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ABSTRACT

A recently developed cell-integrated semi-Lagrangian (CISL) semi-implicit nonhydrostatic atmospheric

solver that uses the conservative semi-Lagrangian multitracer (CSLAM) transport scheme is extended

to include orographic influences. With the introduction of a new semi-implicit CISL discretization of

the continuity equation, the nonhydrostatic solver, called CSLAM-NH, has been shown to ensure in-

herently conservative and numerically consistent transport of air mass and other scalar variables, such

as moisture and passive tracers. The extended CSLAM-NH presented here includes two main modifi-

cations: transformation of the equation set to a terrain-following height coordinate to incorporate

orography and an iterative centered-implicit time-stepping scheme to enhance the stability of the scheme

associated with gravity wave propagation at large time steps. CSLAM-NH is tested for a suite of idealized

2D flows, including linear mountain waves (dry), a downslope windstorm (dry), and orographic cloud

formation.

1. Introduction

Semi-Lagrangian semi-implicit (SLSI) schemes have

been widely used in climate and numerical weather

prediction (NWP) models since the pioneering work of

Robert (1981) and Robert et al. (1985). The fully com-

pressible nonhydrostatic equations permit fast-moving

waves that limit the model time step size. The combi-

nation of a semi-Lagrangian advection scheme with

semi-implicit treatment of these waves allows for larger

stable time steps, and therefore, increased computa-

tional efficiency. Conservative semi-Lagrangian advection

schemes, also known as cell-integrated semi-Lagrangian

(CISL) transport schemes, are finite-volume methods

that inherently conservemass by tracking individual grid

cells each time step (Rancic 1992; Laprise and Plante

1995; Machenhauer and Olk 1997; Zerroukat et al. 2002;

Nair and Machenhauer 2002; Lauritzen et al. 2010).

CISL transport schemes allow for locally (and thus

globally) conservative transport of total fluid mass (such

as dry air in the atmosphere) and constituent (i.e.,

moisture and tracer) mass.

However, some CISL schemes lack consistency be-

tween the numerical representation of the total dry air

mass conservation, which we will refer to as the conti-

nuity equation, and constituent mass conservation equa-

tions (Jöckel et al. 2001; Zhang et al. 2008; Wong et al.

2013). Numerical consistency in the discrete tracer con-

servation equation requires the equation for a constant

* Current affiliation: Pacific Northwest National Laboratory,

Richland, Washington.
1The National Center for Atmospheric Research is sponsored

by the National Science Foundation.

Corresponding author address: May Wong, Pacific Northwest

National Laboratory, Atmospheric Sciences and Global Change

Division, 902 Battelle Blvd., P.O. Box 999, MSINK9-24, Richland,

WA 99352.

E-mail: may.wong@pnnl.gov

1382 MONTHLY WEATHER REV IEW VOLUME 143

DOI: 10.1175/MWR-D-14-00059.1

� 2015 American Meteorological Society

mailto:may.wong@pnnl.gov


tracer field to correspond numerically to the discrete

mass continuity equation; this consistency ensures that

an initially spatially uniform passive tracer field will

remain so.

To allow for large advection time steps, Lauritzen et al.

(2010) developed a CISL transport scheme called the con-

servative semi-Lagrangian multitracer (CSLAM) transport

scheme. The CSLAM scheme has recently been im-

plemented in the National Center for Atmospheric

Research (NCAR) High-Order Methods Modeling

Environment (HOMME) and was found to be an effi-

cient and highly scalable transport scheme for atmo-

spheric tracers (Erath et al. 2012). To ensure consistent

numerical representations of the continuity equation and

other scalar conservation equations, Wong et al. (2014)

proposed a new discretization of the semi-implicit CISL

continuity equation using CSLAM. They showed that

the new formulation can be straightforwardly ex-

tended to the scalar conservation equations in a fully

consistent manner. Wong et al. (2013) also showed

that any discrepancy between the numerical schemes

can lead to spurious generation or removal of scalar

mass. We refer to this nonhydrostatic atmospheric

solver with conservative and consistent transport as

CSLAM-NH.

Idealized 2D benchmark test cases for a density current,

gravity wave, as well as a squall line, using CSLAM-NH

have been performed in Wong et al. (2014). These test

cases used flat bottomboundary conditions for simplicity.

In the real atmosphere, the bottom fluid boundary is of-

ten not flat. Mountains act as a stationary forcing and

generate horizontally and vertically propagating in-

ternal gravity waves in the atmosphere. Under certain

atmospheric conditions they can also induce highly

nonlinear flows such as wave amplification and breaking.

Numerical simulations of these mountain waves have

been extensively studied by many (e.g., Klemp and Lilly

1978; Peltier and Clark 1983; Durran and Klemp 1983;

Durran 1986; Schär et al. 2002) and several of these cases
have become benchmark tests in model development

and intercomparison studies (e.g., Pinty et al. 1995;

Bonaventura 2000; Xue et al. 2000; Doyle et al. 2000;

Melvin et al. 2010). To further develop CSLAM-NH as

a viable nonhydrostatic atmospheric solver, we have

incorporated orography into the model and have con-

ducted a suite of these mountain-wave cases docu-

mented in the literature. The test suite includes linear

hydrostatic and nonhydrostatic dry mountain waves,

a highly nonlinear drymountain wave with amplification

and overturning of the waves, and amoist mountain flow

with cloud and rain formation.

The paper is organized as follows. A model de-

scription of CSLAM-NH is given in section 2. In

section 3, simulations from the suite of idealized

mountain wave tests are presented. Finally, a summary

is given in section 4.

2. Model description

a. Governing equations

The major modification to the model prognostic

equations described in Wong et al. (2014) is the

transformation of the vertical coordinate from geo-

metric height to a terrain-following height coordinate.

In addition to this modification, we have also included

the treatment of the gravity wave terms in the implicit

solver. The previous version of CSLAM-NH solves

the buoyancy terms in the vertical momentum equa-

tion explicitly using a two time-level extrapolation

scheme. For a gravity wave test originally proposed in

Skamarock and Klemp (1994), the time-step limit was

found to be restricted by the explicit treatment of

these buoyancy terms (Wong et al. 2014). To circum-

vent this time step restriction, an iterative approach is

used to include these terms in the implicit solver. We

will focus on the description of these two modifica-

tions and provide a basic description of the solver

[readers are referred to Wong et al. (2014) for a more

detailed description].

A height-based coordinate is used to avoid the

complication of a time-varying vertical coordinate

system, as is the case with mass (pressure) coordinates

or Lagrangian vertical coordinates. The use of terrain-

following coordinates substantially simplifies the

bottom boundary condition when topography is

present. For cell-integrated semi-Lagrangian advec-

tion, in a geometric height coordinate, approximated

departure cell boundaries may intersect the orography

and create more complex cell configurations (e.g.,

more cell edges/vertices, which complicate the sub-

gridcell reconstruction). On a computational grid

defined by terrain-following vertical coordinates,

however, the lowest cell boundaries will always re-

main at the surface.

Following Gal-Chen and Somerville (1975), the 2D

terrain-following height coordinate z is expressed using

the linear transformation:

z5 zt
z2 h(x)

zt 2 h(x)
,

where z(x, z) is the physical height, h(x) is the terrain

profile, and zt is the height of the model top [with the

bottom defined as z5h(x)].

The 2D governing equations expressed in (x, z) co-

ordinates are
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where v5 (u, w) is the horizontal and vertical wind com-

ponents, p5 ( p/p0)
k is the Exner function, p0 5 100 kPa

is the reference pressure, Rd 5 287 J kg21 K21 is the gas

constant for dry air, cp 5 1003 J kg21 K21 is the specific

heat for dry air at constant pressure, cy 5 717 J kg21 K21

is the specific heat of dry air at constant volume, and the

ratios k5Rd/cp ’ 0:286 and g5 cp/cy ’ 1:4. Perturba-

tion variables from a time-independent hydrostatically

balanced background state are used to reduce numer-

ical errors in the calculations of the pressure-gradient

terms (Klemp et al. 2007). The hydrostatically balanced

background state is defined as d p(z)/dz52rd(z)g.

Flux-form variables are coupled to a scaled dry density

adjusted to the transformed coordinate, ~rd 5 rd/zz (i.e.,

Qm 5 ~rdum and Qj 5 ~rdqj). The notations (zx, zz) refer

to the spatial derivatives of z. Perturbation variables

(primed) are defined via Qm 5 rd(z)u(z) 1 Q0
m, p 5

p1p0, rd 5 rd(z)1 r0d, and the moist density ~rm 5
~rd(11qy1qc1qr), where qy , qc, and qr are the mixing

ratios for water vapor, cloud, and rainwater, respec-

tively. The modified potential temperature um is defined

as um 5 u(11 a0qy) where a0 [Ry/Rd ’ 1:61.

Notations (�)z denote evaluation at constant z, and

($ � vb)z 5 dx(ub)1 dz(vb) for any scalar variable b.

The variable v5 dz/dt is the vertical motion perpen-

dicular to the coordinate surface. For simplicity, we

assume a nonrotating atmosphere. The terms Fu and Fw

represent diffusion, and FQ andFQj
represent diffusion as

well as any diabatic source terms from parameterized

physics.

The governing equations used in CSLAM-NH

follow the approach of Klemp et al. (2007) except

that the CSLAM-NH equations use the advective

form of the momentum equations [(1) and (2)] so that

we can use a traditional semi-Lagrangian discretiza-

tion. The flux-form advection for potential temper-

ature, density, and moisture–passive scalar variables

[(3), (4), and (5), respectively] are solved using the

conservative semi-Lagrangian scheme CSLAM.

Pressure is a diagnostic variable given by the equa-

tion of state in (6). Following Klemp et al. (2007), the

pressure-gradient terms are written in terms of po-

tential temperature. The recasting allows for cou-

pling of the implicit pressure-gradient terms with the

flux divergence term in the potential temperature

equation. The compressible nonhydrostatic equation

set is still exact and no approximations have been

applied.

b. CSLAM—A cell-integrated semi-Lagrangian
transport scheme

When advection terms are evaluated using an Eulerian

scheme, the model time step sizes are restricted by

the well-known Courant stability condition. To allow for

larger advective time steps, the nonhydrostatic solver

uses a CISL transport scheme called the CSLAM trans-

port scheme developed by Lauritzen et al. (2010). This

inherently conservative (both locally and globally)

transport scheme is used to solve the continuity and po-

tential temperature equations, and for transport of any

moist species or other tracers.

The stability criterion for the CSLAM transport

scheme is limited by the trajectory approximations of

the gridcell vertices. To ensure stability in traditional

semi-Lagrangian schemes, the Lipschitz stability

condition requires that, in 1D, no trajectories in

the space–time domain should intersect one another

(Smolarkiewicz and Pudykiewicz 1992). In the CSLAM

scheme, the stability condition is slightly more lenient in

that the trajectories of neighboring verticesmay cross, as

long as the discrete departure cells remain non-self-

intersecting. In all test cases presented here, linear tra-

jectories as described inWong et al. (2014) are assumed.

Figure 1a shows a discrete arrival grid cell (white box)

originating from a non-self-intersecting discrete de-

parture cell (gray box) with straight edges that are

computed using the approximated displacement over

one time step (arrows). The trajectories from the ends of

the left cell edge intersect, but as long as the departure

cells remain non-self-intersecting, the scheme is stable

and ensures global mass conservation. In Fig. 1b, a more

1384 MONTHLY WEATHER REV IEW VOLUME 143



distorted flow causes the departure cell to self-intersect.

This ‘‘twisting’’ of the departure cell causes adjacent

departure cells to overlap. In such a case, the scheme is

no longer mass conserving and becomes unstable. The

stability and accuracy of the CSLAM scheme in highly

deformed flows may be improved by using higher-

order trajectory approximations and/or higher-order

approximations of departure cell boundaries. One

such example is to use the parabolic (curved) de-

parture cell edges that account for acceleration in the

trajectory approximations developed by Ullrich et al.

(2013). In the present study, we did not test any geo-

metrical definitions other than quadrilateral de-

parture cells, but the option could be explored in the

future.

c. Discretized momentum equations

The momentum equations are solved in a traditional

semi-Lagrangian semi-implicit manner, where the total

derivatives du/dt and dw/dt are computed using a grid-

point interpolation to the departure point. Bicubic La-

grange interpolation is used for all departure point

evaluations. The two time-level discretizations of the

momentum equations are

un11
A 5 unD 1Dt(Fu)

n
D

2
Dt

2

(
gRd

p
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A 5wn
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; , (8)

where subscripts D and A denote evaluation at the de-

parture and arrival grid points, respectively, and super-

scripts denote the time level. The discretization is based

on the Arakawa C grid. To reduce gravity wave reflection

at the upper boundary, a Rayleigh damping term2mw is

added to the vertical momentum equation, where the

damping coefficientm is a function of height z and applied

in the top layers of the domain. This damping term shows

up asmDt on the lhs of the vertical momentum equation in

(8). The spatial averaging operators are defined as

(�)x5 1

2
[(�)i,k 1 (�)i11,k], and

(�)z 5 1

2
[(�)i,k1 (�)i,k11] ,

and gradient operators as

dx(�)5
(�)i11,k2 (�)i,k

Dx
, and

dz(�)5
(�)i,k112 (�)i,k

Dz
.

The prognostic variable for vertical motion perpen-

dicular to the terrain-following vertical coordinate

z is

vn115 zxu
n111 zzw

n11 .

We use the following notations to combine the known

rhs terms in the momentum equations:

FIG. 1. Discrete departure cells in CSLAM-NH are approxi-

mated using straight edges (shaded in gray). The departure cell

vertices (black circles) are computed using backward-in-time tra-

jectories (arrows) from the vertices (white circles) of the Eulerian

arrival grid cell (white box). The CSLAM transport scheme is

stable as long as the discrete departure grid cells are (a) non-self-

intersecting, and becomes problematic if (b) the departure cell self-

intersects since the scheme is no longer mass conserving.
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the implicit pressure-gradient terms:
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and the implicit half of the buoyancy term:
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The subscripts in the notations denote the momentum

equations to which the terms belong. Using (7) and (8),

and the notations above, the vertical momentum equa-

tion can be rewritten as

vn11 5 zxRU 1 zz(11mDt)21(RW 1BW)|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
RV

1 zxPGU 1 zz(11mDt)21PGW . (10)

The notationRV is used here to represent all the known

terms plus the implicit buoyancy term in (9).

Often, off-centering of the time-averaged terms is

needed in semi-Lagrangian semi-implicit time-stepping

schemes to help eliminate computational noise, espe-

cially when orographic forcing is present and at large

Courant numbers (e.g., Rivest et al. 1994). In CSLAM-

NH, no off-centering was needed to attain the numerical

stability in the solver for the test cases presented here.

d. Conservative and consistent flux-form equations

As noted by Lauritzen et al. (2006) and demon-

strated in Wong et al. (2013) and Wong et al. (2014),

when a numerical scheme different from the one used

to evaluate the continuity equation is used to transport

scalar variables, consistency in the scalar mass con-

servation equation is no longer guaranteed. The

problem of numerical consistency in cell-integrated

semi-Lagrangian schemes is resolved through the use

of a new flux-form CISL continuity equation in-

troduced in Wong et al. (2013) for the shallow-water

equations and tested for a 2D nonhydrostatic atmo-

sphere without topography (Wong et al. 2014). The

new flux-form CISL continuity equation allows for

a straightforward implementation of a CISL scalar

transport scheme that ensures numerical consistency.

Here, we further test the proposed formulation based

on the CSLAM transport scheme for 2D idealized

cases over mountains.

The potential temperature, continuity, and scalar-

mass conservation equations are all solved consistently

using the same numerical scheme presented in Wong

et al. (2014):

Q̂n11
m 5Qn11

m,exp 1
Dt

2
[$eul � (v0nQ̂n

m)]
dA*

DA
1DtFn

Q
m

dA*

DA

(11a)

and

~Qn11
m 5Q̂n11

m 2
Dt

2
[$eul � (v0n11Q̂n11

m )] . (11b)

The flux divergence in terms of a corrective ve-

locity v0 in the semi-implicit correction term is de-

fined as

$eul � (Qmv
0)5

1

Dx
[Qm

x
(ur2Fr /Dz)2Qm

x
(ul 2Fl/Dz)]

1
1

Dz
[Qm

z
(vt2Fl /Dx)2Qm

z
(vb2F/Dx)],

whereF 5F (u, v) are Lagrangian flux areas, computed

as in Wong et al. (2014). The velocities ur, ul, vt, and vb

are staggered velocities at the cell faces.

In the semi-implicit flux-form equation, instead of

linearizing around a mean reference state, we utilize

Q̂n11
m using the CSLAM transport scheme to ensure

consistency of the semi-implicit correction term among

all the scalar flux-form equations. Included in this

CSLAM computation are all the terms to be integrated

over the departure cell: the explicit conservative

CSLAM solution (Qn11
m,exp), a predictor-corrector term

(the flux divergence term at time level n), explicit

diffusion, and diabatic tendency (the latter two are

combined in FQm
). The diabatic tendencies are ap-

proximated using values at the previous time level. The

resulting approximation Q̂n11
m in (11a) is then used in

(11b). The solution from (11b) is the solution from the
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dynamics, and prior to any adjustment to saturation by

a moist microphysics scheme.

Consistent formulations of the continuity equation

and scalar mass conservation equations are straightfor-

wardly discretized as

f̂n115fn11
exp 1

Dt

2
[$eul � (v0nf̂n)]

dA*

DA
1DtFn

f

dA*

DA
,

(12a)

and

~fn115 f̂n112
Dt

2
[$eul � (v0n11f̂n11)] , (12b)

wheref5 ~rd orQj. Similar to (11a), (12a) combines the

advected quantities in the explicit solution using the

CSLAM scheme, the predictor-corrector flux di-

vergence term, diffusion, and diabatic tendencies from

the previous time level. The solution of the velocities at

the new time level is used to compute the flux di-

vergence in (12b).

e. Helmholtz equation

By eliminating v0n11 in the potential temperature

equation in (11b) using the horizontal and vertical mo-

mentum equations, we form the Helmholtz equation:

~Q0n11
m 1

Dt

2
hdx(PGUQ̂

n11

m

x

)1 dzf[zxPGU

xz
1 zz(11mDt)21PGW]Q̂

n11

m

z

gi

5Q̂0n11
m 2

Dt

2
[dx(RUQ̂

n11

m

x

)1 dz(RVQ̂
n11

m

z

)] , (13)

where PGU and PGW are, as defined earlier, the implicit

pressure-gradient terms expressed as functions of ~Qn11
m .

All the terms on the rhs of (13) are precomputed at the

beginning of each time step, and the implicit buoyancy

term inRV is updated at each iteration of the Helmholtz

equation solver (described next).

f. Iterative centered-implicit time-stepping scheme

The compressible Euler equations permit fast hori-

zontally and vertically propagating acoustic and gravity

waves. To alleviate the time-step limit due to acoustic

waves, in the previous version of CSLAM-NH (Wong

et al. 2014), an implicit time-stepping scheme was used to

solve the pressure-gradient and mass-divergence terms.

The remaining buoyancy terms were evaluated explicitly

using a two time-level extrapolation scheme. The semi-

implicit time integration scheme allowed the use of time

stepsmuch larger than those allowed in a classical explicit

scheme, which would otherwise have been restricted by

the speed of sound. The buoyancy terms responsible for

gravity waves, however, imposed a restriction to the

maximum stable time step.

Instead of evaluating the gravity wave terms explicitly

using time extrapolation, we use an iterative approach

for a more accurate and implicit treatment of these

terms. The solution procedure can be summarized in

two main components as follows. First, the departure

cell areas are approximated using backward trajectories

from the arrival gridcell vertices. The forcing terms (RU ,

RV) and the explicit departure cell-averaged potential

temperature, Q̂n11
m [using (11a)] are evaluated and form

the rhs of the Helmholtz equation in (13). The implicit

buoyancy term BW in RV is evaluated at time level n as

an initial estimate. The explicit departure cell-averaged

density r̂n11
d [using (12a)] is also precomputed. The

second component involves solving the linear Helm-

holtz equation for ~Q0n11
m ; here we use a conjugate gra-

dient residual solver (Skamarock et al. 1997). The

solution ~Q0n11
m is then back substituted into the mo-

mentum equations in (7) and (10) to get un11 and vn11,

respectively. Finally, the implicit buoyancy term BW in

(9) in RV is updated using (i) ~r0n11
m by evaluating (12b)

and (ii) p0n11 directly from ~Q0n11
m using the equation of

state p[ (RdQm/p0)
R/ cy . At the end of the second

component, the trajectories and forcing terms (first

component of the procedure) are recomputed using the

latest solution of un11 and vn11.

Depending on the test case, two to four iterations of

each component are performed. For the nonlinear flow

tests, iterating more than twice did not further improve

the maximum stable time step size. For the linear cases,

the maximum time step can be further increased by

performing more iterations (iterating more than four

times does not further improve stability). At each iter-

ation, the Helmholtz solver converges progressively

faster (since the latest estimate of ~Q0n11
m is used as the

starting point). The iterative scheme is used for ad-

vancing the dry dynamics; after which, tracers are ad-

vected using (12b) and themoist physics are called (once

at each time step).

The use of an iterative centered-implicit scheme is

found to substantially increase the stable time step size

in CSLAM-NH at the expense of solving the Helmholtz

equation more than once per time step. To demonstrate

APRIL 2015 WONG ET AL . 1387



this behavior, we conduct the gravity wave test originally

proposed in Skamarock and Klemp (1994), using

CSLAM-NH as was done in Wong et al. (2014) with

a grid spacing of Dx5Dz5 1 km and an imposed mean

wind U5 20m s21. Wong et al. (2014) used an explicit

treatment of the buoyancy terms and found that the

maximum stable time step was restricted to Dt5 38 s [at

a nominal Courant number (Cr) of 0.76]. In the current

version of the iterative centered-implicit CSLAM-NH,

we have found that for the same simulation, the maxi-

mum stable time step increased to 100 s, roughly by

a factor of 2.6 (Cr 5 2). For comparison, the maximum

stable time step for an Eulerian split-explicit third-order

Runge–Kutta time stepping scheme was 60 s (Cr 5 1.2)

(Wong et al. 2014).

Similar iterative approaches were found to improve

numerical stability in other semi-Lagrangian solvers.

In the Canadian Global Environmental Multiscale

(GEM) model, Côté et al. (1998) discretize the gov-

erning equations in a fully implicit manner and use an

iterative procedure to avoid solving a nonlinear

Helmholtz equation. This procedure is also im-

plemented in Melvin et al. (2010) for the vertical-slice

nonhydrostatic solver using the Semi-Lagrangian In-

herently Conserving and Efficient (SLICE) transport

scheme. An alternative predictor-corrector (thus,

also iterative) approach was tested in the European

Centre for Medium-Range Weather Forecasts

(ECMWF) Integrated Forecast System (IFS) model

by Cullen (2001). In that study, a positive improve-

ment in accuracy was noticeable only when the ad-

vective velocities, in addition to the buoyancy terms,

were iterated. Using an idealized analysis of acoustic

modes in a 1D nonhydrostatic vertical column,

Cordero et al. (2005) demonstrated the impact of

using time-extrapolated and -interpolated trajectory

computations on the numerical stability of a semi-

Lagrangian centered-semi-implicit scheme. When

extrapolation and large time steps were used for the

trajectories, the vertical structure of the acoustic

modes were found to be distorted (with spurious zeros

forming with time). The time-interpolation scheme

on the other hand was found to be stable in all cases.

The idealized analysis by Cordero et al. (2005) sup-

ports the findings in Cullen (2001) and the method

used in Côté et al. (1998), with a recommendation for

time-interpolated trajectory computations (e.g., by

repeating the first component of the CSLAM-NH

solution procedure).

The disadvantage of the present approach is that the

linear Helmholtz equation for potential temperatureQm

is solved a number of times with the buoyancy terms

updated at the end of each iteration. However, the

increased stability will allow a larger time step to be used

and can help offset the added computational expense of

solving the dry dynamics (calculated once at each time

step). After the dry dynamics, the solver then advects

passive tracers (once at each time step). With a larger

time-step size, the total number of times tracers are

advected during the entire simulation is reduced.

Therefore, the overall execution time spent on scalar

transport is also reduced. This reduction may have

a significant impact on computational time, especially

when the number of tracers used in chemistry applica-

tions is large.

g. Boundary conditions

Periodic-in-x and free-slip top and bottom boundary

conditions are applied in all our tests. The vertical ve-

locities at the top and bottom boundaries are set to

v5 0, and ensures no normal flux through them. The

boundary conditions are implemented by extrapolating

Qm, rd, and u into the boundary.

h. Implicit Rayleigh damping

To prevent the reflection of vertically propagating

gravity waves along the rigid model top, a damping

term, 2mw, is added in the vertical momentum equa-

tion based on the scheme proposed in Klemp et al.

(2008) and implemented in Melvin et al. (2010). The

damping profile m(z) proposed by Klemp and Lilly

(1978) is used:

m(z)5

8><
>:

mmax sin
2

�
p

2

z2 zd
zt 2 zd

�
if z. zd ,

0 if z# zd .

The profile is characterized by a gradual increase of

viscosity with height, which is desirable to prevent any

reflections that would otherwise occur from a sharp

increase in viscosity. The damping layer starts from

a user-specified height zd and extends to the top of the

domain zt. The depth of the damping layer is typically

chosen to be about 1.5 to 2 times of the vertical

wavelength (lz 5 2pU/N). The values of mmax are

specified for each test case, and are chosen to be

0.05 s21 for nonhydrostatic cases and 0.1 s21 for hy-

drostatic cases. These values are estimated using the

analysis from Klemp et al. (2008), where the authors

experimented with a range of mmax and analyzed the

reflection properties of this implicit Rayleigh damping

layer. Based on their results of the reflection co-

efficient of the damping layer, we have chosen the

mmax values based on a value of their nondimensional

bw(5mmax/kU) 5 5 and 50 for the nonhydrostatic and
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hydrostatic cases, respectively. The scheme they

proposed is slightly different from the one applied

here; in particular, they proposed implementing the

damping term as an adjustment step. The adjustment

step approach includes an extra damping term that

resembles vertical diffusion, in addition to the effect

of a damping term 2mw added directly in the vertical

momentum equation. For smaller (nonhydrostatic)

horizontal scales, however, the effect of the damping

term dominates and there is little difference between

the two approaches.

3. Idealized test cases: Results

a. Linear mountain waves over bell-shaped mountain

To test the response of the nonhydrostatic solver to

orographic forcing, two adiabatic linear mountain-wave

simulations are conducted first. Both cases assume

a simple hill profile h(x) of a witch-of-Agnesi curve,

defined as

h(x)5
hma

2

x21 a2
,

with a small amplitude hm 5 10m but different half-

widths, a. Gravity waves generated by flowmoving over

a wide hill under conditions where U/Na � 1 are ap-

proximately hydrostatic and are vertically propagating

(Smith 1979). We simulate flow with a constant up-

stream wind speed U5 10m s21, with an initial strati-

fication of N2 ’ 13 1024 s22. The mountain half-width

is set at a5 10 km to give U/Na5 0:1, such that non-

hydrostatic effects are small for this broad low hill. The

physical domain is 120km wide and 20km deep. The

simulation is run for t5 18h to ensure the solution has

reached steady state and is not affected by any reflected

waves from the model top. The numerical domain

has dimensions 120 3 80 (Dx5 1 km andDz5 250m). A

Rayleigh damping layer (mmax 5 0:1 s21) is implemented

in the top 10km of the domain (approximately 1.5 times

the vertical wavelength, lz 5 2pU/N5 6:28km).

Results from simulations using a small Courant num-

ber Cr5 0:2 and large Cr5 1:5, as well as the linear

analytic solution [based on Smith (1980)] are shown in

Fig. 2. An upstream tilt of the phase lines is observed,

corresponding to energy originating from the ground

(the mountain) and propagating upward. As expected,

the amplitude of the vertical velocity also increases

with height (}r21/ 2), corresponding to the effect of

wave amplification due to decreasing density at higher

altitudes. The slight downstream tilt of the wave pat-

tern with height is due to weak nonhydrostatic in-

fluences and is also observed in other nonhydrostatic

models for the same test case (e.g., Melvin et al. 2010).

The solutions compare well with the analytic solution.

For a narrower mountain, the mountain waves are

now nonhydrostatic. These waves are highly dispersive,

with shorter horizontal scales propagating farther

downstream with height, and scales less than 2pU/N

becoming evanescent. To simulate such a flow, the half-

width a of the mountain is reduced to 2km. The im-

pinging flow remains at U5 10m s21 (U/Na5 0:5). The

domain is 144 km wide and 25km deep. The numerical

domain has dimensions 360 3 100 grid cells (Dx5 400m

and Dz5 250m). The Rayleigh damping layer is applied

to the top 13km of the domain (twice the length of lz)

with mmax 5 0:05 s21.

Results from CSLAM-NH for two different time step

sizes (Cr5 0.125 and Cr5 1.5), and the linear analytical

FIG. 2. Linear hydrostatic wave (U/Na5 0:1) for a low wide mountain showing vertical velocity w (m s21) obtained (a) analytically

(following Smith 1980), (b) from CSLAM-NH after T5 18 h using Dt5 20 s (Cr5 0.2), and (c) Dt5 150 s (Cr5 1.5). The contour interval

is 23 1023 m s21. Mean wind is from left to right.
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solution [based on Smith (1980)] are shown in Fig. 3. As

expected, far away and downstream of the mountain,

the solutions exhibit a more pronounced downstream

tilt of the phase from the nonhydrostatic component

of the waves. The results compare well with the ana-

lytic solution and other solutions presented in the

literature (e.g., Klemp et al. 2008; Xue et al. 2000;

Melvin et al. 2010).

b. Schär mountain wave

A more challenging test case is that proposed in Schär
et al. (2002) of dry flow past an idealized topography. The

topography prescribed includes a large-scale bell-shaped

mountain with small-scale features of perturbation

wavelength l,

h(x)5 hm exp

�
2
�x2 xc

a

�2�
cos2

�
p(x2 xc)

l

�
,

where hm 5 250m is the peak magnitude, a5 5 km is the

half-width, and l5 4 km. The domain depth is 19.5 km,

with a horizontal grid spacing of Dx5 500m and vertical

grid spacing of 300m. A reference temperature of 288K

and pressure of 100 kPa are used. The initial upstream

wind profile is constant at 10m s21. An initial constant

stratificationN5 0:01 s21 is used. No explicit diffusion is

applied. The numerical setup follows that of Schär et al.
(2002), except for the horizontal domain size, which is

increased from 200 to 400km for the periodic lateral

boundary conditions. A Rayleigh damping layer in the

top 9.5 km is applied, as in original test case (with

mmax 5 0:15 s21).

To reduce the impact of the small-scale topography

features on the vertical coordinates at increasing heights,

the basic terrain-following height coordinate (Gal-Chen

and Somerville 1975) is modified by incorporating

a smoothing function as proposed in Klemp (2011). The

formulation of the smoothed terrain-following height

coordinate gradually decreases the impact of the small-

scale terrain features with increasing height. Figure 4

shows the linear analytical solutions and CSLAM-NH

solutions of the vertical velocity at simulation time

T5 5 h using a time step size of 8 and 32 s (only partial

domain is shown), comparing well to those in Schär et al.
(2002) as well as those in Melvin et al. (2010).

c. Downslope windstorm

To test the nonhydrostatic solver in a highly nonlinear

flow, a simulation of the famous downslope windstorm

that occurred on 11 January 1972 in Boulder, Colorado

(Lilly 1978), is conducted. Strong surface winds, gusting

to 55m s21, were observed in Boulder on that day. The

windstorm has been a long-standing case for theory

development and numerical model verification (e.g.,

Klemp and Lilly 1978; Peltier and Clark 1979; Durran

1986). More recently, Doyle et al. (2000) carried out

a model intercomparison study of 11 different high-

resolution models to assess their ability in numerically

simulating the wave-breaking process of this wind-

storm. Prior to Doyle et al. (2000), smoothed soundings

were used to initialize the models; here, we use the

same 1200 UTC 11 January 1972 Grand Junction,

Colorado, sounding as in Doyle et al. (2000), where

they showed that a more realistic simulation of the

windstorm was generated.

The numerical setup is based on Doyle et al. (2000).

The mountain half-width is 10 km with a height of

2 km. The domain is 240 km wide and 25km deep. The

numerical domain dimensions are 240 3 125 grid cells

(Dx5 1 km and Dz5 200m). The time step sizes used

FIG. 3. Linear nonhydrostatic wave (U/Na5 0:5) for a narrow mountain showing vertical velocity w (m s21) obtained (a) analytically

(following Smith 1980), (b) from CSLAM-NH after T5 9000 s using Dt5 5 s (Cr 5 0.125), and (c) Dt5 60 s (Cr 5 1.5). The contour

interval is 63 1023 m s21. Mean wind is from left to right.
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in Doyle et al. (2000) ranged from 1 to 12 s [the largest

time step size of 12 s was run using the model in Durran

and Klemp (1983), which uses a time-splitting scheme

with a small time step of 3 s]. To compare the results

with these models, a similar time step size of 10 s is

used in CSLAM-NH. A Rayleigh damping layer

(mmax 5 0:05 s21) is applied only in the top 7 km of the

domain (18# z# 25 km) to prevent the damping of the

physically significant wave breaking in the lower

stratosphere. A fourth-order horizontal smoothing fil-

ter is applied and evaluated at time level n with a co-

efficient KD 5 13 109 m4 s21, which smooths out any

small-scale variations in the velocities and potential

temperature and helps maintain numerical stability in

the model. Unlike most of the models in Doyle et al.

(2000), no turbulence parameterization or any other

explicit diffusion was used; turbulent dissipation is

solely dependent on the hyperviscosity applied and any

inherent numerical dissipation associated with the

model discretization.

In the results presented within Doyle et al. (2000), all

models produced significant strengthening of the winds

on the lee of the mountain and wave breaking in the

upper troposphere and stratosphere at time 3h. Despite

using identical initial conditions, however, significant

differences were found among the model results due to

differences in the model formulations (e.g., spatial and

temporal discretizations, type of explicit diffusion used,

etc.), as well as the nonlinearity of the flow.

The CSLAM-NH results at 3 h are presented in Fig. 5.

The wave-breaking regions in CSLAM-NH can be

identified as the adiabatic (well mixed) regions (Fig. 5a)

and highly turbulent areas (Richardson number,

Ri , 0:25) [Fig. 5c, where to be consistent with Doyle

et al. (2000), the Richardson number sgn(Ri)jRij0:5 is

plotted]. The Richardson number used in Fig. 5c is the

bulk Richardson number (dry):

Ri 5
g/u(Du/Dz)

(Du/Dz)2
.

For locally statically stable air (Ri . 0), the critical

Richardson number at which wind shear is strong enough

to sustain turbulence and overcome the damping by neg-

ative buoyancy is 0.25. The wave-breaking regions appear

to be in the vicinity of 12# z# 16 km and 17# z# 20 km,

comparable to the results in the intercomparison study.An

initial critical level at z5 21 km (where U5 0) is also

found to be damping in the CSLAM-NH model simula-

tion, and traps the vertically propagating gravity waves.

The damping effect is evident in the smooth isentropes and

lack of turbulence (large Ri, not contoured) above that

height.

The lateral position of the hydraulic jumps at 3 h

varied among the models given in Doyle et al. (2000),

with several occurring over the lee slope and others

farther downstream. The associated maximum lee

slope winds from the 11 models were found to range

FIG. 4. Vertical velocity w (m s21) for the Schär mountain wave
test obtained (a) analytically [following a procedure similar to
Smith (1980)], (b) from CSLAM-NH after T 5 5 h using Dt5 8 s,

and (c) Dt5 32 s. The contour interval is 0.05m s21. Solid (dashed)

lines indicate positive (negative) velocities. Mean wind is from left

to right.
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from 43 to 86m s21. In CSLAM-NH, the hydraulic

jump feature is found on the lee slope, and the simu-

lated maximum downslope wind speed at the surface

(lowest model level) is located at 10.5 km downstream

from the mountain crest at 56.6m s21 (Fig. 5b). Flow

features aloft such as the flow reversal at 5# z# 10 km

that was present in many of the models in Doyle et al.

(2000), are also present in the CSLAM-NH results.

This weakening of the winds above the hydraulic jump

was also observed in the aircraft flight data analysis

[see, e.g., Fig. 2b in Doyle et al. (2000)].

The hyperviscosity coefficients used by the models in

the model intercomparison study ranged from 1:13 108

to 5:03 109 m4 s21. Time series of simulated maximum

downslope wind speeds using different diffusion co-

efficients in CSLAM-NH are given in Fig. 6. Results

from varying the horizontal smoothing coefficient from

1:53 108 to 13 109 m4 s21 show a slight variation in the

simulated maximum downslope wind speed, with values

at 3 h ranging from 53.1 to 56.6m s21. The impact of

using different magnitudes of horizontal smoothing is

apparent once the waves begin to break, giving a maxi-

mum range of predicted downslope wind speeds of

approximately 12ms21. The general trend of the

downslope windstorm development, however, is similar

withmaximum surface winds of the simulation occurring

at around 3h, with weakening thereafter due to the

limited horizontal extent of the domain and periodic

lateral boundaries.

The maximum stable time step in CSLAM-NH for this

wave-breaking case is 20 s (whenKD 5 5:03 109 m4 s21 is

applied). With a time step larger than 20 s, the errors of

the linear trajectory approximations become large

enough that the departure cells self-intersect as illus-

trated in Fig. 7. In this case, the flow is characterized by

FIG. 5. CSLAM-NH simulation for the 1972 Boulder windstorm

case (a) potential temperature u (K) (with a contour interval of

8 K), (b) horizontal velocity U (m s21) (with a contour interval of

8m s21), and (c) Richardson number sgn(Ri)jRij0:5 [25#Ri # 1

are plotted with contour interval of 0.5, following Doyle et al.

(2000); the gray shaded area shows negative values] atT5 3 h using

a time step Dt5 10 s.

FIG. 6. Time series of the simulated maximum CSLAM-NH

downslope wind speeds (m s21) for the 1972 Boulder windstorm

case using different horizontal smoothing coefficients, KD(m
4 s21).
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a strong horizontal shear of the vertical wind speeds as

well as large vertical Courant number, Crz ’ 3 (not

shown). Higher-order cell-edge approximations have

been explored by Ullrich et al. (2013), and may help al-

leviate the time step limit by increasing the accuracy of

the area integration. Overall, CSLAM-NH is able to

generate comparable results to the other models, and at

a maximum time step size that is roughly double those

used in Doyle et al. (2000).

d. Moist flow over a mountain in a nearly neutral
environment

The nonhydrostatic solver is tested for another non-

linear flow, but in this case, we also include the effects

frommoist processes. A simulation of saturated flow over

a mountain in an initially nearly neutral environment is

conducted. This test case also demonstrates the ability of

the solver in producing realistic orographic precipitation.

The simulation is based on the test cases presented in

Miglietta and Rotunno (2005). Moisture in the atmo-

sphere is an important factor in modifying flow over to-

pography. Durran and Klemp (1983) studied the

influence of moisture on mountain waves using nu-

merical simulations. In both a linear mountain-wave

test and a downslope-windstorm test, they found that

the inclusion of upstream moisture can greatly reduce

the amplitude of these waves relative to their dry an-

alogs. As the mountain enhances lifting of the moist

flow over the windward side, condensation commonly

occurs, leading to clouds and precipitation. The

downstream evaporation of these clouds and pre-

cipitation can reduce the static stability at these alti-

tudes, and the air can become desaturated on the lee

side of the mountain due to rainout processes and

adiabatic warming in the descent.

For a nearly neutral flow, Miglietta and Rotunno

(2005) simulated the transition of saturated air upstream

to unsaturated air downstream due to diabatic warming

in the downward motion on the lee. The inverse Froude

number Nmhm/U is near zero, indicating that the re-

sistance due to gravity is minimal and the flow can freely

translate over the mountain.

To include moisture effects when determining local

static stability, Lalas and Einaudi (1974), and later ver-

ified by Durran and Klemp (1982), derived an expres-

sion for the moist Brunt–Väisälä frequency:

N2
m 5 gG

 
d lnu

dz
1

Ly

cpT

dqs
dz

!
2

g

11qw

dqw
dz

, (14)

where T is the absolute temperature, qs is the saturated

water vapormixing ratio, qw is the total watermixing ratio,

and

G5

11
1

qs 1 �

›qs
› lnu

				
p

11
Ly

cpT

›qs
› lnu

					
p

, (15)

is the ratio of the moist to dry adiabatic lapse rates. (All

other variables are as defined previously.) More details

on the generation of the saturated neutral sounding for

a specific moist static stability Nm and surface temper-

ature are given in the appendix.

Miglietta and Rotunno (2005) used a small

N2
m 5 33 1026 s22 to represent a nearly neutral tropo-

sphere due to the limitations of the single machine

precision accuracy of their model. They found that

using any smaller Nm led to solutions that were ap-

parently convectively unstable. The CSLAM-NH

solver has machine double precision accuracy, so for

FIG. 7. A self-intersecting departure cell (highlighted in red

with vertices marked by black circles) in CSLAM-NH when

a large time step size of 25 s is used for the strongly sheared flow in

the 1972 Boulder downslope windstorm case. Black circles in-

dicate departure gridcell vertices and white circles the Eulerian

arrival gridcell vertices. Arrows symbolize the computed backward-

in-time trajectories. Trajectories and the arrival grid cell associ-

ated with the self-intersecting departure cell are highlighted in

red.
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this moist neutral flow case, an initial Nm 5 0 in the

troposphere is applied. Simulations using a range of

‘‘small’’ N2
m ; 10211 s22 in the initialization step show

solutions similar to applying Nm 5 0 and resemble

those in Miglietta and Rotunno (2005) more than using

theirN2
m 5 33 1026 s22. An initialN2

m 5 4:843 1024 s22

is used for the isothermal stratosphere.

Twomountain cases with different heights, hm 5 700m

and 2 km, were chosen from Miglietta and Rotunno

(2005) for their distinct differences in orographic dis-

tribution of moisture. Both test cases are run using the

Witch-of-Agnesi curve with a half-width of 10 km. The

same numerical domain that is 800 km wide and 20 km

deep is used, and the grid dimensions are 400 3 80 grid

cells (Dx5 2 km and Dz5 250m). In both cases, a mean

wind U5 10m s21 is applied. The atmosphere is ini-

tially saturated (qy [ qs) with constant cloud water mix-

ing ratio qc 5 0:05 g kg21 set everywhere in the domain to

prevent the atmosphere from becoming subsaturated due

to the impulsive introduction of the mountain at initial

time. The Rayleigh damping layer (mmax5 0:1 s21) is

applied in the top 5km of the domain. Second-order fil-

ters in the horizontal and vertical directions are applied

with coefficients 3000 and 3m2 s21, respectively. The

Prandtl number is 3. This configuration is the same as that

in Miglietta and Rotunno (2005).

Both cases suggest a desaturationof the air downstreamof

the mountain with time. Miglietta and Rotunno (2005) no-

ticed in their simulations that for intermediate mountain

heights (500 # hm # 1500m) the unsaturated region

downstream of the hill unexpectedly extends upstream

as well. A later study by Keller et al. (2012) showed that

this upstream extent of the subsaturated air is due to

local adiabatic descent and warming caused by a tran-

sient upstream-propagating gravity wave, a fundamental

feature of a two-layer two-dimensional atmosphere with

topography introduced impulsively. The purpose of

performing the test case as prescribed in Miglietta and

Rotunno (2005) with a mountain 700m high is to ensure

that CSLAM-NH can generate comparable results to

models used in the literature, such as that in Miglietta

and Rotunno (2005), who used the Weather Research

and Forecasting (WRF) Model (version 1.3).

Figure 8 shows the solution from CSLAM-NH [cf.

Fig. 5d of Miglietta and Rotunno (2005)] using a time

step size of 20 s. The white region indicates subsaturated

air, as described previously. Although the upstream re-

gion of the subsaturated air in Miglietta and Rotunno

(2005) extends farther upstream (x52100 km) than

that found using CSLAM-NH, the solution from

CSLAM-NH compares very well with that obtained in

Miglietta and Rotunno (2005). The maximum stable

CSLAM-NH time step size is 50 s with two iterations

of both components in the iterative centered-implicit

scheme.

Figure 9a shows the CSLAM-NH cloud water mixing

ratio at time 5h 10min (10min after autoconversion of

rain is permitted) of a simulation using Dt5 20 s for the

large-amplitude mountain (hm 5 2 km) case [cf. black

contours in Fig. 8a in Miglietta and Rotunno (2005)].

Similar to the results presented inMiglietta and Rotunno

(2005), no upstream region of the subsaturated air is

found. In addition, the formation of convective cells

due to the reduction of local static stability downstream

of the mountain is also detected in the CSLAM-NH

simulation. The instability is found to be primarily as-

sociated with a hydraulic jump feature downwind.

Figure 9b shows the rainwater mixing ratio for the same

simulation time as in Fig. 9a.

Compared to the results in Miglietta and Rotunno

(2005), CSLAM-NH indicates more rain spillover to

the lee of the mountain [cf. gray contours in Fig. 8a in

Miglietta and Rotunno (2005)]. Simulation of our case

using an Eulerian split-explicit model similar to the one

used in Miglietta and Rotunno (2005) shows virtually

the same distributions of cloud water and rainwater as

in the CSLAM-NH simulation (Fig. 9). The similarity of

the CSLAM-NH solution to that of the second Eulerian

model seems to suggest that the discrepancy is not spe-

cific to CSLAM-NH and may be related to certain as-

pects of the initialization procedure. Miglietta and

Rotunno (2005) suggested that their simulations were

FIG. 8. CSLAM-NH cloud watermixing ratio (g kg21) at time 5 h

from an initially saturated nearly neutral flow (with an initial

qc 5 0:05 g kg21) over a 700-m hill. The white region above ground

indicates subsaturated air (qc [ 0).
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sensitive to small changes to Nm ’ 0. If there is a slight

discrepancy between the value of Nm specified in the

initialization than that used in Miglietta and Rotunno

(2005), the flow dynamics may be altered. In this situa-

tion, the greater amount of waterloading to the lee of the

mountain could imply a lower effective terrain height

(Nmhm/U) (i.e., lower stability and/or stronger winds),

such that the advection of the hydrometeors happens at

a faster time scale than the fallout of precipitation.

Using this moist neutral flow test, the computational

performance of the serial CSLAM-NH is evaluated. The

computational efficiency of the CSLAM-NH solver de-

pends on two main components: the Helmholtz solver and

the transport of the passive scalars. The current iterative

Helmholtz solver allows for a larger time step size at the

expenseof solving theHelmholtz equationmore thanonce.

Compared to the noniterative scheme, which has a smaller

maximum stable time step, the larger stable time step im-

proves the overall efficiency by 43%, albeit the iterations

and slower Helmholtz solver convergence.

In the current version of CSLAM-NH, the computa-

tional cost of the cell-integrated transport scheme is

roughly double of that of an Eulerian comparison solver

that uses a third-order Runge–Kutta split-explicit time-

stepping scheme. For CSLAM-NH to be comparable in

execution time to the Eulerian solver, the CSLAM-NH

time step size needs to be roughly 5 times that of the Eu-

lerian time step. The maximum stable CSLAM-NH time

step size is found to be limited by self-intersecting de-

parture cells. Special handling of the self-intersecting de-

parture cells (such as artificially ‘‘uncoiling’’ these twisted

cells) may help increase the stability of CSLAM-NH. We

note that the performance of CSLAM-NH will likely

compare very differently in a multiprocessor environment

(discussed in the next section).

4. Summary

A nonhydrostatic atmospheric solver (CSLAM-NH)

that uses a new discrete formulation of the semi-

implicit continuity equation for cell-integrated semi-

Lagrangian transport schemes is developed and further

tested for flows over idealized orography. Here, the

solver using the CSLAM transport scheme is tested

against various idealized mountain-wave cases and

exhibits accurate and stable behavior under the in-

fluence of a terrain-following height coordinate. An

implicit Rayleigh damping layer is also implemented in

this extended version of CSLAM-NH to help prevent

unphysical reflection of vertically propagating gravity

waves at the model top.

The new discrete semi-implicit continuity equation

used in CSLAM-NH allows for a straightforward imple-

mentation of consistent flux-form equations for scalars in

the model. Consistency in conservative scalar mass

transport may prove to be important in longer NWP and

climate simulations. The time integration of both the

gravity and acoustic waves are handled implicitly in

the solver using an iterative centered-implicit scheme.

The iterative scheme allows for larger maximum stable

time step sizes at the expense of solving the linear

Helmholtz problem more than once.

In large climate and chemistry models, the compu-

tational cost associated with the parameterized physics

and the transport of the many [O(102)] tracer species is

likely to outweigh that associated with the dynamics.

FIG. 9. (a) As in Fig. 8 but at time 5 h 10min over a 2-km mountain. (b) CSLAM-NH rainwater mixing ratio

qr (g kg
21) at the same simulation time.
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The solution procedure for the dry dynamics is carried

out once at each time step, whereas scalar transport is

computed for hundreds of tracers. The larger time step

sizes allowable by the iterative scheme in CSLAM-NH

reduce the number of tracer advection steps per sim-

ulation, which may help compensate for the added

expense.

In a parallel environment, the performance of CSLAM-

NH will likely depend on the scalability of the CSLAM

transport scheme, and the Helmholtz solver. Erath

et al. (2012) implemented and optimized the CSLAM

transport scheme to run in HOMME, one of the dy-

namical core options in the Community Atmosphere

Model (CAM). The computational performance of using

the CSLAM transport scheme was found to be much

more efficient and scalable than the advection scheme in

HOMME,which uses a three-stage second-orderRunge–

Kutta time-stepping scheme. Erath et al. (2012) found

that the CSLAM transport scheme was able to out-

perform the scheme in HOMME, not because of fewer

floating-point operations, but largely because the latter

required much more (approximately 10 times) commu-

nication time than the CSLAM transport scheme when

a large number of processors are used. Regarding effi-

cient parallelizable Helmholtz solvers, Müller and
Scheichl (2014) recently explored and compared several

different approaches. The authors demonstrated that

the geometric multigrid method they tested can be

roughly 5–10 times faster than the algebraic multigrid

methods and preconditioned conjugate gradient solvers

that they have also tested, in a parallel environment.

Since the Helmholtz equation in CSLAM-NH is for-

mulated to be similar to those solved by traditional el-

liptic solvers, recent improved techniques such as those

in Müller and Scheichl (2014) are also applicable when

implementing CSLAM-NH for a parallel environment.

Four idealized test cases available from the literature

were used to verify the stability and accuracy of the

proposed solver over topography. Simulations of linear

hydrostatic and nonhydrostatic mountain waves com-

pared well with numerical solutions from the literature.

The simulation of a highly nonlinear wave-breaking

case of the 11 January 1972 Boulder windstorm high-

lighted the ability of the solver to handle highly sheared

flow at large time steps. Because of the strong non-

linearity of the flow, the simulations from the models

used in the intercomparison study of Doyle et al. (2000)

varied in their finescale features. Although there is

limited predictability of the precision of these features,

all models, including CSLAM-NH (the simulation of

which is presented here), showed similar main features

of the windstorm, such as the locations of the wave-

breaking regions and hydraulic jump downstream of

the mountain. Finally, moist nearly neutral orographic

flows based on Miglietta and Rotunno (2005) are tested.

Two mountain profiles were used: a lower 700-m-tall

mountain and a much higher 2-km mountain. For the

lower mountain case, CSLAM-NH shows comparable

results with those in Miglietta and Rotunno (2005), in-

cluding downstream and upstream regions of sub-

saturated air. For the highermountain case, there is more

rain spillover to the lee side of the mountain as compared

to the results presented inMiglietta and Rotunno (2005).

However, similar solutions are found using another

comparison Eulerian split-explicit model, which suggests

that certain aspects (e.g., initialization) of the model

other than model formulation may be causing the dis-

crepancy, and that the discrepancy is not specific to

CSLAM-NH.

In its current state of development, CSLAM-NH is

a two-dimensional prototypical nonhydrostatic atmo-

spheric solver in Cartesian geometry that has shown

promising potential for weather and climate applications.

Attractive features of this solver include the consistent

formulation of the semi-implicit cell-integrated semi-

Lagrangian continuity and scalar conservation equa-

tions, in conjunction with the inherently conservative

multitracer CSLAM transport scheme. For the solver to

be further implemented as a dynamical core in a full

NWP and climate model, the Coriolis terms, which

have been neglected thus far, should be incorporated

back into the solver. The Coriolis terms were tested in

a similar solver on the shallow-water system in Wong

et al. (2013). In addition, the discretization will need to

be extended to a sphere, and the CSLAM transport

scheme implemented for three-dimensional transport.
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APPENDIX

Generation of a Moist Neutral Sounding

A few more specifics regarding the generation of the

moist neutral sounding that supplements the deriva-

tion presented in Miglietta and Rotunno (2005) are

given. Following the procedure in Miglietta and

Rotunno (2005), to generate the initial sounding of
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a specific Nm, a first-order ordinary differential equa-

tion is solved. To create the initial nearly neutral

sounding, the first-order ordinary differential equation

for potential temperature is solved iteratively based on

a specified surface temperature (158C) and reference

pressure (p0 5 100 kPa). To be consistent with Miglietta

and Rotunno (2005), the Wexler’s formula for saturated

vapor pressure (in hPa) is used:

es(T)5 6:11 exp

�
17:67

T2 273:15K

T2 29:65K

�
. (A1)

The definition for qs 5 �es/(p2 es), where �5Rd/Ry is

used to derive ›qs/› lnujp in (15). First, differentiating

qs with respect to lnu at constant Exner function p

gives

›qs
› lnu

				
p

5
qs
es

p

p2 es

›es
› lnu

				
p

,

and differentiating (A1) (using T5pu) with respect to

lnu at constant p gives the following expression:

›es
› lnu

				
p

5 esT
17:67(243:5)

(T2 29:65)2
.

To find u(z) for a specific Nm, (14) must be iterated to

convergence (10212) at each pressure level (or height)

since qs 5qs(p, u) and G are also functions of the un-

known. To get the pressure at each height, the hydro-

static equation is used:

pj112pj

Dz
52

g

cp

11 qw
z

um
z .

For each model level j, the discrete form of the ODE

solving for u at height z is

lnuj111
Ly

cpT

z

(qs,j112 qs,j)2 (qw,j112 qw,j)

"
1

(11 qw)G

#z

5 lnuj 1
N2

m

gG

z

(zj112 zj) .

[Note: Miglietta and Rotunno (2005) express this equa-

tion in terms of (T, p).] Other aspects of the Kessler

microphysics scheme also require modification. Follow-

ing Miglietta and Rotunno (2005), no autoconversion

from cloud water to rain is permitted in the first 5h to

allow for initial adjustment of the flow to the impulsive

introduction of terrain. For a consistent definition of qs
throughout the model, the production of cloud water due

to saturation is also modified:

				dqsdt

				5 qy 2 qs

11
Ly

cp

�
›qs
›T

�					
p

,

where, based on the Wexler’s equation for es:

›qs
›T

				
p

5
qsp

p2 es

17:67(243:5)

(T2 29:65)2
.
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