

McGregor (1993). Tests including an acceleration term (not

shown) showed that such a higher-order approximation

made little difference to the solutions for this suite of tests.

c. Discretization of the momentum equations

The momentum equations are solved using the tradi-

tional semi-Lagrangian semi-implicit method, where

material derivatives such as du/dt 5 ›u/›t 1 u›u/›x 1
w›u/›z and dw/dt 5 ›w/›t 1 u›w/›x 1 w›w/›z [lhs of

Eqs. (1) and (2), respectively] are computed using

a gridpoint interpolation to the departure point. The two-

time-level discretizations of themomentumequations are
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where the subscriptsD,D/2, andA denote evaluation at

the departure, midpoint trajectory, and arrival grid

points, respectively, and the superscripts denote the

time level. The spatial operators are defined as

(�)x 5 1

2
[(�)i,k 1 (�)i11,k] ,

(�)z5 1

2
[(�)i,k1 (�)i,k11] ,

dx(�)5
(�)i11,k 2 (�)i,k

Dx
, and

dz(�)5
(�)i,k112 (�)i,k

Dz
.

The gradient terms responsible for the fast-moving

acoustic waves are solved implicitly with the option of

off-centering by setting b 6¼ 0. Numerical diffusion is

represented in Fu and Fw in the form of second-order

diffusion with physical viscosity n:

F
(�) 5 n[d2x(�)1 d2z(�)] .

Thebuoyancy terms in the verticalmomentumequationare

solved explicitly by extrapolating to time level n1 1/2 using

(�)n11/25
3

2
(�)n 2 1

2
(�)n21 ,

and then interpolated to the midpoint trajectory. One

way to evaluate the buoyancy term implicitly is to con-

currently update the density and pressure perturbation

variables (r0m and p0, respectively) at every iteration of
~Q0
m in the Helmholtz solver. This implicit treatment of

the buoyancy term involves updating the density per-

turbation using un11 and wn11 guesses at that iteration,

and we have yet to find a feasible way to incorporate this

in the Helmholtz solver that ensures convergence at

large time steps. The implicit treatment of the buoyancy

terms will be the scope of future work.

d. Discretization of the thermodynamic equation

In our nonhydrostatic solver, we form and solve an

implicit equation for Qn11
m . The implicit equation is

formed in two steps. First, we compute the explicit so-

lution of the flux-form thermodynamic equation using

the conservative transport scheme CSLAM:

Q̂n11
m 5Qn11

m,exp1
Dt

2
[$eul � (Qn

mv
n)2$lag � (Qn

mv
n)]

dA*

DA

1Dt[Fn
Q

m
]
dA*

DA
,

(12)

where the notation [�] denotes departure cell averages.

The first term on the rhs of Eq. (12),Qn11
m,exp, is the explicit

CSLAM update. The second term is a predictor-

corrector term integrated over the departure cell to ac-

count for the discrepancy between the discrete Eulerian

and Lagrangian flux divergences in the semi-implicit

flux-form correction term. Similarly, in FQm
, second-

order diffusion (with mixing coefficient given by n

times the Prandtl number) and the diabatic tendency

from the microphysical scheme are evaluated explicitly

and integrated over the departure cell area. Since the

predictor-corrector and the forcing terms depend only

on values at the previous time level, they can be evalu-

ated along with Qn11
m,exp in a single call to CSLAM, giving

Q̂n11
m . Then, to allow for coupling to the momentum

equations, a semi-implicit flux-form correction term is

used to form the implicit equation:

~Qn11
m 5Q̂n11

m 2
Dt

2
[$eul �(Q̂n11

m vn11)2$lag �(Q̂n11
m ~vn11)] ,

(13)

where ~Qn11
m is the value of Qm at the new time level

except for a final saturation adjustment that takes place

at the end of the time step to correct the diabatic ten-

dency using themicrophysics scheme. The new tendency

is then carried over to the next time step to be used as an

estimate of the diabatic term in Eq. (12).

The form of the semi-implicit correction term

[square-bracketed terms in Eq. (13)] stems from the

split-divergence approximation used in the trajectory

computation. The semi-implicit discretization for Qn11
m

is based on the flux-form scheme presented in Wong

et al. (2013) for the height equation in their shallow-

water equations solver. The flux-form scheme is based

on the derivation of a similar semi-implicit discretization

for the shallow-water model found in Lauritzen et al.

(2006), but the latter scheme uses a time-independent

reference state, with which it becomes difficult to ensure

numerical consistency and maintain conservative prop-

erties (discussed in section 4). Instead of using a time-

independent reference state, we form the semi-implicit

correction term using the explicit solution Q̂n11
m from

Eq. (12).

The semi-implicit correction term is defined as the

difference between an Eulerian flux divergence and

a Lagrangian flux divergence. On an Arakawa C-grid,

these would be defined as

$eul � (Qmv)5
1

Dx
[(Qm

x
u)r 2 (Qm

x
u)l]

1
1

Dz
[(Qm

z
w)t 2 (Qm

z
w)b] , (14)
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and

$lag � (Qmv)

5
1

DxDz
(Qm

xFr 2Qm

xFl 1Qm

zFt 2Qm

zFb) ,

(15)

respectively, and the F(�)s are Lagrangian flux areas,

where the subscripts r, l, t, and b denote the right, left,

top, and bottom cell faces of an Eulerian grid cell

(Fig. 2), respectively. We use an exact computation of

the Lagrangian flux divergence in an Eulerian manner,

where Lagrangian flux areas F(�) through each cell face

are defined as

Fr 5 ur
zzDz2 (uc2wc32 uc3wc2)Dt/2 ,

Fl 5 ul
zzDz2 (uc1wc42 uc4wc1)Dt/2 ,

Ft 5wt
xxDx2 (uc3wc42 uc4wc3)Dt/2 ,

Fb5wb
xxDx2 (uc2wc12 uc1wc2)Dt/2 ,

where the spatial operators are defined as

(�)xx 5 1

4
[(�)i21,k 1 2(�)i,k 1 (�)i11,k] ,

(�)zz 5 1

4
[(�)i,k211 2(�)i,k 1 (�)i,k11] .

The terms proportional toDt/2 correct for the geometric

differences between the Eulerian and Lagrangian flux di-

vergences (shaded areas in Fig. 2). [For full details on the

derivation of F and $lag � (Qmv), see Wong et al. (2013).]

Using Eqs. (14) and (15), the explicit equation for

Q̂n11
m in Eq. (12) and implicit equation for ~Qn11

m in Eq. (13)

can be rewritten as

Q̂n11
m 5Qn11

m,exp 1
Dt

2
[$eul � (Qn

mv
0n)]

dA*

DA
1Dt[Fn

Q
m

]
dA*

DA
(16)

and

~Qn11
m 5Q̂n11

m 2
Dt

2
[$eul � (Q̂n11

m v0n11
)] , (17)

respectively, where v0 is a corrective velocity and

$eul � (Qmv
0)5

1

Dx
[Q

x
m(ur 2Fr/Dz)2Q

x
m(ul 2Fl/Dz)]

1
1

Dz
[Q

z
m(wt 2Ft/Dx)2Q

z
m(wb2Fb/Dx)].

e. Helmholtz equation

The Helmholtz equation with variable coefficients for

the semi-implicit problem is solved using a conjugate-

residual solver. Substitution of the momentum equa-

tions in Eqs. (10) and (11) into Eq. (17) forms the

Helmholtz equation for ~Q0n11
m :

2

�
Dt

2

�2

gRd(11b) dx

0
B@Q̂n11

m

pn

rnm

x

dx
~Q0n11
m

1
CA1 dz

0
B@Q̂n11

m

pn

rnm

z

dz
~Q0n11
m

1
CA
3
751 ~Q0n11

m

2
64

5RQ 2
Dt

2
(11b) dx Q̂n11

m

x
Ru

� �
1 dz Q̂n11

m

z
Rw

� �h i
. (18)

FIG. 2. Geometric representation of the Lagrangian flux

divergence, defined as the flux-area difference between the

Eulerian arrival grid cell (solid square) and the departure cell

(dashed polygon) in one time step. Velocities associated with the

Eulerian grid cell at the cell faces (ul, ur, wt, wb) and cell vertices

(uc, wc)i for i 5 1, 2, 3, 4 are also shown. White arrows at the four

corners indicate the computed trajectories of each departure

gridcell vertex.
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The terms Ru, Rw, and RQ represent the known terms in

Eqs. (10), (11), and (17), respectively. The explicit solution

Q̂n11
m from CSLAM is computed prior to solving Eq. (18).

Using the explicit solution Q̂n11
m allows for a straight-

forward and consistent formulation between the ther-

modynamic and continuity equations, as long as the

reconstruction of Qm is performed in a consistent man-

ner. To ensure this, in CSLAM we follow Nair and

Lauritzen (2010) in separating the subgridcell recon-

structions for rd and um, and compute the second-order

reconstruction function Qm(x, z) as

Qm(x, z)5 hrdium(x, z)1 humi[rd(x, z)2 hrdi] , (19)

where hrdi and humi are Eulerian gridcell values, and

rd(x, z) and um(x, z) are reconstruction functions, re-

spectively. To check for consistency, we substitute a field

of constant um [i.e., um (x, z)5 humi5 1] in Eq. (19) and

see that the rhs of Eq. (19) properly reduces to rd (x, z).

In summary, the solution procedure for obtaining

solutions for ~Q0n11
m , un11, and wn11, is as follows:

(i) obtain solution for ~Q0n11
m by solving the Helmholtz

equation in Eq. (18); (ii) substitute solution for ~Q0n11
m

into Eqs. (10) and (11) to obtain solutions for un11 and

wn11, respectively; and (iii) recalculate ~Q0n11
m using un11

and wn11 to eliminate any roundoff errors. This solution

procedure is similar to that used inWong et al. (2013) for

the shallow-water equations.

f. Discretization of the continuity equation

We ensure that the flux-form thermodynamic equa-

tion is consistent with the continuity equation by using

the same numerical scheme, with the inclusion of the

semi-implicit correction terms in the continuity equa-

tion. Again, we first use CSLAM to obtain the explicit

solution r̂n11
d in a similar manner as in Eq. (16):

r̂n11
d 5 rn11

d,exp 1
Dt

2
[$eul � (rndv0n)]

dA*

DA
. (20)

Then, we add the semi-implicit correction term to

Eq. (20) to be consistent with Eq. (17):

rn11
d 5 r̂n11

d 2
Dt

2
[$eul � (r̂n11

d v0n11
)] . (21)

The new time-level correction term is evaluated by back-

substituting the solution of the velocity field vn11 into v0n11.

g. Discretization of moisture conservation equations

The flux variables of mixing ratios of water vapor

qy, cloud water qc, and rainwater qr are included as

prognostic variables in the nonhydrostatic solver. Moist

mass conservation equations are integrated using CSLAM.

To ensure moisture conservation, numerical consistency

between the continuity equation and the moisture con-

servation equations needs to be ensured. Numerical in-

consistency between the continuity equation and other

scalar conservation equations can lead to spurious gen-

eration or removal of scalar mass, despite using in-

herently mass-conserving advection schemes.

A consistent formulation of themoisture conservation

equations using the scheme inWong et al. (2013) for the

flux variables Qj 5 rdqj, where qj 5 (qy, qc, qr) is

Q̂n11
j 5Qn11

j,exp 1
Dt

2
[$eul � (Qn

j v
0n)]

dA*

DA

1Dt[Fn
q
j
]
dA*

DA
and (22)

~Qn11
j 5 Q̂n11

j 2
Dt

2
[$eul � (Q̂n11

j v0n11
)] , (23)

where v0n, v0n11, and the computations for $eul � (�) are
the same as in Eq. (21). The explicit CSLAM solution

Q̂n11
j [Eq. (22)] is computed using a consistent recon-

struction as in Eq. (19). The quantity Fqj represents

second-order diffusion with a mixing coefficient same

as that for Qm and any diabatic tendencies from the

microphysics.

h. Diabatic processes

Microphysical processes are modeled using the simple

warm-rain Kessler parameterization, as described in

Klemp and Wilhelmson (1978). In the evaluation of the

thermodynamic and moisture conservation equations,

the diabatic forcing is approximated in FQm
and FQj

[Eqs. (16) and (22), respectively] using the most up-to-

date values integrated over the departure cell. These

values are then removed from the solutions prior to

calling the Kessler microphysics scheme. The included

microphysical processes are 1) condensation of water

vapor into cloud water, 2) autoconversion by diffusion

and collection of cloud water into rainwater, 3) evapo-

ration of cloud water and rain, and 4) precipitation of

rain, which is removed when it reaches the surface.

These microphysical processes are computed as a final

adjustment at the end of the time step, advancing ~Qn11
m

and ~Qn11
j toQn11

m andQn11
j in amanner that is consistent

with saturation conditions at the new time level.

i. Diagnostic equation of state

Pressure is a diagnostic variable computed using the

equation of state in Eq. (6):

p5 p0

�
RdQm

p0

�g

,

where p0 is the reference surface pressure set to 100 kPa.
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j. Consistency and shape preservation

In the CSLAM reconstruction step, we reconstructQj

using Eq. (19) described in section 3e to ensure consis-

tency. To ensure shape preservation, we follow the two

steps as described inWong et al. (2013). First, we use the

simple 2D filter by Barth and Jespersen (1989) that

searches for new local minima and maxima in the re-

construction function of a scalar field such as moisture

mixing ratio qj, and scales the function if these values

exceed those in the neighboring cell. For chemistry ap-

plications, preservation of linear correlations in tracers

is important, and it has been found that the limiter

preserves linear correlations between tracers, whereas

typically linear correlation is only preserved when the

limiter is not applied. Second, to ensure shape preser-

vation in the flux-divergence terms, we compute the

upwind moist species mixing ratio qj* by first decoupling

Qj from rd. Then, the flux divergences are computed by

centering density to each of the cell faces:

$eul � rdqjv05
1

Dx
[(r x

dqj*u
0)r 2 (rxdqj*u

0)l]

1
1

Dz
[(rzdqj*w

0)t 2 (rzdqj*w
0)b] .

The upwind q
j
* values are determined using v0.

4. Desirable properties of CSLAM-NH

The flux-form nonhydrostatic semi-implicit CISL solver

CSLAM-NH has six main advantages and desirable

properties: (i) is inherently mass conserving using the

conservative semi-Lagrangian transport scheme CSLAM,

(ii) ensures numerically consistent transport, (iii) is inde-

pendent of a mean reference state, (iv) is shape preserving,

and (v) like typical semi-implicit solvers, CSLAM-NH

requires solving a single linear Helmholtz equation and

(vi) a single application of CSLAM at each time step.

CSLAM-NH uses a formulation of the discretized

continuity equation that ensures numerical consistency

for a CISL solver. In CSLAM-NH, a Helmholtz equa-

tion for the potential temperature perturbation is solved.

Traditionally, to avoid solving a nonlinear Helmholtz

equation, the flux divergence term that is coupled to the

momentum equations is often first linearized around a

mean reference state Qm,ref:

Qn11
m 5Qn11

m,exp 2
Dt

2
[$eul � (Qm,refv

0n11
)]

1
Dt

2
[$eul � (Qm,refv

0n)]
dA*

DA
1Dt[Fn

Q
m
]
dA*

DA
,

(24)

where Qm,ref is a mean reference state that is often time

independent and varies with height. A choice of refer-

ence state can be the hydrostatic background state rdu.

The scheme in Eq. (24) is a nonhydrostatic extension to

the SWE semi-implicit CISL continuity equation in

Lauritzen et al. (2006).

To ensure conservation of potential temperature, it is

important for the discrete thermodynamic equation to

be numerically consistent with the discrete continuity

equation. A discretized continuity equation numerically

consistent with Eq. (24) is

rn11
d 5 rn11

d,exp 2
Dt

2
[$eul � (rd,refv0

n11
)]

1
Dt

2
[$eul � (rd,refv0n)]

dA*

DA
. (25)

Transported material, such as moisture and passive

tracers with some mixing ratio q, are often solved ex-

plicitly using the CISL transport scheme:

fn115fn11
exp 1Dt[Fn

f]
dA*

DA
, (26)

where f 5 rdq is the scalar mass and [Fn
f] represents

diffusion and any diabatic tendency evaluated at time

level n over the departure cell. Such explicit schemes

would lead to numerical inconsistency between the

discrete CISL continuity equation in Eq. (25) and the

discrete constituentmass conservation equations such as

in Eq. (26). If the discrete conservation equation is

consistent with the discrete continuity equation, the

former should reduce to the latter when q is a constant,

and an initially spatially uniform passive tracer field

should remain so. The inconsistent flux-divergence

correction term in Eq. (25) can spuriously generate or

remove moisture or tracer mass in the model.

Alternatively, one can formulate the discrete scalar

conservation equation in a manner consistent with Eq.

(25) by including the flux-divergence correction terms:

fn115fn11
exp 2

Dt

2
[$eul � (frefv

0n11
)]

1
Dt

2
[$eul � (frefv

0n)]
dA*

DA
1Dt[Fn

f]
dA*

DA
. (27)

However, determining an appropriate choice for refer-

ence state fref is difficult, making a numerically consis-

tent formulation such as in Eq. (27) hard to implement.

The formulations we present for the thermodynamic,

density, and moisture conservation equations [Eqs. (17),

(21), and (23), respectively] are all numerically consis-

tent with one another. These consistent formulations are

1676 MONTHLY WEATHER REV IEW VOLUME 142



made possible by avoiding the use of a mean reference

state. In our formulation, we use the explicit CSLAM

solution instead of a mean reference state in the flux-

divergence correction terms. This approach eliminates

the difficult choice of a mean reference state fref for

moisture or tracer mass.

Even if an appropriate choice of fref can be found,

using a time-independentmean reference state in Eq. (27)

can be problematic for regions with little moisture or

tracer mass (f̂n11 � 1). Depending on the magnitude

of fref, the flux divergences are likely nonzero for

a divergent flow and can, therefore, generate or remove

unphysical mass (Lauritzen et al. 2008). In the non-

hydrostatic solver presented here, by computing the flux

divergences of the explicit solution f̂n11, the magnitude

of the flux divergences are better approximated for re-

gions with little moisture or tracer mass.

As scalar mass conservation is not guaranteed in an

inconsistent solver, these solvers also generally do not

preserve the shape of scalar fields such as mixing ratios,

even when shape-preserving filters are applied to the

transport scheme. The implications are that the scalar

field may no longer be positive-definite, and new

unphysical minima and maxima can occur because of

under- and overshooting, respectively. The consistent

and shape-preserving transport in the proposed solver

ensures that no new (unphysical) minimum and maxi-

mum (within machine roundoff) will occur.

5. Idealized test cases

Two of the three idealized test cases presented—

namely, a density current simulation and a gravity wave

simulation—are commonly used as benchmarks for

testing nonhydrostatic solvers. The third idealized test

case is a 2D squall-line simulation, where the stability of

the model is tested with latent heating modeled by

a simple warm-rain microphysics scheme. In addition to

comparing with available solutions in the literature,

comparisons with an Eulerian split-explicit model with

second-order advection are also presented.

a. Density current

The nonlinear density current test case, described in

Straka et al. (1992), is widely used as a benchmark test

for nonhydrostatic solvers (e.g., Klemp et al. 2007; Xue

et al. 2000). An initial cold temperature perturbation is

centered in the domain, and the negatively buoyant cold

air descends to the surface and forms symmetric density

currents propagating in opposite directions. Straka et al.

(1992) provides a well-documented comparison among

various compressible and quasi-compressible solvers as

well as a high-resolution benchmark solution.

The numerical domain is centered at x5 0.0 km, with

225.6# x# 25.6 km and 0# z# 6.4 km.As described in

Straka et al. (1992), the initial condition is given by

a temperature perturbation DT:

DT5

�
0:08C, if L$ 1:0

215:08C[cos(pL)1 1:0]/2, if L, 1:0 and

L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
[(x2 xc)/xr]

21 [(z2 zc)/zr]
2

q
,

where (xc, zc) 5 (0.0, 3.0) km is the center of the per-

turbation, and its width and depth are given by xr 5
4.0 km and zr 5 2.0 km. The surface temperature u0 is at

300K in a horizontally homogeneous and neutral envi-

ronment. A constant physical viscosity of 75m2 s21 is

used. The domain is an x-periodic channel with reflec-

tive boundary conditions along the upper and lower

boundaries as specified by Straka et al. (1992) that re-

quire ›u/›z 5 w 5 ›r/›z 5 ›Q/›z 5 0.

Following Straka et al. (1992), we simulate the density

current test case using grid spacings Dx5Dz5 400, 200,

100, 50, and 25m, with Eulerian time step sizes ofDt5 4,

2, 1, 0.5, and 0.25 s, respectively. Figure 3 shows the

potential temperature perturbation (u0) from its mean

state from CSLAM-NH and the Eulerian split-explicit

scheme with second-order advection at the simulation

end time of 15min using different model resolutions.

The density current is clearly underresolved using

a 400-m grid spacing, with only the main rotor margin-

ally resolved (7 # x # 9 km). A grid spacing of 200m

gives a better resolution of the main rotor as well as

a second rotor (11 # x # 12 km); however, the leading

third rotor is still underresolved. For resolutions finer

than Dx5 Dz5 100m, all three rotors are well resolved

with the solutions converging and indistinguishable by

eye between 50- and 25-m grid spacings. The differences

among the model resolutions agree well with those

documented in other nonhydrostatic solvers such as in

Straka et al. (1992), Xue et al. (2000), Skamarock and

Klemp (2008), and Melvin et al. (2010).

Positions of the density current front (specified to be

at u0 5 21K), the minimum and maximum u0 values in
the domain, andSu0sampled for all u

0
sampled and u0sampled . 0,

andSu02sampled are shown in Table 1.We also compare the

results with those from the nonhydrostatic vertical-slice

solver that uses the Semi-Lagrangian Inherently Con-

serving and Efficient (SLICE) scheme (Table II of

Melvin et al. 2010) and the 25-m fully compressible

Eulerian reference (REFC25) model in Straka et al.

(1992) (Table IV of Straka et al. 1992). In comput-

ing the summation statistics, u0sampled from each of the
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CSLAM-NH runs (except for the 400-m grid-spacing

run) are sampled at 200-m resolution. This sampling is

done so that we can make a direct comparison with the

statistics of REFC25 in Straka et al. (1992) (where they

sampled REFC25 at 200-m resolution). Statistics from

the 25-m solution agree closely with the nonhydrostatic

SLICE model, with a similar slight discrepancy in the

density front location when compared to REFC25. Both

CSLAM-NH and SLICE are semi-Lagrangian models

with inherent dissipation and order of accuracy different

from REFC25, an Eulerian compressible solver with

second-order advection; these differences could lead to

the slight discrepancy in the density front locations. In

addition to model differences, like the SLICE model,

a different time step size is used to compute the 25-m

solution (16 times larger than that used to compute

REFC25). At coarser resolutions (400 and 200m), the

minimum u0 values are colder than those in SLICE;

therefore, the front locations also traveled farther out

from the center line.Analytically, themaximum u0 should

FIG. 3. Potential temperature perturbation (K) after 15min for (left) CSLAM-NH and (right) the Eulerian split-

explicit scheme for (from top to bottom) Dx 5 Dz 5 400, 200, 100, 50, and 25m. Contour intervals are every 1K,

starting at 0.5K. Mean wind U5 0m s21.
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remain zero throughout the simulation, as is the case in

the higher-resolution runs (50 and 25m). The contribu-

tion of positive u0 values inSu0sampled is also small at these

resolutions (in the order of 1 3 1025K and 1 3 1028K,

respectively), increasing up to the order of 13 1021K at

200m. [Straka et al. (1992) only reported values up to

four decimal points.]

For the next simulation, a mean background wind of

U5 20m s21 is applied to the described test case, as is

done in Skamarock and Klemp (2008) to examine phase

errors. Solutions from CSLAM-NH and the Eulerian

split-explicit second-order advection scheme of both

the left- and right-moving currents at time 15min using

Dx5 Dz5 200, 100, and 50m are shown in Fig. 4. Time

step sizes are the same as in Fig. 3. The solutions from

CSLAM-NH in general show proper symmetry about

the translating centerline, although very subtle differ-

ences between the secondary rotors in the left- and right-

moving currents are noticeable at 200- and 100-m grid

spacing. As a comparison, the Eulerian split-explicit

second-order advection scheme shows noticeably larger

errors in the right-moving current as expected because

of the right-moving current moving at a greater speed

than the other (causing larger advective phase errors).

For this test case, we found that the maximum stable

time step size in CSLAM-NH is double of that of the

Eulerian scheme. Figure 5 shows solutions for tests

whereU5 0m s21 at Dx5 Dz5 100m using a time step

size of 3 and 4 s, whereas the maximum stable Eulerian

time step size is Dt5 2 s. The solution using a large time

step of 4 s is almost indistinguishable by eye from the

25-m high-resolution solutions (Fig. 3). With mean ad-

vection (U5 20m s21), the maximum stable time step in

CSLAM-NH is 3 s. As we increase the time step size to

4 s, the phase error was large enough to form unphysi-

cally steep gradients at the leading edge of the right-

moving current, which then caused the violation of the

Lipschitz stability condition. The maximum stable time

TABLE 1. Statistics for the density current simulations at time 15min using CSLAM-NH at various grid resolutions and time steps.

Comparison values from the nonhydrostatic x–z solver using SLICE in Melvin et al. (2010) are also presented. REFC25 are values taken

from Straka et al. (1992). The u0sampled are solutions sampled at 200m for comparison with values in Straka et al. (1992).

Dx 5 Dz (m) Dt (s) u0min (K) u0max (K) Front location (m) Su0sampled (K) Su0sampled (for u0 . 0) (K) Su02sampled (K2)

400 4 210.339 0.6804 14 248 — — —

200 2 210.746 0.0846 14 938 21293.82 4.4398 3 1021 5634.92

100 1 29.7694 0.0006 15 234 21361.41 1.8114 3 1024 6127.90

100 4 29.6985 0.0053 15 256 21360.73 6.7741 3 1023 6182.03

50 0.5 29.7078 0.0000 15 360 21394.93 2.0562 3 1025 6395.63

25 0.25 29.7323 0.0000 15 391 21411.62 3.2974 3 1028 6516.33

SLICE400 4 25.6608 0.3674 13 572 — — —

SLICE200 2 28.0958 0.1226 14 768 — — —

SLICE100 1 29.8574 0.0995 15 182 — — —

SLICE50 0.5 29.4995 0.0626 15 334 — — —

SLICE25 0.25 29.6548 0.0048 15 390 — — —

REFC25 0.015 625 29.7738 0.0000 15 537 21427.10 0.0000 6613.62

FIG. 4. As in Fig. 3, but for (from top to bottom) Dx 5 Dz 5 200, 100, and 50m and a mean wind U5 20m s21.
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step in the Eulerian model is 1.5 s. Using a time step size

of 5 s, instability was observed in the vicinity of the

leading edge of the subsiding cold air for both cases with

and without the mean wind.

b. Gravity wave

A second test case of a gravity wave in a periodic

channel with solid, free-slip upper- and lower-boundary

conditions is used to evaluate the nonhydrostatic solver.

The test case is described in Skamarock and Klemp

(1994), where they presented results for a Boussinesq

atmosphere. The test case is characterized by an initial

potential temperature perturbation of amplitude Du0:

u(x, z, t5 0)5Du0
sin(pz/H)

11 (x2 xc)
2/a2

,

where Du0 5 1022K, a 5 5km is the half-width of the

initial perturbation, H 5 10 km is the total depth of the

domain, and xc5 0.25L, whereL5300 km is the length of

the domain. The background atmospheric stratification

has a constant Brunt–V€ais€ala frequency N 5 1022 s21.

For one simulation, no mean wind (U5 0) is prescribed.

The other simulation uses a mean wind of U5 20m s21,

advecting the solution to the right while the two gravity

wave modes propagate in opposite directions. Again, the

mean advection of the solution accentuates any advective

phase speed errors in the scheme. The boundary condi-

tion is implemented by linear extrapolating u, Q, and

r values into the boundary, consistent with the free-slip

boundary conditions, and setting w 5 0.

We run the gravity wave test case at grid spacings

Dx 5 Dz 5 1 km, 500m, and 250m using Eulerian time

step sizes Dt5 12, 6, and 3 s, respectively. Solutions from

CSLAM-NH at the three resolutions for U5 0 (not

shown) are indistinguishable by eye from the 250- and

500-m solutions for U5 20m s21 in Fig. 6 and compare

well with those using the Advanced Research Weather

Research and Forecasting Model (ARW-WRF; solu-

tions using the fifth- and sixth-order advection scheme are

available online at http://www.mmm.ucar.edu/projects/

srnwp_tests/IG_waves/ig_wave.html), with the second-

order advection scheme of the sameEulerian split-explicit

scheme (not shown), and with the SLICE nonhydrostatic

vertical model inMelvin et al. (2010). In Skamarock and

Klemp (1994), the solution presented for this non-

hydrostatic test case uses a Boussinesqmodel, where the

symmetry of the analytic Boussinesq solution in both

x and z is maintained. The density variation in the full

Euler equations results in solutions that are asymmet-

ric in z, as observed in the CSLAM-NH solutions, the

second-order Eulerian solutions, the fifth-order Eulerian

solutions, as well as the SLICE nonhydrostatic vertical

model solutions.

Like in the density current test, we impose a mean

advection wind U5 20m s21 to examine phase errors.

These tests are made at the same grid spacings and time

step sizes as in the no mean wind case. The right- and

left-moving waves from CSLAM-NH exhibit nearly

perfect symmetry, indicating there is minimal phase

error in the solutions. The Eulerian split-explicit second-

order advection scheme shows more noticeable phase

errors (Fig. 6).

Testing of CSLAM-NH using larger time steps in this

gravity wave test case reveals a numerical stability con-

dition that is sensitive to the stratification N. (We note

that CSLAM-NH is unconditionally stable forN5 0, i.e.,

for a near-pure advection case of the initial warm per-

turbation.) Figure 7 shows the instability forN5 0.01 s21

with and without a mean wind imposed. We further

evaluate the maximum stable CSLAM-NH time step size

for the gravity wave case with the mean advection wind

speed of U5 20m s21 (Dx5 Dz5 1km) over a range of

N (0.01, 0.015, and 0.02 s21). Since the gravity wave phase

speed varies withN, we increase/decrease the simulation

time length as appropriate such that the gravity wave

solutions are similar to those shown in Fig. 6; for example,

forN5 0.015 s21, the simulation time is reduced to 2000 s.

Test results showed that the maximum stable CSLAM-

NH time step sizes are Dtmax 5 38, 35, and 32 s for N 5
0.01, 0.015, and 0.02 s21, respectively, whereas in the case

of the Eulerian split-explicit scheme, the maximum

stable large time steps are found to be Dt 5 60, 55, and

50 s (with small time step size of 2.4 s), respectively,

FIG. 5. Potential temperature perturbation (K) from CSLAM-

NH after 15min for grid spacing Dx 5 Dz 5 100m using time step

sizes Dt 5 (top) 3 and (bottom) 4 s. Mean wind U5 0m s21. The

Eulerian split-explicit scheme (not plotted) was numerically un-

stable for these time steps, as it required Dt # 2 s for numerical

stability of this gravity current. Contoured as in Fig. 3.
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limited by the stability condition of the advection scheme.

The buoyancy terms in the vertical momentum equation

are integrated explicitly in CSLAM-NH, and handled

implicitly in the Eulerian scheme. When we remove the

buoyancy terms from the implicit step and solve them

explicitly in the Eulerian model, the time step sizes re-

quired to obtain solutions of similar accuracy as those

from the vertically implicit model are reduced by 20%–

35%, and are closer to those found in CSLAM-NH. The

devising of an integration scheme that handles the

buoyancy terms implicitly in CSLAM-NH will require

a robust and stable way of updating the density pertur-

bation in the Helmholtz solver, and this will be ad-

dressed in future work.

c. 2D (x–z) squall line

We perform a test case of a 2D squall line as described

in Weisman and Klemp (1982) to evaluate mass

conservation, consistency, and shape-preservation in the

nonhydrostatic solver, in addition to testing for any

small-scale computational instability in themodel due to

latent heating.

The numerical domain is centered at x 5 0.0 km,

with 2100 # x # 100 km and 0 # z # 20 km. As in

Weisman and Klemp (1982), a conditionally unsta-

ble thermodynamic profile is used to initialize the

horizontally homogeneous environment. Constant

physical horizontal and vertical eddy viscosities of

250m2 s21 are used. A warm thermal perturbation

near the surface is prescribed to initiate convection

(Weisman et al. 1988). The initial thermal perturbation

has a maximum of Du0 5 3K, centered at zc 5 1.5 km

and along the center line (xc 5 0) of the domain, with

a horizontal radius xr of 10 km and a vertical radius zr of

1.5 km. The shape of the perturbation is a cosine hill

given as

FIG. 6. Potential temperature perturbation (K) after 50min for (left) CSLAM-NH and (right) the Eulerian split-explicit scheme for

(from top to bottom) Dx5 Dz5 1000, 500, and 250m. Contour interval is 53 1024K (zero contour line not plotted). Solid lines indicate

positive contours and dashed lines indicate negative contours. Solution is translated using a mean windU5 20m s21. Horizontal axis has

also been translated with the mean wind so the line of symmetry remains at x 5 0.
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u(x, z, t5 0)5

�
Du0 cos

2(pL/2) , L, 1:0

0, L$ 1:0 and

L5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(x/xr)

21 [(z2 zc)/zr]
2

q
.

A weak vertical wind shear within a 2.5-km layer at

the surface is used to promote the growth of the squall

line. The initial wind profile is given as

u(z, t5 0)5

(
u � (z/zts)2 us , z, zts
u2 us , z$ zts ,

where u5 12 m s21, us 5 10m s21, and zts 5 2.5 km. The

environmental potential temperature and relative hu-

midity profiles at the initial time are

u(z, t5 0)5

u01 (utr 2 u0)(z/ztr)
5/4, z# ztr

utr exp
g

cpTtr

(z2 ztr)

#
, z. ztr

"
8>>><
>>>:

and

RH(z, t5 0)5
12

3

4
(z/ztr)

5/4 , z# ztr

0:25, z. ztr ,

8><
>:

where utr5 343K, ztr5 12.0 km, and Ttr5 213K are the

potential temperature, geometric height, and actual

temperature at the tropopause, respectively. The maxi-

mum water mixing ratio is capped at 14 g kg21. The

surface potential temperature u0 5 300K. The skew

FIG. 7. Potential temperature perturbation (K) solutions of the gravity wave case using increasingly large CSLAM-NH time steps (Dx5
Dz5 1 km)where (a)–(c)U5 0m s21 with (from top to bottom)Dt5 60–100 s and (d)–(f)U5 20m s21 with (from top to bottom)Dt5 24–

40 s. Contoured as in Fig. 6.
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T–logp diagram for this sounding can be found in Fig. 1

of Weisman and Klemp (1982). Numerical simulations

(unless otherwise stated) use a grid spacing Dx 5 Dz 5
500m, a time step Dt 5 5 s, and a time-off-centering

parameter of b 5 0.1 to maintain numerical stability.

Like the gravity case, the boundary condition is im-

plemented by linear extrapolating u,Q, and r values into

the boundary and settingw5 0, consistent with the free-

slip boundary conditions.

A comparison of the squall-line development among

CSLAM-NH (with shape preservation), the fifth-

order split-explicit, and the second-order split-explicit

Eulerian models is presented in Fig. 8. Instantaneous and

accumulated surface precipitation integrated across the

model domain are presented in Fig. 9; also shown is the

rate of condensation over the entire domain. Maximum

updraft velocity is shown in Fig. 10. The series of updraft

velocity peaks highlight the continuous triggering of new

convective systems along the advancing front.

All three models (CSLAM-NH, Eulerian fifth-order

advection, and Eulerian second-order advection) show

similar development of the convective system (Fig. 8).

At 0.6h, all three models show an initial downshear ori-

entation of the system due to the ambient wind shear.

As the storm continues to develop with the cold pool

strengthening behind the system (not shown), convergence

FIG. 8. Vertical cross sections of vertical velocity (color shading; m s21) and solid contours of the convective cloud structure (qc 5
0.1 g kg21) at times (from top to bottom) T5 0.6, 0.8, 1.3, and 1.7 h of the simulation for the 500-m grid-spacing runs with a Dt5 5.0 s from

(left) CSLAM-NH, (middle) fifth-order split-explicit Eulerian model, and (right) second-order split-explicit Eulerian model.
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and enhanced uplift lead to the storm tilting in a near-

upright position (T 5 0.8 h). At 1.3 h, a new cell is trig-

gered near the edge of the cold pool, where uplift of the

warm moist air in the boundary layer is enhanced. At

1.7 h, the cold pool is strong enough to generate a circu-

lation such that the system develops an upshear orienta-

tion, as described in Rotunno et al. (1988). Comparing to

the simulations from the Eulerian second-order model,

those from CSLAM-NH show closer resemblance to

those from the Eulerian fifth-order model. The better

agreement is also evident in the moisture statistics

(Fig. 9), especially in the accumulated surface precip-

itation amounts and condensation rate in the domain.

Focusing on the two models that show more compa-

rable results, the first maximum updraft velocities from

CSLAM-NH (34.1m s21) is slightly greater than that

fromEulerian fifth-order advection (31.6m s21) (Fig. 10).

CSLAM-NH appears to show a weaker second peak

updraft velocity (21.9m s21) than the Eulerian fifth-

order model (28.3m s21); however, the stronger first

peak (;34m s21) and weaker second peak (;25m s21)

are also observed in a higher-resolution simulation

using the Eulerian fifth-order model at a grid spacing of

250m and large time step size of 2.5 s (dashed black line

in Fig. 10). For comparison, maximum updraft from

CSLAM-NH at Dx 5 250m and Dt 5 2.5 s (red dashed

line in Fig. 10) is also shown, and at the higher resolution,

the two models agree very well with each other.

The maximum stable time step in the Eulerian split-

explicit fifth-order advection scheme is a large time step

of 20 s and acoustic time step size of 1.25 s. The maxi-

mum CSLAM-NH stable time step is limited to 15 s

because of the violation of the Lipschitz stability con-

dition in the vicinity of the updraft when a larger time

step is used (the instability occurs when the storm rea-

ches its first maximum vertical updraft, which generates

a strong horizontal wind shear between the updraft and

the neighboring downdraft). In Fig. 11, we see at larger

time step sizes, maximum updraft velocities remain

close to the small time-step solutions.

With the 2D squall-line test case, we examine the

shape-preservation properties of CSLAM-NH using the

shape-preserving scheme by Barth and Jespersen (1989)

in the CSLAM transport scheme and the upwind scheme

for the flux-correction terms in the transport equations.

An analogous implementation of these schemes for

a shallow-water model is described inWong et al. (2013).

To verify that consistency is achieved, an additional

passive tracer with mixing ratio r is introduced into

the model. The passive tracer initially has a constant

mixing ratio of r05 1.0 g kg21 andwe form the discretized

FIG. 9. Moisture statistics for (top) surface precipitation rate

(kg s21), (middle) accumulated surface precipitation (kg), and

(bottom) condensation rate (kg s21) from the microphysics using

CSLAM-NH, Eulerian fifth-order horizontal advection, and Eu-

lerian second-order horizontal advection at Dx 5 Dz 5 500m.

FIG. 10. Updraft intensities using CSLAM-NH (red) and

Eulerian fifth-order horizontal advection (black) atDx5Dz5 500m

and Dt 5 5 s (solid), and Dx 5 Dz 5 250m and Dt 5 2.5 s (dashed).
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conservation equation as in Eq. (23). The minimum

and maximum values of r are maintained at 1.0 gkg21 (up

to machine round-off of order 10214) throughout the sim-

ulation using the consistent formulation in CSLAM-NH.

For a passive tracer that uses an inconsistent discrete

conservation equation such as in Eq. (26), unphysical

minima and maxima of the passive tracer mixing ratio

are generated (Fig. 12). At the end of the squall line

simulation at 2 h, the minimum and maximum mixing

ratios r are 0.986 and 1.021 g kg21, respectively (i.e., the

error is on the order of 1 part in 100). We note that the

shape-preserving limiter described in Barth and Jespersen

(1989) was also applied in CSLAM in this test. Because

of numerical inconsistency, however, the limiter becomes

ineffective agreeing with the results inWong et al. (2013).

This discrepancy from constancy highlights the im-

portance of ensuring numerical consistency to properly

maintain conservation of moisture and tracer mass in

a semi-implicit CISL solver.

6. Summary

A new cell-integrated semi-Lagrangian (CISL) non-

hydrostatic atmospheric solver, CSLAM-NH, for the

moist Euler equations is introduced in this paper. The

two-dimensional (x–z) Cartesian nonhydrostatic solver

uses a CISL transport scheme, CSLAM, for conserva-

tive transport. It also incorporates a new approach to

ensure numerical consistency among the CISL continuity

FIG. 11. Timing and intensity of the maximum vertical updraft

usingDx5Dz5 500m at different CSLAM-NH time step sizes (solid

lines), as compared to the Eulerian fifth-order horizontal advection

vertical velocity (dashed lines). (Only the first hour is plotted.)

FIG. 12. Mixing ratio errors (g kg21) due to numerical inconsistency associated with Eq. (26) for times T5 0.6, 0.8,

1.3, and 1.7 h. The passive tracer is initialized with a uniform mixing ratio field of 1.0 g kg21. The consistent for-

mulation in CSLAM-NH [which does not use Eq. (26)] ensures mixing ratio constancy of the same passive tracer up

to machine round-off of order 10214 (not shown).
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equation and the conservation equations for potential

temperature, moisture species, and passive tracers. A

semi-implicit time integration scheme is used to stably

handle the fast-moving acoustic waves in the compress-

ible system.

Based on a recently tested shallow-water equations

solver, the extended nonhydrostatic atmospheric solver

presented here, CSLAM-NH, possesses a number of

features ideal for weather and climate modeling pur-

poses. The solver

1) is inherently mass conserving through the use of

a conservative transport scheme CSLAM,

2) ensures numerical consistency between the continu-

ity equation and other scalar mass conservation equa-

tions (the lack of which may lead to violation of scalar

mass conservation),

3) does not depend on a mean reference state,

4) can be easily implemented with existing shape-

preserving filters to ensure shape preservation of

scalar fields,

5) requires a single linear Helmholtz equation solution

(as in typical semi-implicit solvers) per time step, and

6) requires a single application of CSLAM per time

step.

Here, we tested the nonhydrostatic extension for

three idealized test cases: a density current, a gravity

wave, and a squall line. To represent microphysical

processes in the squall-line test, the Kessler warm-rain

microphysics parameterization scheme is coupled to the

dynamics. The 2D solver currently does not admit flow

in the y direction, and therefore, Coriolis terms are ne-

glected; however, the tests we present allow for suffi-

cient testing of typical meteorological flows. Results

comparewell with other existingEulerian (such asARW-

WRF) and nonhydrostatic CISL solvers (such as the

nonhydrostatic SLICEmodel). In the density current and

gravity wave tests, we see that CSLAM-NH allows for

stable time steps 2 times larger than that in an Eulerian

model. In the highly nonhydrostatic flow of the squall-

line test case, the maximum stable time step size is of

similar magnitude as the Eulerian split-explicit model.

The strong wind shear across the storm updraft imposes

a time step limit in CSLAM-NH due to the Lipschitz

stability condition (violation of which leads to the cross-

ing of trajectories).

Plans to extend the nonhydrostatic solver to include

orographic influences are also under way. This work

involves transformation of the nonhydrostatic equations

into a terrain-following height coordinate. In traditional

semi-Lagrangian semi-implicit solvers, flow over to-

pography has been found to trigger spurious resonances

and time off-centering in the implicit scheme has been

found to eliminate these noises. Thus far, without orog-

raphy, we have found that our nonhydrostatic solver only

requires time off-centering (b 5 0.1) in the squall-line

case to maintain numerical stability. The nonhydrostatic

solver with orography will allow us to test the conser-

vative and consistent transport and stability of the new

semi-implicit CISL discretization under the influence of

a terrain-following coordinate.
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