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Abstract. Recently, a standard test case suite for 2-D lin- The ensemble of results from a wide variety of schemes
ear transport on the sphere was proposed to assess impresented here helps shed light on the ability of the test case
portant aspects of accuracy in geophysical fluid dynam-suite diagnostics and flow settings to discriminate between
ics with a “minimal” set of idealized model configura- algorithms and provide insights into accuracy in the context
tions/runs/diagnostics. Here we present results from 19 statesf global atmospheric/ocean modeling. A library of bench-
of-the-art transport scheme formulations based on finite-mark results is provided to facilitate scheme intercomparison
difference/finite-volume methods as well as emerging (inand model development. Simple software and data sets are
the context of atmospheric/oceanographic sciences) Galerkimade available to facilitate the process of model evaluation
methods. Discretization grids range from traditional regularand scheme intercomparison.

latitude—longitude grids to more isotropic domain discretiza-
tions such as icosahedral and cubed-sphere tessellations of

the sphere. The schemes are evaluated using a wide range

of diagnostics in idealized flow environments. Accuracy iS1 |ntroduction

assessed in single- and two-tracer configurations using con-

ventional error norms as well as novel diagnostics designegystorically, the regular latitude—longitude grid has been the
for climate and climate—chemistry applications. In addition, preferred discretization grid in global atmosphere models
algorithmic considerations that may be important for com- primarily due to desirable properties such as grid orthogo-
putational efficiency are reported on. The latter is inevitably nality and simple data structure. It also trivially lends itself
computing platform dependent. to operations such as zonal/meridional averaging routinely
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106 P. H. Lauritzen et al.: Results from standard test case suite

applied in global data analysis. Primarily triggered by re- when using finite-volume type schemes), which is a neces-
quirements for efficient domain decomposition and minimal sary step in developing a transport scheme for realistic atmo-
data movement between decomposition patches in massivepheric/oceanographic applications.
parallel compute environments, there has been a significant The idealized transport scheme testing discussed above
effort to formulate atmospheric models on more isotropic assesses simulation accuracy in a single-tracer setup. For
grids. Other motivations for alternative tessellations of thea range of climate and climate—chemistry problems, it
sphere are the design of models with mesh refinement cais also considered important that schemes do not disrupt
pability, possibly with smoothly varying transitions between pre-existing functional relations in unphysical ways (e.g.,
coarse and fine resolution. This has triggered a renewed intefFhuburn and Mcintyre1997. For example, long-lived trace
est in developing fluid flow solvers for non-traditional spher- species in the stratosphere are known to be functionally re-
ical grids. A natural first step in model development is to lated Plumh 2007, and the simulation of cloud—aerosol in-
design schemes that solve the continuity equation, also reteractions depends on accurate preservation of relations be-
ferred to as transport schemes or advection schemes. Numemween tracers@vtchinnikov and Easte009. Based on the
ous new algorithms have been developed within the last 10 ytboomerang flow”,Lauritzen and Thubur2012 proposed
or so. These encompass finite-volume, finite-difference, andn idealized test to assess how well schemes maintain a non-
Galerkin-based methods. linear relation between two tracers. The amount of mixing,
Despite the growing amount of research in transportessentially introduced by truncation errors, was quantified
scheme algorithms, the “mandatory” idealized testing ofusing novel mixing diagnostics.
such algorithms on the sphere is surprisingly little stan- Inan attempt to standardize scheme testing under idealized
dardized. In fact, the only standardized test in global transflow settings as well as to reduce the number of tests while
port scheme development is the solid-body advection tesstill assessing a wide range of aspects of accuracy considered
of the widely used shallow-water test case {illiamson important for geophysical applications, LSPT2012 proposed
et al, 1992. Specific guidelines for the computation of er- a “minimal” test case suite with specific guidelines on reso-
ror norms and plotting (contour interval and projection) are lution, time step, and accuracy diagnostics. In LSPT2012 it
given in Williamson et al.(1992. However, resolution and was assumed that model developers have already tested their
other transport model settings are not specified. In the lit-schemes under simpler flow conditions such as solid-body
erature modelers do not always chose the same resolutioflows. Similarly, LSPT2012 did not ask modelers to report on
and model settings, which can make it difficult to compare more specialized test cases that may be useful to study cer-
schemes. Even contour plotting of solutions varies acrossain, perhaps more specialized, aspects of accuracy. For ex-
publications despite the specific guidelinesWilliamson ample, by running well-known deformational test cases out
et al.(1992. Said colloquially, “apples-to-apples” compari- further in time Pudykiewicz 2011), one can study the down-
son is not always straightforward despite the simplicity of the scale cascade from near grid scale to the sub-grid skal (
test (i.e., an analytical solution is known). This, among otheret al, 2012. Similar tests, such as many solid-body revo-
things, motivated_auritzen et al.(2012 hereafter referred lutions of a large constant plateau spanning many cells, can
to as LSPT2012) to propose a standard test case suite withe used for “tuning” shape-preserving filters so that the peak
specific guidelines for resolution and other transport modeltracer abundance does not decay linearly (if applicable) de-
settings. To facilitate this process further, we provide scriptsspite the initial plateau and analytic solution being very well
for contour plots. Model developers are encouraged to useesolved (AppendiA16).
those scripts so that contour plots from different modeling Itis the purpose of this paper to provide a library of bench-
groups can easily be compared. mark results for the LSPT2012 standard test case suite. The
More challenging global idealized tests have been devel-data were provided by the participants of the 2011 workshop
oped since the efforts diVilliamson et al.(1992 such as  on transport schemes held at the National Center for Atmo-
the highly deformational (moving) vortices on the sphere spheric Research (NCAR) in Boulder (Colorado, USA), 30—
(Nair and Machenhaug2002 Nair and JablonowskR008§ 31 March 2011. The large ensemble of schemes that partici-
and the “boomerang” flows diair and Lauritzen(2010. pated in this intercomparison may help shed light on how the
Despite the high degree of deformation in the (moving) different tests and diagnostics discriminate between schemes
vortex test problem, in particular when simulated beyondand expose particular types of numerical errors. A list of
the original specification of simulation lengtKént et al, schemes that participated in this intercomparison and the ac-
2012 Pudykiewicz 2011J), it has an analytical solution. The companying scheme acronyms are given in Tdble
“boomerang” flows, on the other hand, do not have easily In this study grid spacings are quantified in terms of aver-
accessible analytical solutions until the end of the speci-age resolution at the Equator irrespective of the discretization
fied simulation time. Contrary to most idealized tracer trans-grid. Schemes are compared using this definition of horizon-
port test cased\Nair and Lauritzen(2010 proposed a di- tal resolution. If the reader is interested in schemes for mesh-
vergent wind field so that the modeler is forced to considerrefinement applications, for example, only a subset of the
the coupling between air density and tracer mass (at leasichemes and grids presented here will have that capability.
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P. H. Lauritzen et al.: Results from standard test case suite 107

Table 1. A list of acronyms (first column), full names (second column), documentation (third column), implementation grid (fourth column),
and formal order of accuracy (fifth column) for schemes in this paper.

Scheme Full scheme name Documentation Implementation grid Formal

acronym order

CAM-FV Community Atmosphere Model — Lin and Rood(1996 Regular latitude—longitude 2
Finite-Volume Lin (2009

CAM-SE Community Atmosphere Model — Dennis et al(2012 Gnomonic cubed-sphere 4
Spectral Elements Neale et al(2010; Guba et al(2013  (quadrature grid)

CCSRG Conservative cascade scheme for Nair et al.(2002 Reduced latitude—longitude 3
the reduced grid Tolstykh and Shashki(2012

CLAW Wave propagation algorithm LeVeque(2002 Two-patch sphere grid 2
on mapped grids

CSLAM Conservative Semi-Lagrangian Lauritzen et al(2010 Gnomonic cubed-sphere 3
Multi-tracer scheme Erath et al(2013

FARSIGHT Departure-point interpolation White and Dongarr§2011) Gnomonic cubed-sphere 2
scheme with a global mass fixer

HEL Hybrid Eulerian Lagrangian Kaas et al(2013 Gnomonic cubed-sphere 3

HEL-ND HEL — Non-Diffusive Kaas et al(2013 Gnomonic cubed-sphere 3

HOMME High-Order Methods Dennis et al(2012 Gnomonic cubed-sphere 4and7
Modeling Environment Guba et al(2013 (quadrature grid)

ICON-FFSL  ICOsahedral Non-hydrostatic model —  Miura (2007 Icosahedral-triangular 2
Flux-Form semi-Lagrangian scheme

LPM Lagrangian Particle Method Bosler(2013 Icosahedral-triangular 2

MPAS Model for Prediction Across Scales Skamarock and Gassma(t011) Icosahedral-hexagonal 3

SBC Spectral Bicubic interpolation scheme  Enomoto(2008 Gaussian latitude—longitude 2

SFF-CSLAM  Simplified Flux-Form CSLAM scheme  Ullrich et al. (2013 Gnomonic cubed-sphere 3and 4

SLFV-SL Semi-Lagrangian type Slope Limited Miura (2007 Icosahedral-hexagonal 2

SLFV-ML Slope Limited Finite Volume scheme N/A (see Appendik4) Icosahedral-hexagonal 2
with method of lines

TTS- Trajectory-Tracking Scheme — Interfaces Dong and Wang2013 Spherical centroidal 1

\oronoi tessellation
UCISOM UC Irvine Second-Order Moments schemérather(1986 Regular latitude—longitude 2
UCISOM-CS  UC Irvine Second-Order Moments scheme  — Gnomonic cubed-sphere 2

In other words, it is up to the reader to extract information also made available in the Supplement. Conclusions and a
for specific applications as only uniform resolution or non- brief summary of results are provided in Sekt.
mesh-refined grids are considered here.

The paper is organized as follows. In Setthe schemes
are briefly introduced by discussing discretization cate-
gories/methods and grouping the respective schemes into
these categories. In addition to the basic discretization cons, - . . .

S : . ) . e continuity equation for a passive and inert scalaan
cepts, this includes discussion of shape-preserving (sp) lim;

) . : . 4 be written in various forms such as flux form or advective
iter used (if applicable) and air-tracer mass coupling. Spe-

o . . . . A form. The choice of the form of the continuous transport
cific details on time step, native grid resolutions used to

e ; ) . equation from which the discretized scheme is derived ob-
match test case specifications on resolution, viscosity coef-

ficients (if applicable), etc. are given in the Appendix for viously depends on the numerical method. Below we de-

fine the different categories of discretizations for the schemes
each scheme. The results for the LSPT2012 test case Su'{%at participated in this intercomparison. The high-level cat-

are _presented in S_eéi. It has been a chal_lenge tp present ef- egories are as follows:
fectively and concisely the results graphically given the large
number of schemes. We have found it most effective to de-

pict most of the data in histogram format. The complete his-

togram data sets are made available as supplemental material
for the interested reader. Scripts and data to produce conver- _ (semi-)Lagrangian grid point,
gence plots (Figsl and?2), filament diagnostic plot (Figh),
contour plots (Figs?7, 8, 9, 10), scatterplots (Figdll, 12,13
and 14), and histogram plots (Fig8, 4, 6, 15 and 16) are

2 Transport equation forms and discretization
categories

— flux-form finite volume,

— (semi-)Lagrangian finite volume,

— Lagrangian parcel methods,

— series expansion.
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108 P. H. Lauritzen et al.: Results from standard test case suite

A brief description of the transport schemes that partic-in most finite-volume discretizations when the analytical so-
ipated in this intercomparison is given within the category lution for p is not known.
each scheme has been assigned to. Below, the scheme de-Finite-volume schemes based on Et). (se tracer mass
scriptions are grouped according to scheme category irrep¢ and not mixing ratiap as the prognostic variable. Hence
spective of discretization grid. For in-depth details on the p must be solved for as well:
algorithms, we refer to their respective publications; specific

scheme configurations used in this intercomparison are given v (DAt .
in the Appendix. (PAA)"™" = (P AAY" — / yg (pv) -ndS | dr. (5)
nAt Ak

2.1 Flux-form finite volume . ) . . )
It is considered important that the coupling between air

Typically, flux-form Eulerian or flux-form semi-Lagrangian mass and tracer mass is “free-stream preserving” (also re-

schemes are based on the form ferred to as “consistent tracer transport” in the literature).
This means that the discretization scheme for Eprdduces
9(p9) +V-(ppV)=0, (1) to the discretization scheme for EQ) for ¢ =1 as it triv-
ot ially does in continuous space. Note that free-stream preserv-

ing does not necessarily mean that the spatial and temporal
discretization schemes fegrand p¢ are identical. In fact, it
{s common practice to solve the tracer transport Bjjof
longer time steps than the air density Eg) §ince tracer
transport schemes are usually only limited by the advec-
ap tive CFL (Courant—Friedrichs—Lewy) or Lipschitz criterion
9t +V-(pV)=0. (2) (Pudykiewicz et al.1985 Kuo and Williams 1990 rather
o ) than the more restrictive CFL condition usually imposed on
For Eulerian finite-volume schemes, E@) {s integrated  the continuity equation for air by gravity and/or sound waves.

in space over a stationary (Eulerian) control grid volume/cell oy sych an approach the flux of tracer m&sthrough a cell
Ax and in time over one time stefr, and usually the diver- | is computed as

gence theorem is applied. After re-arranging terms the dis-

wherep is the fluid densityV the flow velocity vector, and

¢ the tracer mixing ratio per unit mass. In finite-volume
schemes the equation of motion is integrated over a contro
volume. Similarly, the equation for air density is given by

cretized continuity equation can be written as T =($) Z Fli/m (6)
1 i=1
(0P AA)" " = (0P AAL)" 3) _ R
DA where m is the number of sub-steps in tim&/™ the
2ds | 4 “background” flux of air mass through the cell wall in one
- / f (ppV)-nds | dr, 4) sub-stepr € [<n+i;n_1> At,(n+ L) Ar], and(¢) the aver-
nAt JAk

age mixing ratio over the tracer time steps [nAt, (n +

wheren is the time-level indexA A the area of an Eulerian  1)A71- Note that the mixing ratiog), is averaged over sev-
grid cell A, anda Ay the boundary ofd; for which# isthe ~ ©€ral sub-steps in which the air density is updated. For a
outward pointing normal vector. The physical interpretation 9raphical illustration of Eq.€), see Fig. 8.19 inLauritzen

of the last term on the right-hand side of E8) is basically €t @l- (2011. The technique described by E@) (s usu-
the flux of mass through all cell walls in one time step. This 2lly referred to as “sub-cycling”, although more appropriate
term is also referred to as tlfiex divergenceln one dimen-  (€minology may be “super-cycling” of tracer fluxes with re-

sion the flux divergence is the difference between the fluxSPECt 10 air mass flux. , _
of mass through the left and right wall of the control vol-  t1S worth noting that Eq. @) with m =1 constitutes a
ume. Mass conservation is therefore achieved by evaluatin{;)orm of linearization of the flux where non-linear coupling

the flux through a cell wall shared by two control volumes PetWeen tracer mixing ratio and air mass is neglected. For ex-
in an identical way. In that case, the amount of mass flow-2MPl€, assume that tracer mixing rafiov, y) is represented

ing into a control volume through a cell wall will be exactly through a higher order polynomial of degrkeand similarly

balanced by the outflow through the face shared by the neighf©" &if densityo(x, y), wherex andy denote the longitu-

boring control volume. Hence any reasonable approximationdinal and latitudinal Qirections, respectively. Then the flux
to the flux will trivially lead to conservation of tracer mass. through the cell wall involvegs (x, y) - p(x. y)) (Dukowicz

There are several approaches to approximating the flux di&"d BaumgardneQOOQZ, which would require integrating a
lynomial of degree&K“. Instead, the flux is approximated

vergence, and they are discussed in separate sub-sections
low in the context of the schemes that participated in this in-°Y
tercomparison project. Before that, however, we briefly dis- (4 (x y). p(x, y)) ~ (¢ (x, y)) - (p(x, ), 7)
cuss the coupling between air and tracer mass that is inherent
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P. H. Lauritzen et al.: Results from standard test case suite 109

which eliminates the non-linear interaction between non-during the final Runge—Kutta stage within a given time step.
constant terms in the polynomials éfand p. This simplifi- Tracer and air mass coupling is through super-cycling.
cation reduces the order of the polynomial: instead of having

to integrate a polynomial of degréé?, only integration of ~ 2.1.2 “Swept-area” approach

polynomials of degre& is needed.

For most applications it is important that the progno- An alternative and perhaps more physically intuitive ap-
sis of mixing ratio¢ does not introduce spurious oscilla- proach to approximating the flux divergence is to trace the
tions and/or unphysical values such as negative mixing raarea that is “swept” through an Eulerian cell wall in one
tios. Schemes that guarantee “physical” solutions in thistime step — hence the name “swept area” approach, also re-
sense are referred to as “shape-preserving” (sp). The erferred to as incremental remapping meth&dikowicz and
forcement of shape preservation in flux-form schemes carBaumgardner2000, or semi-Lagrangian flux-form finite-
be done by adjusting the fluxes. A very popular algorithm volume method I{in and Rood 1996. These methods are
is FCT (flux-corrected transport Ealesak 1979 where a  usually based on Euler forward time differencing (two-time-
monotone low-order flux is blended with the non-monotonelevel schemes). Several schemes in this intercomparison are
higher order flux to provide a shape-preserving solution. An-based on that approach, and they differ in area approxima-
other approach that can be used in the context of a flux-forntion, reconstruction method, and implementation grid (for a
discretization is to ensure that the reconstruction functiondetailed discussion on area approximations and reconstruc-
which is usually an integral part of a finite-volume scheme, tion methods, see, for exampleguritzen et al.20118. Un-
is constrained so that it does not introduce new extrema otess stated otherwise the schemes based on “swept areas” use
expand the range of the cell-averaged values. This methothe super-cycling technique for coupling tracer and air mass.
is referred to aslope-limiting(e.g.,van Leey 1977). For an The most rigorous approach in this intercomparison, in
overview of shape-preserving filters used for the schemes iterms of area approximation, is the Simplified Flux-Form
this intercomparison, see TalfleThe following subsections CSLAM scheme (SFF-CSLAMI.auritzen etal.2011aUll-
provide brief descriptions of the models that fall into the flux- rich et al, 2013. For each cell the flux areas are approxi-
form finite-volume category. mated by tracing the end points (vertices) of each cell face
upstream. The upstream translation of these points and the
face vertices can be connected with straight lines (Eayris
et al, 2010 or parabola (in the latter case also the midpoint
of the cell faces is traced upstreabdijrich et al,, 2013 to
The scheme oBkamarock and Gassmali011), here re-  define the swept area (aka flux area). This area will by defini-
ferred to as MPAS as it was implemented in the “Model tion be swept through the cell wall in one time step and hence
for Prediction Across Scales” framewor8Kamarock et al.  can be used to approximate the mass fluxes in and out of con-
2012 Ringler et al, 2011, is a generalization of one- trol volumes by integrating reconstruction functions of tracer
dimensional Taylor series approximations to the flux op-mass over the swept areas. The “Simplified” in the SFF-
erators Wicker and Skamarogk2002 Hundsdorfer et al. CSLAM scheme acronym refers to the simplification intro-
1995 for a Voronoi tessellation of the sphere. Specifically, duced byHirt et al. (1974, in which the flux integral is sim-
these operators are generalizations of third- and fourth-ordeplified so that only the sub-grid-scale reconstruction imme-
operators currently used in atmospheric models employ-diately upstream of the cell edge is used even though the flux
ing regular, orthogonal rectangular meshes as, for examarea may overlap more than one Eulerian cell. As discussed
ple, the Weather Research and Forecasting (WRF) modeln Lauritzen et al.(20113, this simplification may lead to
which is documented irSkamarock and Klemg2008. some cancellation of errors for sufficiently small CNs. The
Two-dimensional least-squares-fit polynomials are used tantegration of the flux region in SFF-CSLAM is performed
evaluate the higher order spatial derivatives needed to canvia fourth-order Gaussian quadrature of third- and fourth-
cel the leading-order truncation error terms of the stan-order accurate reconstruction polynomial functiobdirich
dard second-order centered formulation. As in Wicker andetal, 2013 referred to as SFF-CSLAM3 and SFF-CSLAM4,
Skamarock (2002), the third-order formulation is equivalentrespectively. Shape preservation in SFF-CSLAM is enforced
to the fourth-order formulation plus an additional diffusion by reconstruction function-limiting (slope-limiting); more
term that is proportional to the Courant number (CN). An specifically the maxima and minima are identified within
optimal value for the coefficient scaling this diffusion term each element, and the reconstruction function is scaled to
based on qualitative evaluation of results from other tests idit within the minimum and maximum of the neighboring
used (se&kamarock and Gassmar2911). cell-average valueB@arth and Jesperseh989. Since sim-

The time stepping is based on a three-stage Runge—Kuttglified flux-area integration is used, reconstruction functions
method. Hence the flux operators are evaluated at three inteare effectively extrapolated in the parts of the flux areas (if
mediate time levels for a full tracer time step update. Shapeny) that are not limited to the immediate upstream cell with
preservation is obtained by applying the FCT limiter/filter which the control volume shares a face. Since slope-limiting

2.1.1 Taylor series approach

www.geosci-model-dev.net/7/105/2014/ Geosci. Model Dev., 7, 1085-2014



110 P. H. Lauritzen et al.: Results from standard test case suite

Table 2. A list of shape-preserving filter information: scheme acronym (first column), scheme category (second column), filter category
(third column), whether the scheme is strictly shape-preserving in terms of not expanding the range of the initial data (fourth column), and
the reason for non-shape-preservation (if applicable, fifth column).

Scheme “Category” Shape-preserving Strictly shape- Reason for “non-strict”

acronym filter category preserving shape preservation

CAM-FV Flux-form finite volume Dimensionally split No 1-D limiter

CAM-SE Spectral element Quasi-monotone limiter  Yes -

(series expansion) based on minimization;

hyperviscosity

CCSRG Semi-Lagrangian finite volume — - -

CLAW Wave propagation Wave limiter No 1-D wave limiter

CSLAM Semi-Lagrangian finite volume  Slope-limited Yes -
Rigorous flux

FARSIGHT Grid-point semi-Lagrangian Fixer Yes -

HEL Semi-Lagrangian finite volume  Lagrangian fixer Yes -

HEL-ND Semi-Lagrangian finite volume  Lagrangian fixer Yes -

HOMME Spectral element Quasi-monotone limiter  Yes -

(series expansion) based on minimization;

hyperviscosity

ICON-FFSL  Flux-form finite volume FCT Yes -

LPM Fully Lagrangian Lagrangian Yes -

MPAS Flux-form finite volume FCT Yes -

SBC Semi-Lagrangian grid point Fixer Yes -

SFF-CSLAM  Flux-form finite volume Slope-limited No “Extrapolation” in
simplified flux simplified flux

SLFV-SL Flux-form finite volume Slope-limited No “Extrapolation” in
simplified flux simplified flux

SLFV-ML Flux-form finite volume Slope-limited No “Extrapolation” in
simplified flux simplified flux

TTS-I Lagrangian finite volume None needed Yes -

UCISOM Flux-form finite volume Moment-limiting No Shape-preserving constraints

relaxed
UCISOM-CS  Flux-form finite volume Moment-limiting No Shape-preserving constraints
relaxed

is only enforced within each Eulerian cell and not throughout The simplified flux integration, as used in SFF-CSLAM, is
the flux area, SFF-CSLAM is not strictly shape-preservingalso applied in ICON-FFSL. Hence the maximum stable CN
but only approximately so. SFF-CSLAM could be renderedis limited; the theoretical stable CN limitation for linear re-
strictly shape-preserving by using FCT, possibly at the ex-construction functions is 0.5 (Fig. 3 middleauritzen et al.
pense of increased computational cost. 20113. However, in practice ICON is stable up to CN of

A further simplification to SFF-CSLAM is to approxi- approximately 0.8. The reconstruction polynomial is first-
mate the swept area with just one degree of freedom in-order (linear), and the coefficients are estimated using a con-
stead of two or three as described above. For example, ongervative and weighted least squares reconstruction method
may use just one velocity vector at the center of each edg€Ollivier-Gooch and van Altena2002. Shape preservation
to trace the flux area so that the swept area is a rhomin ICON-FFSL is obtained by using FCT, and tracer—air-
boid instead of a quadrilateral with straigMliGra, 2007 mass coupling is through “super-cycling”.
or curved edgesUllrich et al, 2013. This approach is A similar approach has been taken in the scheme of SLFV-
taken in the transport scheme implemented in the IcosaheSL developed at LMD (Laboratoire de Météorologie Dy-
dral Nonhydrostatic Model (ICON); ICON is currently be- namique, Paris, France) for a hexagonal icosahedral grid-
ing developed in a joint effort by the Max Planck Institute based model. It uses simplified swept areas with simplified
for Meteorology (MPI-M) and the German Weather Service integration of linear reconstruction functions as in ICON-
(DWD). The scheme is referred to as ICON-FFSL (Flux- FFSL. Contrary to ICON-FFSL, the SLFV schemes base
Form Semi-Lagrangian). The swept area approximation intheir reconstruction on averaging six gradients (or five for
ICON-FFSL is first-order in space and second-order in time.the pentagons) rather than a least-squares fit. SLFV-SL uses a

Geosci. Model Dev., 7, 105t45 2014 www.geosci-model-dev.net/7/105/2014/



P. H. Lauritzen et al.: Results from standard test case suite 111

slope limiter for shape preservation — more precisely, a multi-applies successive applications of first-order advection and
dimensional extension of the Van Leer-type slope limiter dis-PPM (piecewise parabolic metho@plella and Woodward
cussed irDukowicz and Kodig1987. LMD also presented 1989 flux-divergence operators that are carefully combined
another scheme, SLFV-ML, which is similar to SLFV-SL, to minimize splitting errors. To render CAM-FV, approxi-
but instead of forward Euler the Runge—Kutta third-order to- mately shape-preserving slope limiters and curvature lim-
tal variational diminishing (TVD) time-integration method iters are applied in the one-dimensional PPM reconstruc-
is used (e.g.Nair et al, 2005. For details on the SLFV tions. Since the limiters are applied to the PPM operators that

schemes, see Appendii 4. are one-dimensional, over- and undershoots are only elimi-
nated along coordinate directions and not in the transverse
2.1.3 Wave-propagation algorithm direction. Hence, CAM-FV is only approximately shape-

preserving. Air—tracer coupling is through “super-cycling”.
Related to the “swept area” approaches described above, iRor a stability analysis of thein and Rood(1996 scheme,
the sense that this algorithm has some conceptual similarseeLauritzen(2007).
ities, is the wave-propagation algorithm lofVeque(2002. Another dimensionally split transport scheme in Eulerian
The specific version of this algorithm is referred to as CLAW flux form that participated in this intercomparison is an im-
as it is implemented in the general Clawpack packagd/{ proved versionRrather et a).2008 of the original second-
eque 2006. The wave-propagation algorithm can be viewed order moment (SOM) schemBrather 1986, which is here
as a scheme that propagates information (i.e., waves) firsteferred to as UCISOM (UC Irvine Second-Order Moments
in a direction normal to a given cell interface, and then in scheme). It applies the same operators/algorithm in all co-
a direction transverse to this interface effectively approxi-ordinate directions (via dimensional splitting) and hence is
mating “swept area” fluxes (see, e.g., Fig. 5.22Diarran trivially extensible to three dimensions. In addition to the
2010. CLAW is based on a first-order donor cell upwind one prognostic variable (cell-averaged tracer mass) that all
method (first-order waves) composed of one-dimensionathe schemes discussed so far use, the SOM method carries
flux-divergence operators with “correction” terms to take five prognostic variables. The extra forecasted variables are
into account traverse flow of waves and/or higher ordermoments of the tracer distribution. The UCISOM scheme
waves. CLAW used here is formally second-order accuratehas been implemented on a regular latitude—longitude grid
A TVD monotonized central-difference limitel.¢Veque and on an equiangular gnomonic cubed-sphere (referred to
2002 van Leer 1977 is used for shape preservation, but as UCISOM and UCISOM-CS, respectively).
other TVD type flux limiters can also be applied.

Clawpack supports the advective and flux form of the2.2 (Semi-)Lagrangian finite volume

transport equation. The version of CLAW used here is based ) S ) _
on the advective form. For non-divergent winds the average® (S€mi-)Lagrangian finite-volume scheme is typically based
normal velocity at mesh cell edges is obtained by differenc-0n the form
ing a stream function evaluated at mesh cell corners. Con-
sequently, a constant density field in a non-divergent flow— / p¢pdA =0, (8)
is preserved in the discretized CLAW scheme based on the™
advective form. Clawpack is not strictly a transport code,
but is designed to solve more general non-linear hyperboliovhere D/ Dt is the total or material derivative and(r)
problems. The problems presented here are ideally suitets a Lagrangian volume for which, by definition, there
for AMRClaw, the spatially adaptive version of Clawpack is no flux of mass across its boundaries. Lagrangian and

(http://www.clawpack.orjy semi-Lagrangian finite-volume schemes are also referred to
as cell-integrated schemeNdir and Machenhaugf002.
2.1.4 Dimensional splitting approach In semi-Lagrangian finite-volume schemes, the same La-

grangian areas are only traced/retained for one time step,
Instead of approximating swept area fluxes rigorously inwhereas for fully Lagrangian schemes the cells move with
two dimensions, one may take an operator split approachthe flow throughout the integration or at least for multiple
which has been successfully applied for orthogorah ( time steps. Each sub-category of (semi-)Lagrangian finite-
and Rood 1996 and quasi-orthogonal grid$¢tman and volume schemes is discussed in a separate section below.
Lin, 2007. The advantage of such an approach is that only Conservation of mass in (semi-)Lagrangian finite-volume
one-dimensional operators are needed. The formal accuracgchemes is based on the physical constraint that the integral
however, is limited to second-order with the splitting. The of mass over the Lagrangian areas at time levehdn + 1
Lin and Rood (19969 scheme is used in NCAR's Com- must match. This physical constraint is more rigorous than
munity Atmosphere Model Finite-Volume version (CAM- the requirement for mass conservation in flux-form schemes,
FV, Neale et al. 2010 and implemented on a regular forwhich any flux leads to mass conservation as long as iden-
latitude—longitude grid. The transport scheme in CAM-FV tical fluxes with opposite signs are used for each cell face.
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Contrary to flux-form schemes, the reconstruction functionsefficiency of the CSLAM algorithm. The coupling between
must integrate to the cell-averaged value in each Euleriann¢ and¢ is by using the following reconstruction function
control volume, and the Lagrangian areas must span the erfer tracer mass in each Eulerian control volume:

tire domain without cracks or overlap between them. For a _

fuller discussion, sekauritzen et al(20110 andErathetal. 2@ (x,y) +¢ (p(x,y) —p), 9)
2013. _
( Sir?ce (semi-)Lagrangian finite-volume schemes trace La{APPendix B ofNair and Lauritzen201Q where(.) refers to

grangian volumes rather than fluxes through cell walls, shap&€ cell-averaged value. Note that ifx, y) = 1 Eq. @) re-

preservation cannot be ensured using FCT and FCT—typéjuceS to the reconstruction function forand hence Eq9j

limiters. Shape preservation in semi-Lagrangian finite vol-1S free-stream preserving. Also, the higher order terms in the
ume (not flux form) can be accomplished via slope-limiting Producte(x, y) - ¢ (x, y) have been eliminated so that the re-

where the reconstruction function is limited to avoid spurious €ONstruction function for tracer mass is of degree two. One
under- and overshoots could also simply use a reconstruction function based on

tracer mas®¢ instead of reconstructing and¢ separately.
However, shape preservation should only be appliepl &3
¢ is conserved following parcel trajectories and not tracer
massp¢. Hence the separation pfand¢ in the reconstruc-

) tion step is preferable.

2.2.1 Fully two-dimensional semi-Lagrangian
finite volume

The Conservative Semi-Lagrangian Multi-tracer (CSLAM
scheme, which has been implemented in NCAR's High-
Order Methods Modeling Environment (HOMMEErath

etal, 2019, is based on upstream tracing of cells and subseqngieaq of approximating the upstream area with a fully two-
quent |ntegrat|_on over overlap areas between the Lagrangiagimensional approach, it may be approximated using a di-
cell and Eulerian grid cells. Specifically, the vertices of the nensjonally split approach. This is similar to splitting for Eu-
Eulerian grid .control _volumes/cells are traced upstream anqgrian fluxes. However, the dimensional splitting is not along
connected with straight lines to define the upstream La-;,qrginate axes but along Lagrangian translations of coordi-
grangian area. Note that it is essential for mass conservatlenate axes. Hence we refer to this approach as flow-dependent

that the upstream areas collectively span the entire domaigmensional splitting. The upstream area is then effectively

and that the recons;ruction functien int.egrates to the Ce"'approximated using line segments that are parallel to the co-
averaged value within each Eulerian grid cérdth et al.

oo i ordinate axes (see, for example, Fig. 2Liauritzen et al.
2013. Mass conservation in flux-form schemes is not sub-50g s that the two-dimensional remapping problem is cast
ject to these constraints.

i into one-dimensional “sweeps” (one sweep along a coordi-
~ The CSLAM scheme may also be cast in flux foe(- (e axis and one sweep along the upstream translation of the
ris et al, 2010 to produce schemes that are identical even

Ly ) Y=''other coordinate axis); such schemes are referred tass
when the slope limiter for shape preservation is applied.caqeschemes and were originally introduced Pyrser and
Note that casting the scheme in flux form allows for flux | egjie(1991) for non-conservative semi-Lagrangian interpo-
limiters such as FCT that can obviously not be used inj4iion. ater, conservative versions of the cascade method
the Lagrangian form (e.gLauritzen et al. 2011h. Since 66 proposed, e.g., the conservative cascade scheme (CCS;
CSLAM integrates over fewer overlap areas than its flux- Nir et al, 2002. In each cascade sweep, PPM-based opera-
form version, it is more efficient in its Lagrangian form. The ¢ (similarly to CAM-FV) are used.

CSLAM ve_rsion used in this.comparison was implemented A scheme based on CCS and implemented on the reduced
on an equiangular gnomonic cubed-sphere grid. CSLAM|yityde—longitude grid (for details on the reduced latitude—

uses fully two-dimensional polynomial-based reconstructionbngitude grid used here, séadeey 2013 participated in

functions of degree two for air densify(x, y) and tracer s intercomparison and is referred to as CCSR@stykh

mixing ratio ¢(x, y). Shape preservation is obtained with 44 Shashkire012. The version of CCSRG used here does
fully two-dimensional slope-limitingBarth and Jespersen ot have a limiter implemented. Tracer-mass coupling is

1989. Integration over overlap areas on the cubed-sphere i 5504 on reconstructing tracer mgsg, and not on the re-

performed via line integrals in gnomonic cubed-sphere co-;qngiryction of mixing ratio and density separately.
ordinates. In_auritzen et al(2010 line integrals along co-

ordinate lines were computed using exact line-integral for-2 2.3 Lagrangian finite volume

mulas Ullrich et al,, 2009. However, it was later found that

these may become ill-conditioned at high resolution: switch-A scheme for which the Lagrangian areas are retained for
ing to Gaussian quadrature makes the algorithm robust but dbnger than one time step is the trajectory-tracking scheme
the cost of mass conservation unless mass consistency is e(@ong and Wang2012) based on tracking interfaces (TTS-I,
forced locally using the consistency enforcement algorithmDong and Wang2013. The advantage of tracing interfaces
by Erath et al (2013, which does not affect the locality and is that large gradients or even discontinuities are preserved.

2.2.2 Flow-dependent dimensional splitting
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The initial grid in TTS-1 is based on polygons generated by The scheme uses the same coupling between fluid density
using a spherical centroidal Voronoi tessellati@u (et al, and tracer mass as the CSLAM scheme, although the nudg-
1999 Ringler et al, 2008 Ju et al, 2011, where the density ing of Eulerian cell averages is done separately for density
function that controls the distribution of polygons is set to and mass, but constrained by monotonicity in tracer mixing
unity. The polygons are then traced throughout the integraratio. The HEL scheme is general in the sense that any shape-
tion. Due to the large deformation of the background flow, preserving and mass-conservative scheme can be used for the
the edges of the polygons will inevitably cross. To avoid this Eulerian forecast. The HEL scheme has also been tested suc-
ill-conditioned problem, a novel curvature-guard algorithm cessfully in a dynamic shallow water model with strongly
(CGA) has been developed that splits and merges edges awvarying surface topographKéas et al.2013.

cording to deformation criteria. The details are explained in

Dong and Wang2013. For the computation of diagnos- 2.3 (Semi-)Lagrangian grid point

tics, the fields are mapped to a regular latitude—longitude i . ) .
grid (which is also done for coupling with physical param- S0Me schemes, such as traditional grid-point semi-
eterizations). This mapping is first-order, mass-conservativé-2drangian schemes, are based on the advective form of the
and shape-preserving. Note that the prognostic fields are afOntinuity equation for mixing ratig,

ways retained in Lagrangian space, so the mapping is onlyp,

for computing diagnostics (and tendencies from the physi-—— = 0. (10)

cal parameterizations). Coupling between tracer mass and air

mass is trivial since the scheme retains Lagrangian volumes The FARSIGHT schemeWhite and Dongarra2011)

for tracer mass and air mass throughout the integration. is based on Eq.10) and discretized on an equiangu-
lar gnomonic cubed-sphere grid. It is an upstream semi-
2.2.4 Hybrid Eulerian—Lagrangian Lagrangian scheme that computes departure points for each

grid point using backward trajectories based on numerical
An alternative approach is to retain both a fully Lagrangianderivatives of the wind field at the later time. The scheme
and Eulerian representation of all prognostic variables aghen set® at each grid point to the interpolated value (third-
done in the hybrid Eulerian—Lagrangian (HEL) schemeorder for FARSIGHT) at its departure point. The scheme
(Kaas et al.2013. In HEL the Lagrangian solution, based on allows for long time steps as long as the trajectory algo-
tracing Lagrangian parcels (effectively solvibg /Dt = 0), rithm converges (Lipschitz criterion). FARSIGHT performs
is used to nudge the Eulerian solution toward the Lagrangiarbest at Courant numbers of 10-20 and has large errors at
solution that exactly preserves tracer correlations and trackiow Courant numbers/hite and Dongarrg2011). Schemes
gradients very accurately. In the Lagrangian solution, mixingbased on Eq.10) are usually not inherently mass conserva-
between neighboring parcels is done using directionally bi-tive, and it is common practice to apply global mass fixers
ased diffusion based on the local deformation rate of the flowthat “ad hoc” restore global mass conservation. FARSIGHT
The mixing is introduced to prevent long-term developmentuses a global mass fixer that also locally constrains the mix-
of unresolvable deformation into parcel filaments, which oneing value to remain within a predefined interval. Hence the
may also describe as aliasing in Lagrangian space. The Euscheme is not necessarily locally shape-preserving. The par-
lerian solution is simply a first-order forecast; in this case, aallel implementation uses dynamic communication to al-
first-order version of CSLAM is used. Hence HEL is cate- low arbitrarily fine domain decomposition regardless of time
gorized under finite-volume semi-Lagrangian schemes, andtep. However, it does incur the expense of a global synchro-
the Lagrangian parcel part of the algorithm is viewed as anization at each time step, and the mass fixer uses global re-
shape-preserving limiter in the context of this intercompari- ductions. For this class of schemes, free-stream preservation
son. Lagrangian parcel values are used to nudge the shapis- trivial since a constanp will remain constant through-
preserving low-order Eulerian solution using an algorithm out the simulation angb does not appear in the transport
that ensures mass conservation and shape preservation. Eq. (10).

For comparison the scheme has also beenrunin an aliased, The spectral bicubic interpolation scheme (SBC,
and therefore unphysical, setup without the directional dif-Enomotq 2008 is a traditional semi-Lagrangian grid-point
fusion (abbreviated HEL-ND; No Diffusion); thus, the La- scheme in Eq. 0) based on spectral transforms on a
grangian parcels retain their initial values throughout thelatitude—longitude Gaussian griRifchie, 1987. The zonal,
simulation. If using exact trajectories, HEL-ND has no er- meridional, and cross derivatives are calculated using the
rors at the end of the simulation since the parcels will havespectral transform method and are then fed into the bicubic
returned to their initial position without altering their initial interpolation formula providing a fully two-dimensional
value. In the test cases presented here, the trajectories are rinterpolant (no directionally splitting that is commonly
exact, and the error norms are therefore non-zero. Note thaipplied in traditional semi-Lagrangian schemes). The
this is not the case for HEL since the mixing/diffusion is ir- number of zonal grid points is about twice the truncation
reversible. wave number (linear Gaussian grid) rather than about three
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times (quadratic Gaussian grid) since the nonlinear terms arecheme. In this intercomparison one scheme (with several
hidden in the interpolationG6té and Stanifortil988. The  variants) under this category participated and is referred
linear Gaussian grid (thus larger truncation wave numbero as HOMME (High-Order Methods Modeling Environ-
gives better accuracy for the same number of grid pointsment). HOMME is a dynamical core framework that cur-

especially at low resolutions. rently accommodates spectral elemefihdmas and Loft
Trajectories are computed using the traditional method2005 Dennis et al. 2005, discontinuous Galerkin meth-
based on bilinear interpolation along great circl&afi-  ods (Nair, 2005 Nair et al, 2009, and finite-volume meth-

forth and C6té 1991). A two-time-level schemeTemper-  ods Erath et al. 2012 on conforming quadrilateral grids
ton and Staniforth1987 is implemented for efficiency. It on a sphere. A gnomonic cubed-sphere grid defines the el-
is confirmed that the two-time-level scheme gives exactly theements, and each element is populated with Gauss—Lobatto—
same results as the three-time-level scheme us&shbgnoto  Legendre nodes for integral evaluations used in the transport
(2008. The time extrapolation is not used since the wind operators.
fields are known analytically at any timeTime integration The HOMME version used here is a continuous Galerkin
is conducted in spectral space with the unlimited schemefinite element method that relies on globally continuous
In physical space, it is conducted with the shape-preservingolynomial basis functions of order (here withp = 3 and
scheme. p = 6). Although HOMME has the capability to solve the
This scheme does not formally conserve mass and is notransport equation in advective form, it is solved in flux form
inherently shape-preserving although the interpolation it-(one equation fop¢ and one forp) for exact conservation.
self is very accurate; overshoots and undershoots are much compatible discretization method is used that guarantees
smaller compared to traditional quasi-cubic interpolation mass conservatiorméylor and Fournier2010. Time step-
(Ritchie et al, 1995. A simple global mass fix scheme based ping in HOMME is via an explicit three-stage strong sta-
on a variational formulation bgun and Suif2004 is used.  bility preserving Runge—Kutta method. For shape preserva-
Shape preservation is enforced by a quasi-monotone schemgn ¢ = @ is recovered after each Euler time step in the
by Nair et al.(1999. The quasi-monotone scheme is an im- Runge—Kutta method. The quasi-monotone limiter (shape-
proved version oBun et al (1996 that applies th&ermejo  preserving filter) forp is based on an optimization problem

and Staniforti{19932 filter. with equality and inequality constraint$gylor et al, 2009
Guba et al.2013.
2.4 Lagrangian parcel methods There is a significant dependency of the simulation quality

on the choice of the fourth-order hyperviscosity coefficient
Instead of periodically (every time step for FARSIGHT for low-resolution simulations with HOMME. For specific
and SBC) remapping between a Lagrangian and Euleriachoices used in HOMME, see Appendi8.
mesh, one may also trace the Lagrangian parcels through- HOMME has been incorporated as a dynamical core op-
out the integration (e.gChorin and Marsder200Q Cottet  tion in NCAR’s Community Atmosphere Model (CAM,
and Koumoutsakq2000 similar to the Lagrangian finite- Evans et al.2013. The configuration using the HOMME
volume method described above (TTS-I). This method is re-spectral element dynamical core in CAM is referred to as
ferred to as the Lagrangian particle method, and its imple-CAM-SE (Dennis et al.2012. The test case suite was also
mentation in this intercomparison will be referred to as LPM run with CAM-SE (equivalent to HOMME-p3) but using the
(Bosler, 2013. Apart from different remapping to Eulerian fourth-order hyperviscosity coefficients for climate simula-
grids, LPM is similar to HEL without diffusion (i.e., HEL- tion in CAM (see AppendiXA2 for details).
ND). Obviously, any set of parcels can be traced. LPM traces
quadrilaterals of a cubed-sphere mesh or the triangles of an
icosahedral triangular mesh by both tracing the centers an@ Results
vertices of the control volumes. The parcel trajectories are

computed using a fourth-order Runge—Kutta method. In this section the results for the transport schemes that par-
ticipated in this comparison are presented and discussed.
2.5 Series-expansion methods Horizontal resolutions are specified in terms of average grid

spacing at the Equator. The test case suite works with three
Transport scheme algorithms in which the solution is pro-resolutionsAa : 1.5°, 0.75°, and Ary, (the latter is scheme
jected onto a set of basis functions through a minimizationdependent and defined in Se&2), wherei denotes the lon-
procedure are broadly referred to as series-expansion metlgitude. The identical grid spacing is also selected for the lat-
ods as for example explainedDurran(2010. The spectral itudinal direction. The native grid parameters corresponding
transforms used in the SBC scheme are also based on s& these three average grid spacings at the Equator can be
ries expansions (global). However, since the expansions arfound in the Appendix for the respective schemes. In addi-
only used to provide gradients for the Lagrange interpolanttion, we make extensive use of CNs, which are also specified
the SBC scheme is not categorized as a series-expansidn terms of AA, so local CNs may differ from the “global”
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CN for schemes implemented on non-isotropic grids. Again3.1 Numerical convergence rates: Gaussian hills

the reader is referred to the scheme-specific Appendix to find

time stepsAt corresponding to specific CNs at any of the The goal of this test is to estimate numerical convergence

three resolutions. Data used to make histograms are avaikates for the normalized error norrs which are referred to

able as supplemental material. The test case specificatioas/C;" for the unlimited scheme and (if applicabllé)Sp for

consists of two analytical flow fields (one non-divergent andthe shape-preserving version of the scheme, where, co.

one divergent) designed to deform initially well-resolved ini- Gaussian hills and the non-divergent flow field are used for

tial conditions into thin filaments half way through the sim- the initial conditions. Normalized error norms are computed

ulation ¢ = T/2, whereT is the period). Thereafter the de- after one periodX) when the analytical solution is readily

formational part of the flow reverses so that the tracer dis-available. The initial condition is infinitely smootE{) so

tributions return to their initial condition at= 7. The de- that the smoothness of the initial condition is not a limiting

formational flow is superimposed on a constant zonal flowfactor for numerical convergence rates. Withinitial condi-

to challenge the schemes further and to guarantee that etions, for example, one cannot necessarily expect to achieve

rors do not cancel when the deformational flow reverses. Theaumeral convergence rates matching the formal order of ac-

initial conditions are based on distributions ranging from in- curacy for higher order schemes (see, for examideryris

finitely smooth surfaces to discontinuous slotted cylinders.et al, 2010. The meridional component of the velocity field

The distributions are placed into the western and easterm is not infinitely smooth at the poles. However, since all

hemisphere, respectively, so that model developers can invedields are constant at the poles (and in the vicinity of the

tigate the symmetry of the computed solutions. A series of di-poles) and since all metrics are based on mixing ratamnd

agnostics are used to assess various aspects of accuracy. F@t tracer mass, this lack of smoothness in the derivative of

specific details on the test suite setup, we refer to LSPT2012has not been found to influence the results. Hence this setup
Not all models provided a complete data set and/or rarwas designed to assess “optimal”’ convergence rates given the

the suite exactly complying with the test case specificationssmoothness of the initial condition amd

When data are missing or non-existent in histograms, the The numerical convergence rates are computed using a

value is set to-1. In scatterplots it will be clearly marked least-squares linear regression of the form

“NO DATA' if the data are missing. If modelers have diverted

slightly from the exact test case descriptions, it will be notedlog(¢;) = A; — K;log(AL), i=2, 00, (112)

in the text. We have chosen not to exclude models that did

not submit a complete data set as the data they did submiwvhere/C; denotes constants for the resolution range approx-

do, in our opinion, provide meaningful insights. It should be imately 3 to 0.3° (a Gnuplot script was made available as

noted that for schemes that are inherently shape-preservingupplemental material in LSPT2012 to perform the least-

(HEL, LPM, TTS), i.e., for schemes for which there does not squares regression). Note that the resolution range has de-

exist an unlimited version, the unlimited data are marked adiberately been chosen to include a rarlge:, 3°], where

“NO DATA" or “ —1". AX > 0.1°. With the 3 grid spacing, the mixing ratio dis-
The tests are grouped into six categories assessing the fotributions may be marginally resolved. The main interest
lowing: is not asymptotic convergence rates, which should be close

to the theoretical convergence rate, but rather the effect of
1. numerical order of convergence using smooth Gausmarginally resolved features in the convergence rate compu-
sian hills initial conditions, tations.
Convergence plots faf;, i = 2, oo, for the unlimited and
) shape-preserving versions of the schemes are given inTFigs.
tions, and2. The schemes have been grouped according to imple-
mentation grid. An accompanying histogram (Rgmiddle)
depicts the convergence rate fQr i = 2, c0. The ordering
of the data in the histogram will become clear as we discuss
“minimal” resolution in the next section. For the convergence
study the CN is held fixed. The labels on the convergence
plots and histograms include the CN appended to the scheme
acronym.
The histogram graphically depicts the range of conver-
gence rates represented by the ensemble of models. They
6. ability of the transport scheme to deal with divergent SPan from first-order convergence rates to sixth-order for the
flows (Nair and Lauritzen2010). unlimited schemes. Hence, the ensemble of models that par-
ticipated in this intercomparison span a significant range of
These topics are discussed in separate sections below. formal accuracies. Several observations are made regarding

2. "minimal” resolution using cosine bell initial condi-
3. ability of the transport scheme to preserve filaments
using cosine bells,

4. ability of the transport scheme to transport “rough”
distributions using slotted cylinder initial conditions,

5. ability of the transport scheme to preserve pre-existing
functional relations between tracers,
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Fig. 1. Convergence plots fd (first and third rows) and, (second and fourth rows) for the unlimited (first column) and shape-preserving
(second column) versions of schemes based on cubed-sphere and two-patch grids. Optimal convergence rates are based on linear least-squ
regressions to this data. Thin grey lines on each plot show slopes of second- and third-order convergence (top and bottom, respectively).
Initial conditions are the infinitely smooth Gaussian hills, and the normalized error norms are computed at iime

“optimal” convergence rates and will be discussed in sepa-order for £> already at the lower end of the resolution

rate sections below. range for which we assess numerical convergence (e.g.,
CAM-FV, CCSRG, CSLAM, HEL, HEL-ND, FARSIGHT-

whereas other schemes reach “optimal” convergence rates

Together with the absolute errors that will be commented@t finér resolutions (e.g., CLAW, CAM-SE, FARSIGHT-
on in the discussion of “minimal” resolution, perhaps the CN1.0, HOMME, SFF-CSLAM4, SLFV-ML/SL, MPAS,

most striking observation to be made regarding the con-'CﬁN)h- Cor?lmongor the Isghemes th{:lt c;]onvcre]rge asymptoti-
vergence plots (Figsl and 2) is that models transition cally throughout the resolution range Is that they converge at

from sub-optimal convergence to asymptotic convergencd@t€S €qual to or less than twi; < 2, except for the third-
rates at different resolutions. Some models converge at fuIPrder CSLAM, SFF-CSLAMS3, and CCSRG schemes that
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Gaussian hills, unlimited Gaussian hills, shape-preserving
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Fig. 2. Same as Figl but for schemes defined on a regular latitude—longitude grid (rows 1 and 2) and icosahedral/Voronoi meshes (rows 3
and 4). Note that the LPM scheme was run with fixed time step and not with fixed Courant number; therefore no CN value is appended to
the LPM label. For easier comparison thaxes are identical on all optimal convergence figures.

converge asymptotically already at approximatélyesolu-  3.1.2 Shape-preserving filters and convergence rates

tion. Other higher order schemes that are formally third-order

(MPAS), fourth-order (HOMME-p3, SFF-CSLAMA4), and \\hen examining the histograms for “optimal” convergence
seventh-order (HOMME-p6) do not converge at the asymp-ates fore, ande., (Fig. 3 middle and lower, respectively), it
totic rate at the lower end of the resolution range. The ef'fectiS immediately apparent (with the exception of CLAW, FAR-
of hyperviscosity cgefﬁcient on convergence rates'for SPECKIGHT, SBC), and not surprising, that shape-preserving fil-
tral element advection can be observed by comparing CAMxg(g reduce convergence rates. The most striking reductions
SE and HOMME-p3 (Figl). Another fact contributing tothe K are for the higher order schemes such as HOMME-p6,
discrepancy is the fact that in CAM-SE the transport test iSHOMME-p3 and SFF-CSLAM4 for which the convergence
implemented using theffline_dyn  option forwhichthe 5165 are reduced by four, two, and two, respectively. The for-

winds are held fixed throughout the tracer time step, Whereaﬁm”y third-order schemes CSLAM. MPAS. SEF-CSLAM3
in HOMME the winds are updated at every Runge-Kuttagee ‘requction of convergence rates of about 0.5. Schemes

step. that are approximately second-order accurate are less af-
fected (in an absolute sense) by shape-preserving filters. The
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observations made fdt, also hold in a qualitative sense for errors (number of flux evaluations increases with decreased
Koo. We also note that a posteriori shape-preservation fil-CN).
ters/fixers do not affect convergence rates (FARSIGHT and
SBC). 3.2 “Minimal” resolution AAp: cosine bells
3.1.3 Time step and convergence
Rather than assessing convergence rates, this test focuses on

LSPT2012 encouraged modelers to provide data for differ-absolute errors. In other words, we ask at what resolution
ent CNs (the CN here refers to the maximum zonal CN;modelers need to run their model to achieve a certain so-
see Eq. 24 in LSPT2012), especially for schemes allow-ution quality. The solution quality is quantified in terms of
ing for long time steps (CN 1) such as (semi-)Lagrangian the£; error norm for solutions using the same non-divergent
schemes. CSLAM, for example, was run with €NL.0 and  flow field as above but with less smooifil] initial condi-
CN=5.5. It is observed that as the time step is reducedtions. A less smooth initial condition is chosen to challenge
with CSLAM, the absolute errors increase since an increasethe schemes with a more realistic (in terms of smoothness)
number of remappings implies increased spatial errors untilnitial condition compared to the infinitely smooth Gaussian
the distribution can be represented by the polynomial reconhills. This is similar to the setup used Williamson et al.
struction functions (Figl, row 1 and 2). Since the CSLAM (1992 where both the advection test and shallow water to-
scheme was run with semi-analytic trajectories, temporalpography (test 5) usé! functions for mass distribution and
errors (due to trajectory computations) are minimal. Thesurface height, respectively.
asymptotic convergence rates for CSLAM are not affected Basically, the modelers repeated the numerical conver-
by time step in this setup. Similar observations are made fogence test (Sec8.1) with cosine bell initial conditions. The
the CCSRG. “minimum” resolution is defined as the resolution (speci-

The SBC scheme is also a semi-Lagrangian scheme, andied in terms of average grid spacing at the Equator) for
contrary to the CSLAM setup, inexact trajectories were usedwhich the normalized, error norm is approximately 0.033.
At lower resolutions the spatial errors dominate so the ab-This threshold was chosen based on CSLAM experiments for
solute errors increase with a decreased time step (similawhich the filaments were resolved in the sense that asymp-
to CSLAM). However, at high resolution the temporal er- totic convergence is reached; for CSLAM-CN5.5 asymptotic
rors start to dominate the standard error norms; with-CN  convergence with cosine bell initial conditions is reached at
SBC solutions become more accurate than the=C\N5 so-  approximatelyAi = 1.5° for which ¢2 ~ 0.033. The mini-
lutions when the resolution is finer than approximat&ly = mum resolution is estimated from a convergence plot (see
0.375. In other words, the temporal errors start to dominateFig. 4 in LSPT2012) and should be computed without and
as the distributions are very well represented by the basigif applicable) with shape-preserving filters. The “minimal”
functions used in SBC at high resolution. resolution used in the remainder of the test case suite should

The Eulerian scheme used in the ICON model was runbe A, for the unlimited scheme.
at CN=0.2 and CN=0.6 (Fig. 2, row 3 and 4). Contrary The “minimal” resolutions for the different schemes are
to the semi-Lagrangian schemes, the solutions achieved witdepicted graphically in the histogram in Fig.(top row).
longer time steps have larger errors throughout the resoluFirst of all, the Ainy, range is from approximately/10° to
tion range. Since ICON-FFSL is based on a low-order spa-over 2 resolution. This is a remarkable difference in reso-
tial reconstruction function, it is unlikely that the error is lution to achieve the same “quality” solution. In Fig.the
dominated by time-truncation errors throughout the resolu-same ordering is used for the histograms, making it easier
tion range. Rather it appears more likely that the larger CNto compare “optimal” convergence rates visually with “min-
errors are due to the simplified flux approximation for which imal” resolutions. The histograms f&; do not constitute a
errors increase with larger CNs due to more of the flux-areamonotonically increasing quantity going from left to right in
integrations being based on extrapolation of reconstructiorthe histogram plots. In other words, high-order convergence
functions. rates do not necessarily result in coarser “minimal” resolu-

For CAM-FV it is observed that the large CN solution tions or vice versa; in fact there seems to be no clear corre-
(CN=1.2) has smaller absolute errors than the €B8.2 lation betweenC; and Ain, in the resolution range consid-
simulations (Fig.2, row 1 and 2). Although the splitting ered here. This is perhaps even more apparent in the “scatter-
errors in the dimensionally split CAM-FV scheme increaselike” plot in Fig. 4. In fact, some of the schemes that are
with CN, these errors do not dominate for this test case setupamong the best performing schemes regardiiig, (e.g.,
Semi-analytic “trajectories” were used (analytic wind evalu- UCISOM, LPM) perform poorly in terms of convergence
ations atn + 1/2 were used in the simulations), so, as for rate. Had the test been run in a (high-resolution) asymptotic
CSLAM, the temporal errors due to “trajectories” can be ex- convergent regimel’; and Aim would most likely be in-
pected to be small. In conclusion, the absolute errors for theversely related. However, as mentioned the test is designed
two-time-level CAM-FV solutions are dominated by spatial to challenge schemes near the resolution limit rather than
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Fig. 3. Histogram of minimal resolutiol\Am (upper),K;, i =2, 00, which are the “optimal” convergence rates fr (middle) andls

(lower), for the unlimited (“un”, red) and shape-preserving (“sp”, green) versions of the schemes. The histogram is ordered monotonically
according toAim for the unlimited schemes so that. decreases from left to right. For schemes for which unlimited results are not
available,Axm for the shape-preserving scheme is used for the purpose of ordering (schemes concerned are CAM-FV, HEL, HEL-ND,
UCISOM, UCISOM-CS), and a placeholder value-et is used in all histograms. Note that the LPM scheme was run with fixed time step
and not with a fixed Courant number; therefore no CN value is appended to the LPM label.

focusing on resolutions for which the spatial distributions of ICON/MPAS and CLAW use FCT and TVD-type flux lim-
tracers are well-resolved. iters, whereas CSLAM uses a slope limiter. Results that
Shape-preserving filters (with the exception of CLAW, contrast unlimited and shape-preserving “minimal” resolu-
FARSIGHT and SBC) reduced “optimal” convergence rates.tions are not available for CAM-FV, CCSRG, UCISOM, and
The effect of shape-preserving filters on the “minimal” res- UCISOM-CS since only shape-preserving data are available
olution seems to go both ways (Fig, top). That is, some for those models.
schemes increase accuradyi(, increases) when the shape-  In general it is also noted that the “minimal” resolu-
preserving filter is used (most notably with MPAS, ICON, tions for schemes defined on icosahedral/\Voronoi grids have
SBC, CLAW), whereas other schemes experience a definer Ary, than schemes defined on cubed-sphere and regu-
crease (HOMME-p3, HOMME-p6, CSLAM). Itis noted that lar latitude—longitude grids. That said, since the measure of
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minimal resolution versus convergence rate preserved the total area for Whl¢hS |al’gel’ than a threshold
erere SIS valuer.

v The cosine bell initial conditions are chosen for this test

as they are quasi-smooth (but not infinitely smooth) and

5 have mixing ratio values that span the entire range from the

background value of.Q to the peak value) = 1.0. Slotted-

¢ cylinder initial conditions, for example, only have two val-

Y ues, and simulations using that initial conditions would there-

v fore not give information on how well the scheme maintains

2 ; ¥ . continuous and varying gradients.

v V The perfect scheme will havg close to 100 for all val-

! ues ofr. We say “close” to 100 and not exactly equal to 100
0s 1 o 2 25 since for Eulerian/semi-Lagrangian schemes that use a fixed

" grid one would need to truncate the exact Lagrangian solu-

Fig. 4.“Scatter-like” plot of the data shown as histograms in Big.  tion (for which ¢ = 100 for all7) to the fixed Eulerian grid

upper and middle rows. Each scheme is represented by a point ofPr the computation oft; however, that truncation error is

the plot with &, y) coordinates £ im, KC5). For clarity each pointis  likely orders of magnitude below the numerical truncation

not labeled with a scheme acronym. The purpose of this figure is teerrors (numerical diffusion and dispersion errors) introduced

show that there is not necessarily a correlation between “optimal’by the scheme itself. For fully Lagrangian schemes based

convergence rate and “minimal” resolution. on parcels, this test forces modelers to define areas associ-
ated with the Lagrangian parcels. Cell-integrated Lagrangian
schemes that track cells throughout the integration can test

resolution is the average resolution at the Equator, the reghow well the scheme preserves areas.

ular latitude—longitude grids have more degrees of freedom As explained in LSPT2012, a highly diffusive scheme

than cubed-sphere and icosahedral grid-based models. In thiends to increasés for lower threshold values (except

discussion we have not considered how amenable spherical = 0.1 for which ¢; decreases) and decreagefor higher

grids and schemes are to mesh-refinement applications.  values ofr (see Fig. 6a in LSPT2012). In other words, when
the base of the cosine bells is diffused, more area is covered

3.3 “Filament” preservation diagnostic £;: cosine bells by lower values ofp and less area is covered with higher
(near peak) values qf.

All tests above were based on traditional error norms com- The filament diagnostic gives insight into how gradients

puted at timg = T when the flow, in the absence of any nu- are distorted in terms of the ability to preserve the area of the

merical errors, has advected the distributions back to theidomain in which the mixing ratio is larger than the thresh-

initial position and shape. As discussed liauritzen and  old valuez. If the ¢;(t) curve is smooth and monotonically

Thuburn (2012, the first half of the simulation, where rel- decreasing as a function af the schemes diffusive char-

atively well-resolved features collapse in scalet(at T /2 acteristics are smooth and continuous. Schemes that tend to

the initial condition cosine bells have been deformed intosteepen gradients will spuriously forégr) > 100 for rel-

thin filaments), is typical for atmospheric flow. The second atively largetr values. Schemes that make use of “ad hoc”

half of the simulationf e [T/2, T]) does not resemble typ- fixers (that also alter gradients) may produce an oscillatory

ical observed flow patterns, but it is very convenient for ob- ¢:(t) curve.

taining an analytical solution under complex flow conditions.  Figure5 shows the filament preservation diagnosgti¢at

Partly motivated by that, a series of diagnostics were devel+ = T/2) using the cosine bell initial condition for the unlim-

oped for which an analytical solution is not needed, and ondted and (if applicable) limited/filtered schemes at resolutions

can thereby assess accuracy at any point in time. For exant.5° and Q75°. Results for¢s at the “minimal” resolution

ple, before the “unphysical” flow reversal at=T/2, one Al are not shown although requested in LSPT2012. As

could expect the schemes to be most challenged at least fdor the convergence plots, data have been arranged according

semi-Lagrangian and Eulerian schemes. to discretization grid. We also show a “minimal-filament

One such diagnostic is the filament diagnostic that is depreservation diagnostics as histograms in Biglhat is, the

signed to diagnose how well the thin filaments that developy axis on the histogram is thevalue for which¢; is 80; this

atr =T /2 are preserved. It takes advantage of the fact that value is referred to ag, and computed by solving

in continuous space the area spanned by tracer values larger

than some threshold value is conserved for a non-divergent;(t = t,,,) = 80, (12)

flow field. The filament diagnostid; (for a mathematical

definition of ¢, see LSPT2012), is designed to quantify how which here is computed by fitting a polynomial throughthe

well filaments are preserved in terms of how well a schemedata points near the crossing&fr) and¢; = 80. Note that
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Fig. 5. Filament preservation diagnostig(z) at 15° (first column) and r5° (second column) resolution, respectively, for the unlimited
(thick lines) and shape-preserving (thin lines) versions of the schemes. Note that TTS-I, LPM, HEL, and HEL-ND are inherently shape-
preserving and therefore only have “unlimited” data displayed. The LPM scheme was not run with fixed CN. The GR émd1075° is

1.08 and 2.0, respectively.

the solution to Eq.X2) is not multivalued for the data con- tendency of increaset;, from left to right with some out-
sidered here. For exampleif, = 0.6, then 80 % of the area liers. For example, UCISOM-CN1.0/5.5 performs exception-
associated with mixing ratios larger than 0.6 is preserved. Irally well compared to the schemes with similar “minimal
other words, the larget, is, the better the scheme preserves resolution”. Similarly, but in a opposite sense, HEL-CN1.0
the “peaks” of the cosine bells. performs worse than its “neighbors” in the histogram.

The histogram in Fig6 is mainly shown to investigate vi- Perhaps more interesting in the contextéefis to focus
sually if there is a relationship between “minimal resolution” on the shape of; as a function ofr. First of all, the more
andty. Had there been a simple linear relationship, the val-diffusive schemes tend to collapse toward a straight line with
ues ofry, would decrease/increase from the left to right in the negative slope fot approximately irf0.2 : 0.8], whereas the
histogram. As for the numerical convergence rates (#ig. less diffusive schemes tend toward a straight line with no or
there is no simple relationship indicating thatmeasures small negative slope. The smoothness ofgheurve may in-
other aspects of accuracy tham,,. That said, there is a dicate non-physical “ad hoc” fixers or anti-diffusive aspects
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Fig. 6. A histogram of threshold valuefor which the filament preservation diagnostj€r) is approximately 80.0 at resolutions® for the
unlimited (red) and shape-preserving (green) versions of the schemes. Above each column thervalueitten (if - = —1, there are no
data for that scheme configuration).

of a scheme. For example, the FARSIGHT scheme uses athe contour plots (the error norms are available in the supple-
“ad hoc” fixer for mass conservation and shape preservamental material for the interested reader). So in the interest
tion. The ¢ curves, in particular for FARSIGHT-CN10.4, of reducing the number of figures/tables, erréysand{ .,

are oscillatory and non-monotone. The SFF-CSLAM4 andas well as the minimum and maximum norms, are not shown.
CAM-FV0.2 schemes have a rather wide range ofalues All contour plots use the same coloring scale and contour
(approximatelyr € [0.6: 0.8]) for which ¢; exceeds 100.0, interval making it straightforward to compare schemes vi-
which is likely due to steepening of gradients. In conclusion, sually. It is immediately apparent, most notably in the areas
there are indications that this metric is most useful for test-away from the slotted cylinders where the field should be
ing schemes employing “ad hoc” fixers or schemes with anti-constant, whether a scheme is not strictly shape-preserving
diffusive terms or other mechanisms that may steepen gradiflight blue contour filling). Almost all unlimited schemes
ents. Note that this metric will not capture if the location of show “ripples” in this area. Similarly, overshoots over the

the filaments is incorrect (phase errors). slotted cylinders are immediately visible (dark red contour
filling). The wavelength of the spurious oscillations is related
3.4 Transport of “rough” distribution: slotted cylinder to the formal order of the schemes. For example, the oscilla-

tions for HOMME-p6 have a much shorter wavelength than
To assess how schemes perform with a rough (discontinughgse observed for ICON.
ous) initial condition, we show contour plots of solutions at  Thijs test, however, was specifically designed to assess
t =T /2 for slotted-cylinder initial conditions and the same whether shape-preserving filters truly eliminate undershoots
non-divergent flow as used in all tests above. The slottechnd overshoots while still preserving extrema. Finite-volume
cylinder has been used extensively in the solid-body ad-scheme based on rigorous flux computations and/or FCT lim-
vection test case to demonstrate that shape-preserving limters completely eliminate undershoots/overshoots (CSLAM,
iters effectively eliminate spurious grid-scale oscillations. |CON, MPAS). For schemes based on simplified fluxes and
Contrary to traditional specifications of the slotted-cylinder not using FCT limiters, small undershoots are visible (SFF-
initial condition, we have chosen to overlay it by a back- csLAM3/4, CAM-FV1.2). The UCISOM scheme has a
ground value of) = 0.1 instead of a zero background value. strictly shape-preserving limiting option. However, to avoid
Again, this is motivated by typical conditions found in the at- “excessive diffusion, the limiter has been relaxed, which ex-
mosphere where structures in tracer distributions frequentl;b|ains the undershoots with that scheme. If a scheme shows
Overlay some smooth baCkgrOUnd distribution. In that Caseripp|es with a Stricﬂy Shape-preserving filter, then it may be
positivity preserving limiters will not eliminate undershoots due to inconsistent coupling between the air mass and tracer
near the discontinuity. mass fields when the mixing ratio is extracted. For example, a

Contour plots for mixing ratio at = 7'/2 based on slot-  scheme that is not “free-stream”-preserving will suffer from

ted cylinder initial conditions are shown in Figs.8, 9, and  thjs deficiency.
10 (again, data are grouped according to the discretization The ability of the scheme to preserve the “plateau” of
grld) Inthe LSPT2012 test case, SpeCiﬁcation modelers Werghe slotted Cy”nders seems to be C|ose|y related to “mini-
asked to report on conventional error normsr(&t7’) inad-  mal” resolution in a qualitative sense except for the UCI-
dition to showing contour plots (at=7/2). Here we have  SOM and HEL scheme that perform better than would be

chosen not to depICtIIISt the conventional error norms as W%Xpected from the|Akm ranking_ Not Surprising|y the more
did not find any qualitative insights that were not visible in
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Fig. 7. Contour plot ofg att = T /2 using “rough” initial condition at approximately3® (columns 1 and 2) and.?5° (columns 3 and 4)
resolution without (columns 1 and 3) and with (columns 2 and 4) shape-preserving filter for a subset of transport schemes implemented on a
cubed-sphere grid. The scheme acronym is shown in the lower left corner of each plot.

diffusive schemes that have a smallek, also diffuse the 3.5 Preservation of pre-existing functional relation:

slotted cylinders. The pure Lagrangian schemes obviously cosine bells and correlated cosine bells

maintain the discontinuities in the slotted cylinder better than

the Eulerian/semi-Lagrangian schemes. All known tests for linear transport on a sphere consider as-
pects of accuracy in a single-tracer setup. As discussed in
detail in Lauritzen and Thuburif2012), the accuracy with
which schemes maintain relations between tracers is of sig-
nificant interest in chemistry—climate and climate model-
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Fig. 8. Same as Fig( for the remaining scheme defined on a cubed-sphere grid and two-patch grid (CLAW). For plots showing “CONSTANT
FIELD — VALUE IS 0.1", no data are available.

ing. To assess how well interrelated tracers are simulatedimulation progresses. In a purely Lagrangian scheme with
in an idealized setup, we use the same flow field as beforeno explicitly added mixing (for example, contour surgery)
Two cosine bell distributions, with mixing ratip and ac-  where parcels are traced throughout the simulation, any re-
companying “correlated” mixing ratig, are advected sep- lation between tracers is maintained, and hence the scatter
arately. The latter is related to the former initial condition points are stationary in the correlation plots.

through a non-linear (polynomial) relation (black curve on  The way in which scatter points deviate from the poly-
the scatterplots; Fig4l, 12, 13, and14). For any Eulerian or  nomial curve has consequences for the physical realizability
semi-Lagrangian scheme known to the authors, scatter pointsf the mixing introduced by the scheme. When mixing oc-
will deviate from the pre-existing functional curve as the curs in the atmosphere, scatter points (for example, located in
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Fig. 9. Same as Figs and8 but for regular latitude—longitude grid-based models.
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two different air masses) will move toward each other alongthat is not the convex hull, the mixing that the scheme in-
straight lines in the scatterplot. These lines are called mix4roduces is unphysical unmixing. Followiricauritzen and
ing lines. The area spanned by all possible mixing lines isThuburn(2012), this unmixing is categorized into two types
referred to as the “convex hull” and is the bow-shaped aredfor graphical illustration see Fig. C1 in LSPT2012) — range-
on the scatterplots. If the scatter point moves into any aregreserving unmixing that is unmixing within the range of the

www.geosci-model-dev.net/7/105/2014/ Geosci. Model Dev., 7, 1085-2014
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1.5°, unlimited 1.5°, shape-preserving 0.75°, unlimited 0.75°, shape-preserving
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Fig. 10.Same as Fig<, 8, and9 but for icosahedral grid-based models. (LPM resolution for 1.5 and 0.75 is 2.16 and 1.8.)

range of the initial condition. Note that in the scatterplots Associated with each area are mixing diagnostics that
(Figs.11, 12, 13, and14), only the upper part of the range- quantify the mixing in terms of normalized distances from
preserving unmixing area is marked with solid black lines; the pre-existing functional curve (Fig. B1 in LSPT2012):
the triangular area below the convex hull also belongs to theor “real mixing”, £, for range-preserving unmixing, arfg
range-preserving unmixing area and “overshooting” that isfor overshooting (for definitions of;, i =“r", “u”, and “o0”,
the remaining area on the scatterplot. When scatter pointseelLauritzen and Thuburr2012. Following LSPT2012 the
shift into the convex hull, the mixing is categorized as “real” ¢; is computed half way through the simulation=T7/2,
mixing. when the initial distributions are most deformed. As for
the filament diagnostié;, the mixing diagnosticg; do not

require any knowledge of the analytical solution. In fact,
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Fig. 11. Scatterplots (for subset of cubed-sphere models}af’/2 for the cosine bell and correlated cosine bell initial conditiongfand

&, respectively. First and third columns are for the unlimited schemes, and second and fourth columns are for the shape-preserving schemes
The first two columns are for simulations af. ~ 1.5°, and the last two columns are fark ~ 0.75°. The scheme acronym is shown in the

lower left corner of each scatterplot with the maximum Courant number (CN) appended. Above the scheme acronym the mixing diagnostics
(“real” mixing ¢r, range-preserving unmixing,, overshootingo) are given.
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Fig. 12.Same as Figl1for the remaining cubed-sphere models.
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Fig. 13.Same as Figl1for models defined on a regular latitude—longitude grid.
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Fig. 14.Same as Figl1for models defined on an icosahedral/Voronoi mesh.

and contrary to the filament diagnostic, which relied on the The values for the mixing diagnostics for each scheme

wind field being non-divergent, the mixing diagnostics can are shown in the lower left corner of each scheme’s scatter-

be applied in any flow setting and is hence more generallyplot. The mixing data are also shown in histogram format in

applicable. For a three-dimensional extension of this testig. 15, where¢; has been normalized with CSLAM values

case, se&ent et al.(2013. to provide a reference. Before discussing the quantification
of the mixing, it is insightful to analyze the scatter data qual-
itatively.
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Mixing diagnostics at resolution AL = 1.5°
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Fig. 15. A histogram of mixing diagnostics (stacked) at resolutians~ 1.5° (upper),Ax ~ 0.75° (middle), andAA ~ Aim (lower). The

ordering is according to minimal resolutiakiiy, for the respective unlimited schemes (see Bifjrst row). Above each scheme acronym

there are two columns of data. The left column is for the unlimited scheme, and the right column contains data for the shape-preserving
version of the scheme (if applicable). The height of each colored column (¢regellow ¢, red£o) is the ratio betwee#;, i € [“r", “u”

“0"] for the scheme in question normalized by thyefor CSLAM (CN5.5) atAAr = 1.5°. Note that they axis scale are different. The stacked
histograms for SLFV-ML and CLAW exceed the plotting range. If no data are available, the mixing data are negative (é)tbateyvere

not submitted for FARSIGHT, there are some mixing diagnostics givethite and Dongarr,g2011). The numerical values fat; are listed

in the scatterplots in Figd1, 12, 13and14.

3.5.1 Scatter shape on the scatterplot. Obviously, diffusive schemes will damp
the extrema, which, in terms of the scatterplot, cause scat-
ter points to shift toward the background scatter point value
(0.1,0.892 and away from the lower right corner of the
convex hull. This is particularly apparent in almost all low-
rresolut|0n A\ ~ 1.5°) scatterplots for the shape-preserving
version of the schemes in Figkl-14 (second column).

Scatter points located near the lower right corner of the con-
vex hull (x, &) = (1.0,0.1) are the mixing ratio values mak-
ing up the extrema of the cosine bells and correlated co-
sine bells. The opposite extreme of the convex hull (uppe
left corner(yx, &£) = (0.1, 0.892) contains the majority of the
data points as that is where the background value is located
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Considering finite-volume schemes/t ~ 1.5°, it is ob- Quantification of mixing
served that the scatter points make up a bow shape (ex-
cept CSLAM-CNS5.5). In addition to all being finite-volume- The quantification of mixing¢;, i ="r", “u”, “0”, is de-
based schemes, shape preservation is enforced either througifted in Fig.15 using a histogram. The purpose of this
FCT or by constraining the reconstruction function. When figure is to show how/; varies among schemes at the res-
the resolution is increased to/® (fourth columnin Figs1l  olutions 15° and Q75° as well as to observe how shape-
and14), most of these schemes no longer have a bow-shapeBreserving filters affect; for each individual scheme. The
scatter, but the lower boundary is curved so that the scattelfistogram is ordered according to “minimal” resolutiam
points “track”/follow the pre-existing functional curve much (see Sect3.2) from high value ofAin (left) to low value of
more closely with the majority of the scatter points inside AAm (right). The numerical value of; is normalized with
the convex hull. Some schemes (FARSIGHT-CN1.026Q  ¢; for CSLAM with CN5.5 ¢“"(CSLAM)) at resolution
ICON-CNO.6 at 075°, MPAS-CNO.8 at (075°, SBC-1.0 at AX = 1.5. The reason for a graphical representation of “nor-
1.5°) tend to lift the tail of the scatter data indicating that malized” data(ii/ﬂf“")(CSLAM), rather thart; is to give the
some steepening of the gradients is taking place. reader a reference for the amount of mixing. The mixing di-

If a scheme is not shape-preserving, scatter points mawgnostic is relatively new, and numerical valuestpimay
shift outside the convex hull either into the range-preservingbe less meaningful to the reader than normalized data. The
unmixing or overshooting area. Probably the most detrimen-actual values of; for a particular scheme can be found in
tal type of unmixing is overshooting unmixing or equiva- the scatterplots (Figd.1, 12, 13, and14). Schemes with no
lently range-expanding unmixing, which in this experimental data are listed witlf; = —1. Note that the spread among the
setup is manifested by scatter points shifting beyond the upschemes fo,gl./gl(un)(CSLAM) spans a large range (for ex-
per left corner of the convex hull into the overshooting area.ample, at 15° the total mixing is more than 20 times the
If a scheme is shape-preserving, no scatter points will becSLAM reference mixing).
shifted into the overshooting unmixing area. In other words, To show the large amount of data concisely, the histograms
the scheme is guaranteed not to expand the range of the ingre stacked so that the total height of each rectangle is total
tial condition mixing ratios. Note that non-zero background normalized mixing,
values have been chosen fpiso that a positivity-preserving
limiter (positive definite) will not prevent undershooting. b + by + to ,
That said, a scheme may still exhibit non-shape-preserving“V(CSLAM)  ¢V(CSLAM)  ¢¥"(CSLAM)

behavior inside the range of the initial conditions that will and the colors show the breakdown into the different cate-
not be accounted for if, but rather inéy. As expected, all gories of mixing. For example, the histogram for CSLAM-
unlimited versions of the schemes show overshooting MiX-cN5 5 (unlimited) is of exactly height three, and each col-
ing of varying amounts. For all the finite-volume schemes, ;. saction is height one

the scatter points in the overshooting mixing category seem The specific choice of CSLAM for the normalization is
to gather around the extension of the straight line making UBnotivated by the “minimal” resolution. That is, At. ~ 1.5°

the lower boundary of the convex hull, almost as an extenye fjjaments are marginally resolved for CSLAM-CNS5.5.

sion of the convex hull shape towards the upper left corner OfThe CSLAM scheme performs, in general, a little above av-
the scatterplot. The FARSIGHT and CLAW schemes resultypq0 compared to the other schemes in this collection, and

in a much different shape that differs from an “extension” of j; i therefore more suitable for reference purposes than, for

the conl:/e(;( Zu” shspe. o diatelv visible in th example, the “best” or “worst” performing schemes. In ad-
As a ude “to above, itis |mrr]'e lately visible in the scat- yiiion it is based on a traditional finite-volume approach and

terplots if the “shape-preserving” versions of the schemes arg o, s 3 suitable benchmark for schemes based on emerg-

strictly shape-preserving. For example, CAM-FV has slight;, 1, merical methods and untraditional designs that wish to

over_sho_otmg mixing even though the dlmenspnally split compare with “traditional” transport formulations. Neverthe-
application of one-dimensional operators is strictly shape-es it is noted that similar “traditional” schemes could also
preserving. The overshooting/undershooting occurs Sinc‘ﬁave been used for this purpose

shape-preservation is not guaranteed in the direction traverse
to the coordinate directions. Mixing diagnostics at fixed resolution and “minimal”

As can be proven mathematically, only schemes that argesoplution
monotone according to the definition blarten et al(1987)
will guarantee that no range-preserving unmixing occursAn apparent first question about the histograms in Eby.
(Thuburn and Mcintyre 1997). Unfortunately only first-  (upper and middle) is whether the amount of “real” mixing
order schemes are monotone according to this definitiorfor the unlimited schemes decreases with increased “mini-
(Godunoy 1959. In all schemes where the diffusive error mal” resolution Axm), which is used for the ordering of
is not dominating, we indeed see that the shape-preservinthe mixing data. In general that is the case; there is a gen-
schemes produce range-preserving unmixing. eral trend for a monotonic decrease dngoing from left

(13)
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to right in the two histograms shown in Figj5. While the (see, for example, Sect. 2.1 Mair and Lauritzen2010.
relation between “minimal” resolution arfdl is, in general,  Hence this test case forces the modeler to consider such cou-
as expected (the highexiy, the smallere,), it is perhaps  pling that may otherwise not be considered when the flow
more interesting to focus on the schemes that do not folis non-divergent. That said, even for the non-divergent flow
low this trend and potentially provide insights that., field, the non-preservation of a constant mixing ratio could
does not. Perhaps the biggest outlier in this ensemble i®e a result of inconsistent coupling between air and tracer
UCISOM-CN5.5, which has at least one order of magni- mass (at least for finite-volume type schemes). In addition to
tude less real mixing and unmixing compared to schemesssessing the consistency of the coupling, that accuracy of
with similar “minimal” resolution. Another “outlier” is the  the coupling between air and tracer mass is assessed.
unlimited HOMME-p6-CNO0.13, which has higher levels of Normalized error normsg, €0, dmin, Pmax) at AL ~ 1.5
¢y and ¢, than schemes with similar “minimal” resolutions, resolutions are shown in the histogram in Fi§. The min-
which is due to spurious grid-scale oscillations. HEL, like imum (¢pmin) and maximum normsgax) are defined in
UCISOM, is an outlier, and it clearly shows that HEL was LSPT2012. Although LSPT2012 also requested these error
specifically designed to minimize numerical mixing as the norms atAi ~ 0.75 andAA &~ An,, we did not find intrigu-
mixing diagnostics are much smaller than for schemes withing insights by analyzing these data, and for brevity the his-
similar “minimal” resolutions. tograms for this data are omitted (the data are available in
In the last row of Fig15, the normalized mixing diagnos- the supplemental material). Except for CAM-FV and FAR-
tics at the “minimal” resolution for the respective schemesSIGHT, the divergent data are ordered similarlyAan, in
are shown. Had\ A, been a proxy for mixing, all histograms terms of magnitude (Fig3, top). Note that schemes based
would have had the same height. Here the outliers describedn FCT limiting in general improve accuracy when shape
above are very apparent. This shows that the amount of nupreservation is enforced, whereas schemes based on recon-
merical mixing varies significantly even though tteerror struction limiting degrade the error norms.
norms are the same. This behavior was well described by
Thuburn and Mcintyr¢1997): “Shaping two tracer fieldsthe 3.7 Algorithmic considerations
same way does not imply shaping them the right way”. In
other words, the mixing diagnostics emphasize a differentGeneral properties of the algorithms are given in Table
aspect of accuracy than normalized error norms (in this caséirst of all, the width of the computation halo used to update

specified withAim). cell/grid-point value is listed. For example, if only the imme-
diate neighboring cell-average or grid-point values are used,
Effect of shape-preserving filter on mixing the width of the halo is one. This width should give an indi-

cation of message sizes in parallel computing environments.
For all schemesg, is zero or close to zero when the shape- The number of communications needed per time step is in-
preserving filter is applied (as expected). With the excep-dicated through the number of stages used in the scheme.
tion of SBC-CN5.2 (atAx = Aipy), all schemes see a re- The minimum number of communications needed to com-
duction in¢, when using a shape-preserving limiter. Shape-plete a simulation can, in general, be deduced from the stable
preserving limiters usually degrade conventional error normgime step limitations of the scheme. Here that is specified in
compared to the unlimited scheme. On the contrary, the “unterms of maximum Courant number. For schemes that are not
mixing” diagnostic, which accounts for spurious unmixing, Courant-number-limited but rather limited by the shear of the
improves. flow, we list “Lipschitz”, which refers to the criterion for sta-
The effect of shape-preserving filters on “real” mixing bility for many trajectory algorithms in (semi-)Lagrangian
varies among the schemes. Some schemes see a reductisghemes. To indicate possible multi-tracer efficiency, it is
in ¢;, and some see an increase in “real” mixing compared toalso listed what parts of the algorithm can be reused for each

the unlimited versions of the schemes. additional tracer. Of course for a given number of tracers, the
efficiency is dependent on all parameters in this table and not
3.6 Divergent flow experiment just on the amount of information that can be reused.

Here we repeat the experiment described in Se2tout re-

place the non-divergent wind field (used in all prior tests)4 Summary and conclusions

with the divergent wind field defined in LSPT2012. All other

settings are the same: time step, cosine bell initial condi-Results from a wide range of schemes that have exercised
tions, etc. The purpose of this test case is to have modela recently proposed test case suitayritzen et al. 2012

ers demonstrate that their scheme is well-behaved also foare presented and analyzed. It is the purpose of this paper to
divergent flow fields. For some classes of schemes, such gsrovide a catalog of results for an ensemble of state-of-the-
finite-volume schemes, the coupling between air mass andrt transport schemes for global atmosphere/ocean modeling
tracer mass must be considered in divergent flow settingss well as to investigate what aspects of accuracy different
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Fig. 16. Histogram of normalized error norméy( £s0, ¢min, $Pmax in first, second, third, and fourth row, respectively) for the divergent

flow field test case for the unlimited (“un”) and shape-preserving (“sp”) versions of the schemes, respectively, &5. The ordering is
according to minimal resolution A, (see Fig.3 first row). The value “1” indicates that no data are available. The appended CNs are for

the non-divergent flow field (for consistency with the other histograms); this test was run with the same time step as for the non-divergent
flow tests. However, the maximum velocities are smaller than for the non-divergent flow, and hence the actual CNs are smaller.
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Table 3. Data potentially relevant for computational efficiency. Columns are scheme acronym, width of halo or computational stencil to
update tracer value, number of stages for multi-step time-stepping algorithms (right-hand side evaluations), CN time step restriction (“Lips-
chitz” is a flow-dependent time step limitation), and what information can be reused for each additional tracer.

Scheme Width of halo  # stages Max.CN Reuse

CAM-FV 3 1 Lipschitz  Trajectories
CAM-SE 1 3 0.26 None

CCSRG 2 1 Lipschitz  Weights

CLAW 2 1 1.0 None

CSLAM 3 1 Lipschitz  Weights

FARSIGHT 2 1 Lipschitz  Weights

HEL 3 1 Lipschitz  Weights

HEL-ND 3 1 Lipschitz  Weights

HOMME-p3 1 3 0.26 None

HOMME-p6 1 3 0.13 None

ICON-FFSL 2 1 0.8 Weights

LPM 1 4 Lipschitz  Trajectories

MPAS (sp) 2 3 1.0(1.7) None

SBC (sp) 1(9) 1 Lipschitz  Trajectories
SFF-CSLAM3 3 1 1 Weights
SFF-CSLAM4 4 1 1 Weights

SLFV-SL 2 2 1 Coefficients for gradients
SLFV-ML 2 2 1 Coefficients for gradients
TTS-I 1 1 Lipschitz  Trajectories, weights
UCISOM 3 1 Lipschitz  None

UCISOM-CS 3 1 Lipschitz  None

diagnostics assess and their usefulness. This could provida certain level of accuracy (defined in terms of a root mean
guidance for future transport scheme developers and facilisquare error norm). This resolution was referred to as “min-
tate their development process. Below is a list of the differ-imal resolution” AAmy). The range ofAA varied from ap-
ent tests and a short summary of what aspects of accuracy th@roximately 01° to more than 2 The schemes have been

test/diagnostics shed light on. ordered according to increasing.y,, when other accuracy
diagnostics were depicted as histograms. Doing that with
4.1 Numerical order of convergence (Gaussian hills convergence rates showed no clear relationship between
initial condition) Aim and numerical convergence rates. In fact some of the

L I . lowest order schemes performed best with respestitg.
For infinitely smooth initial conditions, convergence data are P P

examined in the resolution range’[3.3°]. This range was 4.3 Ability of the transport scheme to preserve

deliberately chosen so that the fields may only be marginally filaments

resolved at the low resolution end of this resolution range.

It was observed how different schemes converge throughouthe filament diagnostié (t) was introduced to quantify how
the resolution range at their formal convergence rate and howvell thin filaments are preserved. This diagnostic requires the
other schemes reach asymptotic convergence rates at highfow to be non-divergent since it relies on the fact that, for
resolutions. The effect of shape-preserving filters on convera non-divergent flow field, the area of the sphere for which
gence rates was also examined. The convergence rates atite mixing ratio distribution is above a threshold valués
effect of shape-preserving filters varied significantly amonginvariant. Measuré; quantifies how much of the initial con-
the schemes that participated in this intercomparison. Thelition area, for which the mixing ratig is larger thanr, is
greatest reductions in convergence rates were seen for fopreserved. By plottings as a function of, one can examine
mally high-order schemes for which rates dropped by severahow gradients are diffused or steepened and how uniform that
orders to about second-order. damping of gradients is. This test was found particularly use-
ful to identify how some filters, and limiters tend to perturb
gradients non-monotonically (e.g., “ad hoc” and “a posteri-
" filters/limiters).

4.2 “Minimal” resolution (cosine bell initial condition)

ori
To assess absolute errors and to challenge the schemes Wl?h
a slightly less smooth initial conditiorC&), modelers were
asked which resolution was needed to provide solutions at
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4.4 Ability of the transport scheme to transport There are no explicit diffusion parameters in the CAM-FV
“rough” distributions transport scheme. However, there is implicit diffusion from
the PPM algorithm used with the Lin—Rood scheti@ @énd

Discontinuous initial conditions were used to expose shapeRood 199§. CAM-FV also makes use of a filling algorithm
preserving limiters as most unlimited schemes produce sigto ensure positivity.

nificant unphysical oscillations (under- and overshoots).

Contour plots were shown for all schemes to compareA2 CAM-SE

schemes easily and visually. Note that the same contour in-

terval and coloring is used for all schemes! This test exposed he resolution in CAM-SE is specified through the number
any non-shape-preservation in filters intended to enforcef elements (NE) in each coordinate direction on one cubed-

shape preservation and how the infinite gradients become fisPhere panel and the number of quadrature points (NP) in
nite. It is also directly visible how diffusive the scheme is. ~ €ach coordinate direction of an element. The average resolu-
tion (in degrees) near the Equator is

90
T NE(NP—=1)°
This test is used to assess how schemes perturb a pre-existing CAM-SE, NP is set to 4.
non-linear functional relation between tracers and quanti- The hyperviscosity coefficients are.83% 10*¢m?s1,
fies the mixing that the scheme introduces. The mixing is3.8 « 1015m*s2, 3.8 x 104 m?sL, and 18 x 1013 m?sL
classified into different categories to quantify the amountfor resolutions NE=10 (Aim=3°), NE=20 (Aim~
of physical realizable mixing and spurious unmixing. The 1 5°) NE=40 (Aim~0.75°), and NE=100 (Aim=

shapes of the scatterplots were examined, and large difg 3°), respectively. The hyperviscosity coefficients are com-
ferences between the schemes have been discovered. A'?ﬂlted so that at NE 30 the coefficient is D x 101°m? s1

shape-preserving limiters affect the scatter shape in differenjng scales with resolution as
ways. It was observed that minimal resolution., is not

: o AL\ _
necessarily a good proxy for how well a scheme maintains,(Ax) = (_) 10 mtst, (A2)
pre-existing functional relations between tracers. From the T
results it is quite clear that the mixing diagnostics measureyhere, ~ 3.2 was chosen to match CAM-SE default set-
a different aspect of accuracy compared to conventional eftings, which is similar to values used in the literature (e.g.,
ror norms. In particular, they may be used assess if a shaperakahashi et 412006. At resolutionsAx = 3.0°, 1.5°, 0.75°
preserving filter makes the solution more physically realiz- 3ng 30°, the time step is\t = 900's, 450s, 225s and 90's,
able (overshooting unmixing should be exactly zero; rangeyespectively.
preserving unmixing should decrease) and how much real Tne jgealized test cases are implemented in CAM-SE us-
mixing the filter introduces. ing the offline_dyn option. In that configuration the
winds are constant throughout the Runge—Kutta time step-
ping and not updated at every stage (as is done in HOMME).

4.5 Ability of the transport scheme to preserve

pre-existing functional relations between tracers AV (A1)

4.6 Ability of transport scheme to deal with divergent
flows

: . . A3 CCSRG
To force the modeler to consider density of air and tracer

mass coupling (at least for finite-volume type schemes), acCSRG is implemented on a latitude—longitude reduced

divergent flow field is considered. grid. The presented CCSRG results are obtained on the grids

with 20% reduction (20 % fewer points than on a regular

latitude—longitude grid with the same resolution at the Equa-

tor). The grids are constructed with the algorithmFaideev

(2013. The grid reduction starts from approximately48S

(see Tolstykh and Shashkjn2012 for grid statistics and

Al CAM-EV pictures). Semi-analytical trajectoriebldir and Lauritzen
2010 are used. For the.8° and Q75° resolutions, a non-

CAM-FV uses the regular latitude—longitude grid, and asdimensional time step df /110 and7’/220, respectively, is

such the number of zonal grid points is 3@0.. For the 15° used for the CMx 5.7 simulations. The time steffg600 and

grid resolution, time steps df /2400 and7 /480 are used 7/1200, respectively, are used for GNL.O runs.

for the CN~ 0.2 and CN~ 1.2 simulations, respectively. For

the Q75° grid resolution, the time ste®/7200 andr /960 A4 CLAW

are used for the CR 0.2 and CN~ 1.2 simulations, respec-

tively.

Appendix A

Exact experimental settings

The sphere grid used for the computations is described in
Calhoun et al.(2008 and is based on a novel mapping
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that transforms a single logically rectangular uniform was used for the CR 5.5 simulations, respectively. For

Cartesian grid to the sphere. Our grid is similar to the CN~ 1.0 runs, the time steps werg/600 and7 /1200,

cubed-sphere grid in that it is made upM N grid patches  respectively. The shape-preserving filter is the fully two-

stretched to fit the sphere. Whereas the cubed-sphere usdgmensional limiter byBarth and Jespers€h989 that scales

six square patches, our grid consists of two square patcheshe fully two-dimensional reconstruction polynomial of de-

one for each hemisphere, as shown in Fid. For all gree two so that its extrema are within the range of the sur-

tests, we used® x N grids with resolutions in the range rounding cell-averaged values.

N = (30,60, 120 240,480,960, corresponding to angles

A=90/N = (3.0°,1.5°,0.75°,0.375°,0.1875, 0.09375). A6 FARSIGHT

For the tests involving a minimum effective angle, we used

N =640 (et =0.28125) for the shape preserving case SeeWhite and Dongarr§201]) for scheme details.

and N =960 (e =0.1875) for the unfiltered case. To

generate the sphere grid, we map the computational domaiA7 HEL(-ND)

[—3,1] x [—1, 1] using a simple mapping (¢, n) described

in Calhoun et al(2008. The resulting finite volume mesh HEL and HEL-ND use the same settings as for CSLAM. The

cells are nearly uniform in size. The computational meshfilter parameters are the same in HEL and HEL-ND: both

width for a given resolution i&\x = Ay = 2/N. are run without filters in the underlying first-order version of
Clawpack uses a variable time-stepping scheme andSLAM. The number of Lagrangian parcels are equal to the

chooses time steps based on a maximum wave speed, cdlumber of grid cells, and the parcels “survive” for the total

mum CN numbetymay is computed as centers with the same area and value as the corresponding

Eulerian grid cell.
(luijl, lvijl)

Omax = AtAx maX— , (A3)

ij i A8 HOMME

whereA;; is the area of mesh celj, Ar the time step just L o\MME and CAM-SE use the same numerical model with
taken,u;; andv;; speeds at the andy faces of mesh celli, oy 4 difference in the choice of ordgr= NP—1 of polyno-
and Ax the (constant) computational mesh width. Under themial basis functions, hyperviscosity coefficientind hyper-
assumption that the wave speeds do not change dramatical[ylscosity scaling). The resolution is obtained via EGY).

from one time step to the next, we can satisfy a desired CFlgo HOMME simulations. we choose = 3 because of its
conditiona in the next time step by choosing a new as common use (see CAM-SE default parameters)ardé to

a demonstrate performance for the higher order scheme. If one
Atnew= amaxAt' (A4)  uses NE as in EqAQ) for the p = 3 setting, then NE2 for
p = 6 corresponds to the equal equatorial resolutions in both

For the results presented here, weaet 0.95. Clawpack  5ces.
does not make use of any explicit diffusion parameters or Thg fylly collocated formulation of the spectral element
artificial viscosity. _ _ method used in HOMME and CAM-SE has a grid-scale com-

The Fortran code and Python scripts for running thetational mode that must be controlled with some type of
benchmark examples, and Matlab scripts for visual-gahijization Ainsworth and Wajig2009. Here for stabiliza-
ization can all be downloaded from the author's web (i, \ve use well-tested hyperviscosi®énnis et al.2012.
page [Qttp://math.boisestate.edu/~calhoun/www_personalin nractice, hyperviscosity coefficients tuned for one reso-
research/NCAR_workshop/ lution Axo. Then for other resolutions the hyperviscosity co-
efficient is calculated similarly to EgAQ). Note thatv is not
tuned for every single simulation in this study. In more de-

CSLAM is implemented on an equiangular cubed-sphergi@il afterp is defined, we specify scalingand whether the

A5 CSLAM

grid. The average resolution at the Equator is given by shape-preserving Ii_miter i§ L_Jsed_. For the reasons explained
below (SectA8.1), if the limiter is off, we seth = p + 1.
A @ (A5)  Limited simulations are configured with= 3.0 for p =3
Ne’ andn = 4.0 for p = 6. Next, the bestg is chosen for one

where N x Ne is the number of control volumes on each simulat.ioln With resolqtiomko. Eor this, we use stfe\nda.rd er-
face/panel of the cube. Semi-analytical trajectories are usefrs: mixing diagnostics, and filament preservation diagnos-
(Nair and Lauritzen2010. The diagnostics do not change tics: Finally, for any given resolutiona,

significantly when using non-analytic trajectories (C. Erath, 0

personal communication, 2013). For th&%land Q75° reso-  ,(A) = vg (ﬂ) )

lutions, a non-dimensionless time stepZof120 andr’/240 Ako
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Fig. Al. The two-patch sphere grid used by the CLAW scheme.

Contrary to the CAM-SE setup, the winds are updated inwhereAx is the average distance between neighboring cell

time at each stage of the Runge—Kutta time stepping. centers ande is the earth radius. In Tabla2 the applied
. ) ) grids are listed together with their effective resolutions and
A8.1 More on hyperviscosity scaling applied time steps. The wind vector used to define the swept

| f d on. diff ¢ artificial i flux areas is computed by evaluating the analytical wind vec-
n case of tracer advection, different amounts of artificial dis-; - .+ the center of the cell side at time. 1/2.

sipation affect performance of the scheme in various ways.

For example, withy = p + 1, the theoretical spatial conver- a10 LpMm

gence order ip + 1. If n < p+ 1, convergence rates are ex-

pected to be of the order af Bigger amounts of hypervis- The Lagrangian particle method relies on the flow map,
cosity raise standard errors but improve preservation of prex(a, ¢), giving the trajectory of fluid particles, wheee is
existing functional relations and filament preservation diag-a Lagrangian parametertime, andx position Chorin and
nostics to a certain degree. It is natural to chapsep+1to Marsden 200Q Cottet and Koumoutsakp2000Q. The flow
recover the higher order method and demonstrate its propeimap satisfies

ties; to explore the scheme in applications, smaller values of

n should be used. In addition, the use of the shape-preservin&x(a N =ulx@.0),1), x(0) =a (A6)
limiter leads to smaller orders of spatial converger®alfa Dt A ' '

et al, 2013. Therefore, for the unlimited simulations we
setn = p+1 to maintain characteristics of the higher or-
der method. For the limited simulations, we take- 3.0 for

p =3 andn =4.0 for p =6. We call the former “conver-
gence regime” and the latter “mixing regime”. Chosen pa-
rameters are summarized in TaBlg.

whereu is the given fluid velocity, and the scalar is advected
along patrticle trajectories,

%q)(x(oc,t),t) =0. (A7)

The sphere is represented as a union of disjoint panels,

A9 ICON-FFSL S = Uf.\’:lP,-. We present results in which the panels are ei-

ther the quadrilaterals of a cubed-sphere mesh, or the tri-
The ICON grld is derived from a Spherical icosahedron that iSang|eS of an icosahedral triangu|ar mesh. The mesh corre-
made up of 20 equilateral spherical triangles. This base gridponds to a discretization of the Lagrangian parameter. The
is further refined in a multi-step procedure, until the desiredscheme tracks two sets of particles, at the centers and vertices
resolution is reached. In a first step, the root division step, theyf the panels, indexed by=1,..., M + N, whereN is the
edges of each base triangle are divided intqual sections  number of panels and the number of vertices. Each par-
(termed Rn). Connecting the new edge points by great circlgjcle has a Lagrangian parameter valag, position,x ; (),
arcs y|e|d912 Spherical triangles within the Original triangle. and scalar Va|uez§j. We emp'oy Cartesian coordinates for

This step is followed by bisection steps (termed Bk), where the Lagrangian parameter and position. The particles are ad-
each triangle is consecutively subdivided into four smalleryected in the flow,

triangles. This results in a so-called RnBk grid. The inter-
mediate grids and the final grid are further optimized using 4 = (). 1 A8
spring dynamicsTomita et al, 2001), with the spring coef- dtx’( ) = ulxj0).0), (A8)
ficient set tog = 0.9. For a given resolution RnBk, the total

number of cells can be computed from using fourth-order Runge—Kutta, with initial condition

x;(0)=a;. The total scalar is computed by (¢)~

ne=20n>4". SN #:iAi, whereg; is the scalar value at the center of panel
The average resolution at the Equator was computed ad/ @nd Ai s its area. To maintain accuracy, a remeshing
follows: scheme is applied at regular intervals. At a remeshing step,
_ sayt = tym, New particle data are defined;;, «;, ¢,), where
Ahave= 360° Ax X is a grid point on either the cubed-sphere or icosahedral

’

e mesha ; the corresponding Lagrangian parameter satisfying
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Table A1. HOMME hyperviscosity parameters.

Reason p Limiter Resolution Hyperviscosity v scaled At
coefficienty [m*s™1] as [s]
Convergence 3 No limiter 1°5 6.6x 104 Fourth order 432
Convergence 3 No limiter 0.75 4% 1013 Fourth order 216
Mixing 3 Optim. limiter 1.5 3.2x 1015 Third order 432
Mixing 3 Optim. limiter 0.7% 4x 10t Third order 216
Convergence 6 No limiter 1°5 1x 1014 Seventh order 216
Convergence 6  No limiter 0.75 7.8x 1011 Seventh order 108
Mixing 6  Optim. limiter 1.5 1.3x 10 Fourth order 216
Mixing 6  Optim. limiter 0.7% 8x 1012 Fourth order 108
For eff. res.
Convergence 3 No limiter 0°9 8.9x 10'3 Fourth order  259.2
Mixing 3 Optim. limiter 0.8 4.7x 1014 Third order ~ 230.4
Convergence 6  No limiter 197 2.1x 10 Seventh order 240
Mixing 6 Optim. limiter 1.2 4.6x 1013 Fourth order  172.8

Table A2. Target resolution in degrees (column 1), grid identifier (column 2), average resolutigr (column 3), total number of cells:
(column 4), and the time step applied to achieve a Courant number ef Al (column 5).

Target resolutiori®] Applied grid  AXxave[°] ne At for CN=~ 0.4 [s]
15 R13B1 1.54 13520 720
0.75 R13B2 0.77 54080 360
Adm R3B5 0.416 184320 192

fj = x(&j, trm), andfﬁj = ¢(&‘j, 0) the scalar value. To de- on spherical centroidal Voronoi meshé&dr{gler et al, 2011).
terminea;, the panel of the distorted mesh contain¥gis The meshes used in these tests are generated by subdividing
located and ; is computed from the data in that panel by lin- icosahedral meshes. That is, the Voronoi meshes are com-
ear interpolation. Results reported here remesh every 20 timposed of hexagons plus 12 pentagons. The scheme uses
steps. The scheme is under development, and further detaibs third-order Runge—Kutta time integration scheme and a
will be reported inBosler(2013. finite-volume flux divergence calculation using Eq. (11) in
Note that the remeshing scheme interpolates the LaSkamarock and Gassmarip01l) with the upwinding pa-
grangian parameter rather than the scalar. Hence LPM avoidemeters = 0.25. It uses the FCT shape-reserving limiter
introducing overshoots and undershoots in the scalar, andescribed inzalesak(1979; no additional explicit diffusion
there is no artificial mixing (the error norngsnax and dmin is used in these tests. The Voronoi meshes describedas 1
are zero throughout all test cases, and the mixing errors fo0.75°, and 067° refer to the average cell-center spacing rel-
test case 5 are also zero). ative to an arc length at the Equator, and these meshes use
Note also that mesh size is not well-defined since the par21 506, 86 018, and 107 522 cells, respectively, to tile the
ticles are moving, so instead we report the average angusphere. The tests are performed using€K.8, which cor-
lar variation A« in the Lagrangian parameter. Discretiza- responds to 768, 1536, and 1800 time steps to complete the
tions with N =512Q020 48081 92098 304 correspond to test-case integrations on theébd, 0.75° and Q67° meshes;
Aa =4.33,2.16°,1.08,0.65°. The time stepAr = 0.0125  for reference this corresponds to time steps of 1350s, 675s
was used for all computations; this value ensures that theand 576 s on the earth radius sphere. For the divergent flow
time discretization error is smaller than the spatial discretiza-test case, second-order centered fluxes are used for density.
tion error. Using the test case CN definition wittw, we
have CN=0.54, 1.08, 2.16, 3.59.

Al2 SBC
All MPAS

MPAS (Skamarock et al.2012 uses the transport scheme The SBC scheme is implemented on a regular latitude—
described irSkamarock and Gassma(011) implemented longitude grid where the number of zonal grid pointis=
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360/ A\ and the corresponding truncation wave number is Table A3. Icosahedral resolutiol’, average grid spacing at the
EquatorAxave and time stepAr used for schemes SLFV-SL and

ntrunc=nx/2—1. (A9) SLFV-ML.
Thus, the linear grid is used (rather than the quadratic grid N ApproximateAiave Nz Time step Ar)
where ntrune= nx/3—1). o4 30° 5762 0.01285
For the 15° simulations the truncation wave number is 48 15° 23042 0.00642
TL119, and dimensionless time step size /420 and 3600 96 075° 92162 0.00321
for CN= 5.2 and CN= 1.0, respectively. Similarly, for.05° 192 Q375 368642 0.00161

the truncation wave number is TL239, andis 5/240 (CN=

5.2) and 31200 (CN=1.0). For the minimal resolutions,
Adm =225 (for CN=5.2) andAry =2.25° (CN=1.0),

the truncation wave number is TL79 and TL159, respec-
tively, with Ar =5/80 andAr = 5/800.

fact, this grid correction is equivalent to a single step Lloyd’s
optimization.

For a unit sphere, the length of a basic spherical triangle is
o = 1.1071. The arc length at a resolutidhis calculated as

Al3 SFF-CSLAM +7- The average grid spacing at the Equataris calculated

SFF-CSLAM uses an equiangular gnomonic cubed-spher@S

projection. The scheme is available for either a third-order 2

or fourth-order reconstruction, in both cases using a finite-A* = SN

volume stencil of width 5. The .%° and Q75° grids corre-

spond to 60« 60 and 120« 120 elements per cubed-sphere  We presented results of all the test cases for fixed maxi-
panel. The equivalent resolution runs &% (fourth-order ~ mum Courant number (Ch 0.8). TableA3 lists the icosa-
reconstruction) and .92 (third-order reconstruction) cor- hedral resolutionV, average grid spacing at the Equatot
respond to 86« 86 and 98x 98 elements per cubed-sphere and time step of the simulatiof.

panel. The time steps a5t and 075° (at CN Q8) areT /720 The wind vector used to approximate the flux area is com-
and 7' /1440, respectively. As with CSLAM, thBarth and  puted by evaluating the analytical wind field at the midpoint
Jespersefi1989 filter was used for positivity preservation. Of the cell side at time =n x At. For shape preservation,

No additional diffusive terms were added. SLFV-SL and SLFV-ML employ a multi-dimensional exten-
sion of Van Leer-type slope limiter discussedDukowicz

Al4 SLFV-SL/ML and Kodis(1987).

Al14.1 Spherical grid generation Al14.2 SLFV scheme description

The schemes SLFV-SL and SLFV-ML are implemented on aSince there is currently no publication documenting the
spherical icosahedral-hexagonal gigh¢flourny et al1968. SLFV schemes, a brief description is given here. The
We start with a spherical icosahedron, consisting of 20 equisschemes are based on the flux-form continuity BEg.if-
lateral spherical triangles. To achieve the desired resolutionegrated over a control volunte:

the edges of these 20 spherical triangles are divided into -

N equal parts. Connecting these new points with great cir- dp¢

cle arcs results in 207 spherical triangles. To construct the A Tar % poV dr. (A10)
dual grid of the spherical triangular grid, we connect the cen- r
troids (_)f the t_rlangles W|th great circle arcs. The resulting Herepg is the average gbe over a control volume , T
dual grid consists of spherical hexagons except 12 pentagor}%e boundary of the control volume adds2) the area of the
corresponding to the 12 starting points of the spherical icosa-

hedron. The total number of grid cells for resolutigh is control volume.

Nz = 10N2 + 2. For the resulting dual grid, the centroids SLEV-SL

of grid cells do not coincide with the vertices of the spherical

triangular grid. Indeed the cell-averaged value of a function|y Eq. (A10), decomposing the boundaiy into N, edges

is a second-order accurate approximation of its point-wisezng integrating EqA10) with respect to time, one gets
value taken at the cell centroid. This motivates one to employ

some grid adjustment or grid optimization to design higher 4l — Ni )

order finite volume schemes. Instead of using any sophistiA(€2) (09— — p¢y) = _Z<p¢v>i -7 Ardl (A1)
cated optimization (for instance spring dynamics or Lloyd’s i=1

algorithm), we use centroids of the grid cells as our compu-

Nk 1
~_ NYSRViiss IS
tational points and adjust the triangular mesh accordingly. In - ;(p)’ (@)i Vi =iy Ardr. (AL12)
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Here(p¢); is the value ofp¢ averaged in time from to the point diagonally opposite .. The projected centroids
define five or six triangle(Srk, P(re.i), P(rk,i+1)), for each
of which we compute a gradieR, ;¢ defined by its compo-
nentsV; ;¢ andV; ;¢ in local x andy directions, which we
obtain by solving

1
t+ Ar and over the‘th edge composing. VETZ is the veloc-
ity field at timer, + ! evaluated at the midpoim, ; of the

ith edge of celk. ApprOX|mat|on Eq.Al12) is second-order
accurate in time and in space. Finally) is approximated in

a semi-Lagrangian fashion: Vipdi + V/f,i‘f’d; = ¢i — ¢o. (A17)
At ViiddP V0 d T = i1 — o, (A18)
(®) =¢(l, rei— Vrk]—:_z?) (A13) k,i X k,i y i+

whered’ = P(ry ;) —ry is the position vector of the pro-

This approximation is second-order accurate in space antected neighboring centroic ; relative tory, andg; (resp.

time (Miura, 2007. A similar formula is used forp). | o) is the value of the scalar fiellatry, ; (resp.ry). The gra-
dientsV, ;¢ are then averaged to ge€j¢. We have verified

that this yields a first-order approximation of the gradient on
non-optimized grids.

practice we us¥} ; instead 01\/k i : , Which introduces some
temporal error for a time-varying velomty field.

SLFV-ML Al4.4 Slope limiting

In Eqg. (A10), decomposing the boundafyinto N; edges,

. . In general this gradient construction will not lead to a
we get a semi-discrete equation:

positivity-preserving scheme. For this we use a multidimen-
sional extension of Van Leer-type slope limité&ukowicz
A(Q) — = —Zp,¢, ; -1y Ardr. (A14) and Kodis 1987). In Egs. A15)—(A16) we replace the gra-
dientV¢ by a modified gradien?y¢ = oy Vi¢. The limiting
coefficienty;, is determined for each cdllsuch as to enforce
local monotonicityDukowicz and Kodig1987 show that a
6possible choice af; is

Here p;, ¢; andV; are the values op, ¢ and velocity
vectorV overith edge ofl” at timer. We evaluate these edge
quantities at the midpoint of the corresponding edge to get
second-order spatial approximation at time min_, max

The semi-discrete EqA(4) is then marched forward in ok = MIN(L e e, (A19)
time using the Runge—Kutta third-order total variational di- \yhere
minishing time integration scheme. This choice of time inte-

gration helps to damp the unphysical oscillation due to time ., max ¢3ma’< ok
discretization. o =MaxXy = max 7 (A20)
G — Ok

Al14.3 Linear reconstruction and

To evaluate the right-hand side of Egal1@) and A14), we _ qglznin — &

define a linear reconstruction pfand¢ in each control vol- o = mi — (A21)

ume: P

o(r) =D+ Vip-(r—ry), (A15) Hereg"™®™ and#"" are the maximum and minimum val-

D) =P+ Vi (r —r1), (A16)  ues ofg in the neighboring cells, ang ™ and¢; ™** are
the maximum and minimum values ¢fin cell k according

respectively, wherey is the centroid of théith control vol-  to the non-slope-limited linear reconstruction in E416).

ume. Indeed the area average of a quantity coincides with the For each edge entering the sum on the right-hand side of
value of that quantity at the centroid of the control volume, Eq. (A12) (resp. EqA14), the reconstruction used to evalu-
with second-order accuracy in space. As a consequence 1 .
y P q ateg | ¢, rii —V:TZ% (resp.¢;) is the one based on the
@ control volume situated upwind to the edge. We present re-
0 sults obtained with a CN equal to8) but the scheme seems
to work up to maximum CFL equal to 1.0.

¢~

with the same accuracy.

To compute the discrete gradievitg of any scalar field Al5 TTS-I
for a cellk, we work in the plane tangent to the cell centroid
ri. Vectors in the tangent plane are decomposed on a localhe TTS-I scheme operates on a fully Lagrangian mesh. The
basis(e,, e,) pointing west and north. We project the cen- initial grid is a centroidal Voronoi tessellation of the sphere,
troids of the neighboring cells, ; to the tangent plane from and its resolution is given in terms of number of polygons.
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The Voronoi grid is then deformed by the flow and modified simple test of UCISOM is done with a constant plateau of
by a curvature-guard algorithm (CGA) that splits and mergestracer value (110 tracer units in 3212 cells) embedded in
edges according to deformation criteria. The specific config-a background (10 units on a cylinder of circumference 32
uration of the CGA is given in Table 1 iBong and Wang  cells) and moving diagonally round the cylinder. After sev-
(2013. For display and computation of diagnostics (and cou-eral rotations, the tracer distribution stabilizes (along with
pling with physical parameterizations in full model setup), a the ripples and; error) at a preferred shape and then evolves
regular latitude—longitude grid is used. For the experimentsvery slowly. Overshoot ripples in the tracer plateau are +12 %
two resolution configurations are chosen for the two meshesfor L=0or L =1, 5% forL =2, and< 0.2% for L = 3.

For Ax ~ 1.5° and AL ~ 0.75°, the number of polygons on (Treatment of cross term momenss;, produces some rip-
the initial Voronoi grid is 10000 and 20 000, respectively. ples.) Undershoot ripples in the background near the plateau
The associated regular latitude—longitude grid spacings arare—8 %, —2.5 % and< 0.2 %, respectively. Only witl. =

1.5° and Q75°. A non-dimensionless time step @f/300 3 the entire 12 12 block decays uniformly-19% per rev-
and 7 /600 was used for the coarser and higher resolutionsplution for CN~ 1. The cases in this paper are equivalent to
respectively. Trajectories are computed using fourth-ordemmany revolutions in this test case, and results for UCISOM

Runge—Kutta integration. look like some of the worst cases in Fig.with peak tracer
< 0.8. After results were completed for this study, a variant
Al16 UCISOM(-CS) of L = 3 was tested, whereby the minimum-maximum crite-

rion for the daughter cell is relaxed: the tracer is allowed to
UCISOM uses a regular latitude—longitude grid, and overshoot the parent min—-max by a percentage. For large al-
UCISOM-CS uses a gnomonic cubed sphere with resoludowances (i.e., 3 %) the = 3 case begins to look like = 2
tion defined as in Eq.A5). The CN~ 5.5 simulations use with +4 % and—1 % ripples, no decay of the plateau val-
non-dimensional time stepst =5/7 whereT =120 and  ues, and no increase {a error over successive rotations. For
T =240 for 15° and Q75° resolutions, respectively; for small overshoot allowance.@%), however, we regain some
CN~ 1.0, the time steps ar€ =624 andT = 1248; and of the desired properties (i.e., the ripples are smalers %
for CN~0.8, the time steps ar& =780 and7 = 1560. and—1 %), but the plateau tracer does not decay. In general
The mass flux across grid edges is integrated exactly in latithe, errors are similar fof. = 0, 1, 2, butincrease fof. = 3
tude or longitude from the equations for the regular latitude—except for CN< 0.2.
longitude grid, and with nine-point Romberg integration for
the cubed-sphere grid (preserves mass convergence in each
grid cell to single-precision accuracy or better). The flux over Supplementary material related to this article is
each time step is integrated analytically from the equationsavailable online athttp://www.geosci-model-dev.net/7/
UCISOM uses a single forward time step for any CN value, 105/2014/gmd-7-105-2014-supplement.zip
and is thus only first-order accurate in time (i.e., forward
Euler). The rate of convergence with increasing resolution
(Figs.1-2) is actually the convergence with time step, as the
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