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Idealized global nonhydrostatic atmospheric test cases on a
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J. B. Klemp1, W. C. Skamarock?, and S.-H. Park?

"National Center for Atmospheric Research, Boulder, Colorado, USA

Abstract Idealized simulations on a reduced-radius sphere can provide a useful vehicle for evaluating
the behavior of nonhydrostatic processes in nonhydrostatic global atmospheric dynamical cores provided
the simulated cases exhibit good agreement with corresponding flows in a Cartesian geometry, and for
which there are known solutions. Idealized test cases on a reduced-radius sphere are presented here that
focus on both dry and moist dynamics. The dry dynamics cases are variations of mountain-wave simulations
designed for the Dynamical Core Model Intercomparison Project (DCMIP), and permit quantitative compari-
sons with linear analytic mountain-wave solutions in a Cartesian geometry. To evaluate moist dynamics, an
idealized supercell thunderstorm is simulated that has strong correspondence to results obtained on a flat
plane, and which can be numerically converged by specifying a constant physical diffusion. A simple
Kessler-type routine for cloud microphysics is provided that can be readily implemented in atmospheric
simulation models. Results for these test cases are evaluated for simulations with the Model for Prediction
across scales (MPAS). They confirm close agreement with corresponding simulations in a Cartestian geome-
try; the mountain-wave results agree well with analytic mountain-wave solutions, and the simulated super-
cells are consistent with other idealized supercell simulation studies and exhibit convergent behavior.

1. Introduction

Idealized test cases can play a highly beneficial role in evaluating the efficacy of the numerics in atmospheric
simulation models. They may allow the model to be applied to highly simplified physical environments that
permit the assessment of selective aspects of the model numerics through comparisons with known solutions.
In evaluating the numerics in nonhydrostatic global models, however, constructing useful idealized test cases
can be problematic. To test the behavior of global models in the nonhydrostatic regime, we face the dilemma
that simulations with small grid spacings required to resolve nonhydrostatic phenomena are often beyond
the realm of feasibility (and certainly not cost effective). To address this problem, simulations on a reduced-
radius sphere have been proposed as a means of achieving nonhydrostatic resolutions at a reasonable com-
putational cost. Wedi and Smolarkiewicz [2009] compared the behavior of the Eulerian-Lagrangian modeling
system (EULAG) and the Integrated Forecasting System (IFS) dynamical cores through simulations of inertia-
gravity waves over idealized terrain on a reduced-radius Earth, and Ullrich et al. [2012] proposed several
mountain-wave test cases on a reduced-radius sphere for use in the Dynamical Core Model Intercomparison
Project (DCMIP), in which a number of modeling groups participated. Malardel [2013] has evaluated the treat-
ment of resolved moist deep convection in the IFS using simulations on a reduced-radius Earth.

Of course, atmospheric motions on an Earth sphere of highly reduced radius may have little physical rele-
vance to the real atmosphere, which would negate much of the motivation for pursuing this approach for
idealized testing. Therefore, we believe that the most useful test-case configurations are those for which it
can be demonstrated that the simulations on the reduced-radius sphere bear strong similarity to physically
relevant idealized flow, and for which there are known solutions for comparison. For model testing at non-
hydrostatic scales, the relevant physical paradigm is typically flow with or without topography in a Cartesian
geometry. By removing Coriolis influences (f = 0), no rescaling of the natural time or space scales is required
since the scale of the disturbances remain small compared to the (infinite) Rossby radius of deformation,
regardless of the amount of sphere-radius reduction. Theoretically, solutions on a nonrotating reduced-
radius sphere will correspond to those on a Cartesian plane when the disturbances are confined to low lati-
tudes and the depths of disturbances are small compared to the Earth radius (shallow atmosphere approxi-
mation). By comparing solutions on the reduced-radius sphere with those obtained in a Cartesian
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geometry, we can confirm that the solutions on the sphere are not significantly biased by unphysical behav-
ior due to artificial curvature effects.

In this study, we describe idealized test cases on a reduced-radius sphere for both dry dynamics and moist con-
vection, and utilize these cases to evaluate the numerics in our global Model for Prediction Across Scales (MPAS)
[Skamarock et al., 2012]. We have developed these test cases as part of the High-Impact Weather Prediction Pro-
gram sponsored by the NOAA Office of Oceanic and Atmospheric Research (OAR) Earth System Research Labo-
ratory (ESRL) for the purpose of facilitating the evaluation of emerging nonhydrostatic global models. These test
cases are designed for global models employing the shallow atmosphere approximation (as used in most global
models) to reduce the influences of sphere curvature for small sphere-radius simulations.

For the simulation of dry dynamics, we propose two model configurations that are variations from the origi-
nal DCMIP [Ullrich et al., 2012] experiments. These modified cases are flow over a quasi-two-dimensional
ridge that can be compared to published results for uniform flow over a two-dimensional ridge [Schar et al.,
2002; Klemp et al., 2003, hereinafter KSF], and flow over a circular mountain that can be compared to 3-D lin-
ear analytic solutions for uniform flow over the circular mountain in a Cartesian geometry.

From our experience, simulations of moist convection are often quite revealing since strong latent heating tends
to occur near the grid scale (the smallest scales being the most unstable), which is where the model numerics
are the most challenged. The simulation of a supercell thunderstorm is well suited for a model test case since
these storms are typically characterized by strong isolated long-lived convective cells. Idealized supercell simula-
tions have been conducted since the early days of 3-D convective storm modeling for the purpose of analyzing
the dynamics of these powerful storms [Wilhelmson, 1974; Schlesinger, 1975, 1980; Weisman and Klemp, 1982,
1984; Rotunno and Klemp, 1982, 1985]. The supercell test case described here is a variation and extension of the
idealized supercell case discussed briefly by Skamarock et al. [2012], in which a simulation on a flat plane using
MPAS with a hexagonal mesh was compared to a corresponding simulation on a rectangular mesh.

2. Mountain-Wave Simulations on the Reduced-Radius Sphere

2.1. Mean Atmospheric Sounding

The intent for these test cases is to simulate the flow of an atmosphere having constant wind and stability
over a specified terrain profile on a reduced-radius sphere in the absence of rotation (Q = 0). Following
DCMIP case 2, we initialize the atmosphere with an isothermal mean state at the equator
(Ti(4,0,2)=T.q=300 K) and a zonal wind in solid body rotation with no vertical wind shear such that:

Ui(4, ¢, 2) =Ueqcos ¢, )]

where Ueq =20 m s~', /. and ¢ designate longitude and latitude, respectively, and the subscript i refers to the
initial undisturbed state. The desired balances in the initial state derive from balancing the hydrostatic equation:
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together with the gradient wind equation:
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Cross differentiating and equating (2) and (3) confirms that in the absence of vertical wind shear, the initial
temperature is constant, Tj(4, ¢, z) =Teq, and the balanced initial pressure field is given by:

u? V4
(. _ ~ Yeq o2, G 4
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which corresponds to DCMIP (80). As pointed out in the DCMIP test-case document, for a pressure-based
vertical coordinate, (4) can be rearranged to provide an equation for the height field (DCMIP equation (84)):
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z(hd,p)="n <@)_L¢_ )
g p 2g
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2.2, Mountain Topography

For our mountain-wave test cases, we have specified two different terrain profiles, a quasi-two-dimensional
ridge that permits comparison with the 2-D test case presented by Schar et al. [2002, hereafter referred to
as the Schar test case], and a circular mountain terrain as specified in the DCMIP test case 2.1. The Schar
test case is interesting as it was designed to evaluate a new treatment for the vertical coordinate (SLEVE
coordinate) in the Canadian Mesoscale Compressible Community (MC2) model that removes smaller-scale
terrain influences from the coordinate surfaces more rapidly with height than the traditional terrain-
following formulation [Gal-Chen and Sommerville, 1975]. Using this case, Schar et al. found that distortions
in the simulated mountain-wave structure were removed when the traditional terrain-following coordinate
was replaced by their proposed SLEVE coordinate. KSF demonstrated that the fundamental source of error
in this test case arises when there is an inconsistency in the numerical representation of the metric terms
that appear in the dynamical equations that employ a terrain-following vertical coordinate. This is an
informative test case in that there is a linear analytic solution for comparison and a clear understanding of
the aspects of the numerics to which model results are most sensitive.

The general form of the terrain profile for both of our mountain-wave test cases follows the formulation
specified for DCMIP case 2.1:

z(2, ¢)=hoexp {— r, ¢)2} cos? {m(f’ d))} , (6)

2
do <o

(DCMIP, equation (76)). For the circular mountain profile used in DCMIP 2.1, r(4, ¢) is the great-circle dis-
tance from the mountain center at (A, ¢.), as defined in DCMIP (77):

r(4,¢)= %arccos [sin ¢ sin ¢p+cos ¢ cospcos (A—Ac)], 7)

where a,.r is the full Earth radius, X is the reduced Earth-radius scaling factor, ho=250 m, dy=5000 m, and
£o=4000 m. The terrain defined by (6) and (7) was configured such that the profile along its centerline
(equator) is identical to the 2-D terrain used in the Schar test case.

To achieve similarity with the 2-D Schar case, we have modified the circular mountain profile (6) by retain-
ing the terrain shape along the equator, and then extending this longitudinal terrain profile to form a ridge
in the north-south (latitudinal) direction, with the height and width gradually reduced to zero approaching
the poles (i.e, multiplying the 2-D terrain profile by cos ¢). In this manner, the mountain-wave structure
along the equator should be very similar to the 2-D solutions published by Schar et al. [2002] and KSF. For
this purpose, we alter the terrain specified in (6) and (7) by defining the distance r(4, ¢) used in (6) as the
distance along the Earth’s surface from the ridge axis (at 2=4,) in the longitudinal direction. With this modi-
fication, the expression for r(1, ¢) becomes

12 d)= % (2= 7¢)cos p=ro(1)cos ¢, (8)
In (6), the maximum ridge height along its centerline is z;(/c, ¢)=hocos ¢, such that Nz;(Ac, ¢)/ui(¢), a mea-
sure of the nonlinearity of the flow, remains independent of ¢. Similarly, the horizontal length scales of the ter-
rain (d=docos ¢, £=Eycos ¢p) are scaled with latitude so that the ratio of the vertical length scale (u;/N) to the
horizontal scale also does not depend on latitude. The expression for the terrain height then becomes

z(4, ¢)=hoexp [ ro(/l)z} cos? {nrg(ﬂ,)} cos (o). )

2
ds 0

2.3. Model Configuration for the Quasi Two-Dimensional Mountain Ridge Case

Here the intent is to define a model configuration that will provide good quantitative agreement with the 2-D
test case investigated by Schar et al. [2002] and KSF. For this purpose, we specify a reduced-radius scaling fac-
tor of X =166.7, which is one-third the scaling factor of X = 500 used for DCMIP 2.1. This larger radius sphere
is adopted to minimize the effects of sphere curvature, and to prevent the mountain-wave disturbances from
circling the globe during a 2 h simulation. Maintaining similarity with the Schar test case, we specify the
model top z,, = 20 km, with an absorbing layer employed above z, = 10 km. We configure the absorbing

KLEMP ET AL.

REDUCED-RADIUS SPHERE TEST CASES 3



QAG U Journal of Advances in Modeling Earth Systems  10.100212015mis00043s

60N — (a) Z ; —
1 h i 200
30N — ' |
. | ’ |
_ | - m
0 1
| ﬂ | 100
30S — ‘ . —
60S —| : y |
I T T I T T I T T I T T I 0
I 1 1 1 1 I 1 1 I 1 1 I
2
60N — | I
30N — = 1
i C ] K
0 O¢ o
308 — — 4
-2
| L
| |
1
- _ I
30N — - 5
7 N B | m
i v | — S
/\\
0 — | i - —]
\// ¢ ] 0
i . B
] y i
308 — — ]
—-.5
-1
| L
60E 90E

Figure 1. (a) Ridge-like terrain profile z; as represented in (9) for ho =250 m. Horizon-
tal cross sections from an MPAS simulation with hy=250 m at 8 km at 2 h for (b) per-

turbation potential temperature ¢’ and (c) vertical velocity w.

layer through implicit Rayleigh damp-
ing of vertical velocity [Klemp et al,
2008]. (The absorbing layer can also
be specified using explicit Rayleigh
damping as proposed in DCMIP (78)
and (79), if preferred.) For the ridge
terrain profile, we find that a horizon-
tal grid spacing of about 1.1° (~720
m), and a vertical grid spacing of ~
500 m is sufficient to accurately cap-
ture the wave development of interest
above the mountain (to 10 km) and
provide good semiquantitative agree-
ment with the linear analytic solution
for the 2-D case. For the MPAS centroi-
dal Voronoi grid, this horizontal cell
spacing is achieved using the 40,962
cell uniform mesh (nominally hexa-
gons). The transport terms are com-
puted using a third-order scheme with
reduced dissipation ({=0.25), as
described in Skamarock and Gassmann
[2011], and no additional explicit dissi-
pation is included. The time step used
for the model integration is At=12s.

2.4. MPAS Results for the Quasi
Two-Dimensional Mountain Ridge
Case

The ridge terrain profile for h=250 m
is depicted in Figure 1a. Although in
this map projection the horizontal scale
of the terrain appears to be independ-
ent of latitude, the physical horizontal
scale is decreasing in proportion to cos
¢ as discussed above. Horizontal cross
sections of the perturbation potential
temperature (' and vertical velocity w
at 8 km are displayed in Figures 1b and
1c, respectively. The wave structure
over the central portion of the ridge is
reasonably two dimensional, with more
noticeable three-dimensional structure
appearing at higher latitudes, where
both the terrain height and wind speed
have decreased significantly from their
amplitudes along the equator.

To compare results with the 2-D wave
structure discussed by Schar and KSF,
we display in Figure 2a the vertical
cross section of the vertical velocity
along the ridge centerline (equator) for

the terrain profile as defined in (9), but with a maximum height ho=25 m to ensure that the wave response is
essentially linear. Following KSF, we have also derived the linear analytic solution for the corresponding flow
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over a 2-D ridge, which is shown in
Figure 2b. For reference, we have
included the derivation of this linear
solution in Appendix A. This wave
structure arises due to the combina-
tion of shorter-scale evanescent
waves at low levels forced by the
narrow ridges, together with the
longer wavelength modes aloft
forced by the broader terrain enve-
lope. The good semiquantitative
agreement of the MPAS simulation
with the 2-D analytic solution con-
firms that the grid structure is suffi-
cient to resolve the dominant wave
response, and that the specified
ridge profile and the Earth-radius
reduction allow a reasonable corre-
spondence with the 2-D behavior
on a flat plane. The trailing pertur-
bations evident at higher levels in
Figure 2a, however, reflect the resid-
ual 3-D influences due to spherical
effects on the reduced-radius Earth.

1 (@) MPAS, hg=25m

z (km)

iN
S

-20

N
o
N
o

(b) linear analytic

z (km)

Figure 3 displays the vertical cross
sections for w along the ridge cen-
T terline at 2 h for a maximum ter-
rain height hy=250 m, as used by
Schar et al. [2002] and KSF. These
fields are quite similar to the 2-D
simulations in those papers and to

Figure 2. (a) West-east vertical cross section of vertical velocity along the ridge center- the 2-D results obtained previously
line from an MPAS S|mglat|on u5|'ng a linear moun'taln he|ght'h0:25'm at 2 h. (b) Verti- with MPAS [Skamarock et al,
cal cross section of vertical velocity from the 2-D linear analytic solution for ho=25 m.

IS
o b e by

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1 m/s

2012]. (Notice that vertical velocity

perturbations shown here are a
factor of two greater than those in these previous papers since the mean wind and stability are twice as
large for this isothermal environment.) The amplitudes of the waves are slightly more than a factor of 10
stronger than those shown in Figure 2 for hy=25 m, due to the presence of weak nonlinear effects. These
panels illustrate the importance of using consistent numerics in representing the metrics in the terrain-
following coordinate transformation (shown for a height-based terrain-following coordinate as used in
MPAS). As discussed by KSF, this issue is most critical for the treatment of the coordinate metric {, that
appears in the expression for o =u(,+w{,. Figure 3 documents that using either fourth-order (Figure 3a) or
second-order (Figure 3b) numerics for the horizontal advection terms yields accurate results provided the
coordinate metric {, is computed using the same order numerics. In contrast, using fourth-order advection
together with second-order numerics for the metric term leads to spurious perturbations (Figure 3c), as
documented by KSF.

2.5. Model Configuration for the Circular Mountain Case

The circular mountain case using (6) and (7) is similar to DCMIP case 2.1, except that we again specify a
smaller sphere-radius reduction X = 166.7 to reduce curvature effects and prevent disturbances from cir-
cling the globe during a 2 h integration. For this case, we have raised the model top to z;,, = 30 km (with a
damping layer above 20 km) to capture more of the nonhydrostatic wave train that extends downstream
from the mountain. We note, however, that this greater domain depth begins to cause discrepancies from
the corresponding wave structure in a Cartesian geometry due to the increasing influences of spherical
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Figure 3. West-east vertical cross sections of vertical velocity along the ridge cen-
terline from MPAS simulations for hp=250 m at 2 h. (a) Fourth-order horizontal
advection with fourth-order terrain-following metric terms; (b) second-order hori-
zontal advection with second-order terrain-following metric terms; and (c) fourth-
order horizontal advection with second-order terrain-following metric terms.

effects. Because of the more significant
smaller-scale structure in the nonhy-
drostatic wave train produced by the
circular mountain, we have specified a
smaller horizontal grid spacing of ~360
m (one-half that used for the ridge
mountain simulations). We have speci-
fied a nominal vertical grid spacing of
250 m to resolve the smaller-scale ver-
tical structure in this case, and inte-
grate over time using At=6 s. (A
vertical grid spacing of 500 m was
found to be less accurate in compari-
sons with the linear analytic solution.)

2.6. MPAS Results for the Circular
Mountain Case

Figure 4 illustrates the evolution of
potential temperature and vertical veloc-
ity over the circular mountain defined
by (6) and (7) for ho=250 m. The moun-
tain waves developing in response to
the uniform flow over this terrain exhibit
a strong nonhydrostatic wave train that
extends downstream of the mountain as
well as laterally. The somewhat noisy
fields at the downstream edge of the
expanding wave train are the remnants
of the startup vortex arising from the
impulsive insertion of the terrain at the
beginning of the integration.

Figure 5 provides a comparison of the
vertical 6 and w cross sections at 2 h
for the simulation on the reduced-
radius sphere with corresponding
behavior in a Cartesian geometry. To
produce the Cartesian-geometry solu-
tion, we have reconfigured the MPAS
grid to represent a flat plane of hexag-
onal grid cells with doubly periodic lat-
eral boundaries. In addition, we have
derived the 3-D linear steady state ana-
lytic solution for uniform flow over the
circular mountain in a Cartesian geom-
etry (see derivation in Appendix B). In
these vertical cross sections, the MPAS
simulation in the Cartesian geometry
exhibits good agreement with the lin-
ear analytic solution, confirming that
the grid resolution is sufficient to accu-
rately capture the nonhydrostatic wave

structure. The small discrepancies in the simulated results are likely due to weak nonlinear effects and slight
departures from steady state. In the simulation on the sphere, the vertical velocity field at 2 h is quite similar
to the results in a Cartesian geometry. However, the potential temperature perturbations are more strongly
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Vertical 8 and w cross sections along centerline on X=166.7 sphere

(b) w, 30 min

30 j

min

M B
(c) 8, 60

Figure 4. Vertical cross sections for ' and w in the streamwise direction along the mountain centerline on the reduced-radius sphere with
X =166.7 at t = 30, 60, and 90 min.

affected by spherical influences, and begin to exhibit significant departures from those in the Cartesian
geometry at upper levels, as evidenced by the smaller vertical scales appearing in the potential temperature
field downstream of the mountain at altitudes between 10 and 20 km.

The comparison with numerical and analytic solutions in a Cartesian geometry is further illustrated in hori-
zontal cross sections for these variables. Figure 6 depicts these cross sections at 2 h at a height of 8 km for
the simulations on the sphere and flat plane, as well as the linear analytic solution. At this altitude, there is
good agreement between the solutions on the sphere and the flat plane. Notice, however, that the poten-
tial temperature perturbations extend further in latitude than those for vertical velocity and show some
departure from the Cartesian behavior at the higher latitudes. Figure 7 shows these same fields at 2 h at a
height of 16 km. Since the wave train expands laterally as well as downstream as the wave energy propa-
gates upward from the circular mountain, at this higher altitude, the waves have greater amplitude at
higher latitudes. Notice, for example, that the vertical velocity perturbations at 8 km (Figure 6b) have little

KLEMP ET AL.
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Vertical 6 and w cross sections along centerline at 120 min
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Figure 5. Vertical cross sections for ¢’ and w in the streamwise direction along the mountain centerline at t = 120 min for the (a and b)
reduced-radius sphere and (c and d) flat plane. (e and f) The corresponding 3-D linear analytic solution from Appendix B.

amplitude poleward of about +25° latitude, while at 16 km (Figure 7b) there are noticeable perturbations
in the 30°-60° latitude range that depart from the vertical velocity field obtained on the flat plane (Figure
7d). Even greater departures are apparent in the potential temperature perturbations at this height. Thus,
for the model configuration used for this test case, good quantitative agreement with mountain waves in a
Cartesian geometry should only be expected below about 10 km in altitude.

For this case, the mountain waves exhibit a strong nonhydrostatic character, with significant propagation of
wave energy downstream as well as in the vertical. Nevertheless, including an absorbing layer to prevent artifi-
cial reflections of wave energy from the model top is essential to obtaining accurate solutions. The impact of
the upper absorbing layer is evident in comparison with the corresponding solution obtained with the absorb-
ing layer removed, shown in Figure 8, which depicts the respective vertical cross sections for the potential tem-
perature and vertical velocity along the equator at 2 h. These results emphasize the importance of absorbing
the upward propagating gravity-wave energy to prevent significant artificial reflection from the upper
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Horizontal 6 and w cross sections at 8 km
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Figure 6. Horizontal cross sections for ¢’ and w at z

(e and f) The corresponding linear analytic solution from Appendix B.
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Horizontal 6 and w cross sections at 16 km
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Figure 7. Horizontal cross sections as in Figure 6, except at z= 16 km.
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Vertical 6 and w cross sections along centerline at 2 h on X=166.7 sphere
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Figure 8. Vertical cross sections for ¢ and w in the streamwise direction along the mountain centerline on the reduced-radius sphere with
X =166.7 at t = 2 h (a and b) with no upper absorbing layer and (c and d) with an absorbing layer in the region z = 20-30 km.

boundary of the domain. Without an absorbing layer, model solutions for this case will exhibit strong distor-
tions due to wave reflection unless the model numerics themselves are highly dissipative.

3. Supercell Simulations on the Reduced-Radius Sphere

Supercell thunderstorms are typically characterized by strong, long-lived convective cells containing deep,
persistent rotating updrafts. Because of their rotational characteristics, they may propagate transverse to
the prevailing winds and may split into two counterrotating storms [Rotunno and Klemp, 1982, 1985].They
often produce heavy precipitation, large hail, damaging surface winds, and produce most of the world’s
intense tornadoes. Because of their large characteristic scales (O(10 km) wide updrafts) and long (several
hour) persistence, nonhydrostatic global models should be expected to explicitly simulate these supercell
storms as these models approach O(km) grid spacings.

As mentioned above, simulating moist convection in a conditionally unstable environment can provide a
challenging test for the model numerics. Since the smallest horizontal scales tend to be the most unstable
in a conditionally unstable atmosphere [Rayleigh, 1916], latent heating can infuse significant energy near
the grid scale, which is where the accuracy and stability of the numerics are most crucial.

The explicit treatment of moist convection requires the inclusion of cloud microphysics to represent the
condensation and evaporation of water species, as well as precipitation processes. For this purpose, we
adopt a simple warm-rain Kessler-type microphysics that is encapsulated in a single small subroutine (about
40 executable lines of code, see Appendix C) that can be readily implemented in any nonhydrostatic model.

Dissipation is also an important process in simulating moist convection. Although the smallest scales tend
to be the most unstable, dissipation processes are also strongest at the smallest scales. Therefore, the domi-
nant scales that arise in moist unstable convection are strongly regulated by the relative strengths of latent
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heating and dissipation at these smaller scales [Rayleigh, 1916] (as described by Ching et al. [2014]). For a
test case, we believe it is important that the solution can be converged, at least in principle, as the finite dif-
ference increments are reduced. This requires that the physical dissipation be independent of the model
grid size, which is not the case in most subgrid turbulence parameterizations. Thus, we employ a constant
coefficient second-order diffusion for these supercell simulations. For explicit moist convective simulations,
the dissipative processes should be considered part of the model physics, and not just a numerical filter to
maintain stability.

3.1. Mean Atmospheric Sounding

For this supercell test case, we initialize the atmosphere with an idealized thermodynamic sounding that
has large CAPE (~2200 m? s~ 2) and strong low-level wind shear, which together are conducive for supercell
formation. Following Weisman and Klemp [1982, 1984] and Weisman et al. [1988], we specify the mean
potential temperature profile at the equator 04 (2) as

5

0o+ (0,—00)(2)',  forz<z:

Oeq(2)= g

Opexp | —(z—2zy)|, forz >z,
T

where 0,=300 K is the surface potential temperature, and 6, =343 K represents the potential temperature

at the tropopause at z,, = 12 km. The stratosphere is isothermal at T;, = 213 K. The relative humidity profile

H(z) is given by

H(z)= 2 (1)

- forz > z, .

The initial water-vapor mixing ratio is defined from g,(z)=H(z)q,,, where the saturation mixing ratio is
taken from Klemp and Wilhelmson [1978, equation (2.11)]:

_ . 380 Teq(2)—273
G,s(2)= ) exp (1 7.27 T2 36 ) . (12)

Here the initial pressure at the equator p,,(2) is expressed in hPa, and Te4(2) is the initial unperturbed tem-
perature at the equator. In addition, the mixing ratio is constrained to a maximum value of g,0=14 g/kg to
approximate a well-mixed boundary layer in the lowest kilometer. The temperature and moisture profiles
for this sounding are shown in Figure 9.

In past idealized supercell simulations, we have used an environmental wind profile characterized by either a
hyperbolic tangent function [Weisman and Klemp, 1982], or a linear shear below z;=5 km, with constant
winds aloft [Weisman and Klemp, 1986; Weisman et al., 1988]. We have chosen the latter wind profile for this
test case as we found that it produced a somewhat steadier mature supercell. However, in balancing the initial
state on the sphere as discussed below, a discontinuity in the mean wind shear (9t /9z) leads to a discontinu-
ity in potential temperature away from the equator. Therefore, we have removed this discontinuity by specify-
ing a polynomial fit for t for z,—1000 < z < z,+1000 that matches the value and slope of U at z=z,21000.
The mean wind is then scaled by cos ¢ to maintain solid-body rotation at each level on the sphere, yielding:

{Us <25)—Uc] cos ¢ for z < z—1000;
S
u(p,2)= 4 _z 57 (13)
(¢:2) K—g-i%z—s—zz—sz)Us—Uc} cos¢ for|z—z < 1000;
[Us—Uc]cos ¢ for z > z,+1000.

We specify U;= 30 m s~ ' to provide a strong wind shear that is a typical strength for supercell storm envi-
ronments, and set a coordinate translation speed U.= 15 m s~ ' at the equator to render the storm nearly
stationary in the model coordinates. Defining U.,=u(0, z), the ground relative initial wind at the equator is
then Uigq(z) + Uc (see Figure 9).
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Figure 9. Mean wind and thermodynamic sounding at the equator for the supercell simulation on a reduced-radius sphere. The skew-T
plot displays the temperature (black line), dew point (blue line), and the moist adiabat for surface parcel ascent (dashed red line).

Although there is no Coriolis force in these simulations, the presence of vertical wind shear requires latitudinal var-
iation of both the potential temperature and pressure to maintain a balanced state in the absence of imposed
perturbations. As in the mountain-wave test case, the initial fields must satisfy both the hydrostatic equation:

om g

b 14
A (14)

and the gradient wind equation:

on
o¢’
where 0, is the virtual potential temperature and 7 is the Exner function. (Equations (14) and (15) are the

same as (2) and (3), except written in terms of (r, 0,) instead of (p, T).) Cross differentiating these two equa-
tions and equating 74, we obtain the following equation for 0,:

A+ 7 ()
a0y :sm2¢{u2 a0, _é‘(/i) (‘3U§q}7 (6)

u’tan ¢p=—c,0, (15)

1)) 2g “ 9z 0z

This equation can be readily solved by iteration (as indicated by the i superscripts), and is found to converge
in two to three iterations. After computing a balanced 0, from (16), the corresponding balanced pressure is
obtained from the hydrostatic equation (14), after adjusting the pressure along the top of the domain using
(15). The moisture g, (z) is computed based on the thermodynamic sounding at the equator, and does not
vary with latitude. The variations of the balanced initial thermodynamic fields with latitude are displayed in
Figure 10. The maximum deviations (about 2.5° K for § and —1 mb for p) occur at the surface at the poles.
Notice that these variations from their values at the equator depend only on latitude, and not on the radius
reduction of the sphere.

3.2. Model Configuration for the Supercell Case
For this supercell test case on a reduced-radius sphere, we specify a radius reduction factor of X =120,
which provides a large enough sphere to maintain good quantitative correspondence with comparable
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Figure 10. Deviation of potential temperature (K) and pressure (hPa) from their values at the equator as a function of latitude.

simulations on a flat plane (see further discussion in the results section). The simulation domain is 20 km in
depth, with a uniform vertical grid spacing of Az=500 m and a free-slip boundary condition is imposed
along the lower surface. We begin with a nominally uniform horizontal grid spacing of about 500 m (~0.5°
mesh, containing 163,842 grid cells), which appears to yield nearly converged solutions with the diffusion
specified as outlined below. Coarser horizontal grids will also be considered to evaluate the dependence of
simulated storm evolution as a function of horizontal resolution. The transport terms are computed with
third-order numeric [Skamarock and Gassmann, 2011] without reduced dissipation (f=1.0), and for simplic-
ity, neither the positive-definite nor monotonic options are active. With the 500 m grid, we integrate MPAS
forward in time using a 3 s time step, while for coarser grids, the time step is increased proportionately.

3.3. Initial Thermal Perturbation
To initiate convection, a thermal perturbation is introduced in the initial potential temperature field. It is
defined according to the expression

0($,2)+A0cos?(ZRy) forRy < 1;
o=t Gm) forh (17)

0(¢,2) forRy > 1,

where

Here r(Z, ¢) is the great-circle distance from the center of the thermal perturbation at (A, ¢.) as defined by
(6). The parameters in (17) and (18) are specified as AO=3 K, r, = 10 km, and z.=r,=1.5 km.

3.4. Cloud Microphysics

To represent the cloud microphysical processes, we utilize a simple Kessler-type parameterization [Kessler,
1969] that contains three moisture species: water vapor (qg,), cloud water (q.), and rainwater (g;). This
parameterization follows the implementation by Soong and Ogura [1973] as described in Klemp and Wil-
helmson [1978]. The microphysics subroutine (see Appendix C) is called at the end of each time step and
updates the potential temperature and moisture variables according to the equations:

A0 L [Aqy

e +E, 19

At ¢ ( At ’)’ (19)
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Figure 11. Horizontal cross sections for the simulation with X = 120 and A ~ 500 m at 5 km at 30 min intervals for (a) vertical velocity
(ci.=2ms ") and (b) rainwater (c.i = 1 g kg~ ). Here the longitudinal positions are displayed in the ground-relative framework.
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Here L is the latent heat of condensation, A, is the autoconversion rate of cloud water to rainwater, Cy is the
collection rate of rainwater, E, is the rainwater evaporation rate, and V, is the rainwater terminal velocity. For
each variable ¢, A(/):d)”“—d)*, where ¢” is the value at the new time level prior to the final microphysics
update.
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3.5. Physical and Numerical

Diffusion

As mentioned above, dissipation plays a
strong role in regulating the intensity
and structure of simulated supercell
storms, and is an important component
of convective storm simulations. For this
test case, we have specified constant-
coefficient (v =500 m?/s) second-order
diffusion terms (both horizontal and ver-
tical) in each of the prognostic equations,
with an inverse Prandtl number of 3 for
the scalar equations. In the vertical direc-
tion, this mixing is applied to the pertur-
bation from the initial mean state to
prevent the initial balanced state from
being mixed out as the simulation pro-
gresses (this would not be needed in a
more  realistic  subgrid  turbulence
scheme). Although this is not as realistic
as a subgrid TKE or Smagorinski scheme,

using a constant physical viscosity allows the numerical solutions to be converged as the grid is sufficiently
refined (which will not occur using TKE or Smagorinsky because of their dependence on the grid scale). With this
second-order diffusion, no additional explicit higher-order filters are included.

We have also experimented with using fourth-order horizontal filters instead of second-order diffusion terms.
In these tests, we found that it was necessary to retain the second-order vertical diffusion as described above
in order to avoid accumulating significant noise in the evolving fields. With the fourth-order horizontal filters,
the storm system evolved somewhat more rapidly and exhibited more smaller-scale structure.

y (km)

40 -

flat plane

- 40N

|
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- 40S

T T T T
-30 x (km) 0 40W

longitude

Figure 13. Horizontal cross sections at 2.5 km at 2 h of vertical velocity (c.i. = 1 ms™"), displayed for simulations (left) on a flat plane with
A ~ 500 m and (right) on the reduced-radius sphere with X = 120 and A ~ 500 m. The heavy solid line depicts the location of the leading
edge of the surface cold pool.
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Figure 14. Horizontal cross sections at 5 km at 2 h of (a) vertical velocity (c.i. = 2 ms™"), and (b) rainwater (c.i = 1 gm/kg). Fields are dis-
played for simulations on the reduced-radius sphere for horizontal grid spacings of A ~ 0.5 km, A ~ 1.0 km, A ~ 2.0 km, and A ~ 4.0 km
(from left to right).

3.6. MPAS Results for Supercell Simulations

Simulations were integrated over a 2 h time interval, with convection initiated by the warm bubble described in
section 3.3. The overall evolution of the splitting supercells is well illustrated by the horizontal cross sections of
vertical velocity and rainwater at 5 km at half hour intervals shown in Figure 11. Here the longitudinal position
of the fields are shown based on a ground relative framework (i.e., the U, = 15 m s~ ' has been added back into
the translation speed of the storm). At 30 min, a single strong updraft is producing significant precipitation that
is collocated with the updraft. By 1 h, the initial updraft has split into two distinct updraft cells due to the nega-
tive buoyancy associated with rainwater loading along the central line of symmetry (equator), together with
favorable lifting vertical pressure gradients on the flanks of the rotating updrafts [Rotunno and Klemp, 1982,
1985]. By 90 min, the storm splitting has produced two mirror-image supercell storms, one with cyclonic updraft
rotation propagating to the right (south) of the mean winds, and the other rotating anticyclonically and propa-
gating to the left (north) of the mean winds. Owing to their transverse propagation, the two supercells continue
to move farther apart over the second hour.

The physical relevance of the supercell simulation on an X = 120 reduced-radius sphere can be established
through comparisons with a corresponding simulation in Cartesian geometry. For this purpose, we have
configured an MPAS grid to represent a flat plane of hexagonal grid cells with periodic lateral boundary
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50 S [ [ N T — conditions in the east-west
and north-south directions.
The horizontal domain dimen-
sions are 168 X 168 km with a
nominal cell spacing of 500 m.
Figure 12 displays the time
evolution of the maximum ver-
tical velocity w in both the
reduced-radius sphere and the
flat-plane  simulations. The
rapid rise in Wq over the ini-
tial 40-50 min is associated
with the growth of the initial
convective cell. As this initial
cell splits into two rotating
supercells, Wy levels off and
maintains an amplitude in the
150 — L range 40-45 m s~ . This com-
g L parison confirms that the
1 s reduced-radius sphere simula-
120 ~ tion exhibits good quantitative
agreement with the simulation
in a Cartesian plane. We note
that the w,,. profile shown
here for the flat-plane simula-
60 — - tion differs somewhat from the
g - results presented by Skamar-
1 r ock et al. [2012] for a compara-
30 ~ ~ ble supercell simulation with
MPAS; after about 40 min, the
Wpax in the current simulation
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Figure 15. Time variation of the (a) maximum updraft vertical velocity and (b) precipitation employed a horizontal domain
rate for supercell simulations with sphere-radius reduction X = 120 for A ~ 0.5 km (black (84 X 84) that was half the cur-
line), A ~ 1.0 km (red line), A ~ 2.0 km (brown line), and A ~ 4.0 km (yellow line). rent size, and effects of the

periodic lateral boundaries
were influencing the results at later times. (Skamarock et al. [2012] also used a 30 m s~ ' shear over 5 km,
not25 ms ' as stated in that paper.)

Further comparison of the flat-plane and reduced-radius sphere simulations is provided in Figure 13, which
displays the vertical velocity fields at z= 2.5 km at 2 h, along with the location of the leading edge of the sur-
face cold pool (taken here as the —0.3° perturbation potential temperature contour at the lowest model half
level at z= 250 m). (Here the horizontal scales have been adjusted so the horizontal distances in km are the
same.) At this 2.5 km level, the updrafts are clearly aligned above the convergence line that forms along the
edge of the surface cold pool, and are quite similar in the two simulations. Notice, however, that in the
X =120 simulations the cold pool (and the lower level updrafts) extends laterally to slightly higher latitudes
than in the flat-plane simulation. We believe that this small discrepancy is caused by the differing environ-
mental conditions that the storms encounter as they propagate to higher latitudes. The speed at which the
cold air spreads out beneath the storm is governed in part by the temperature difference across the leading
edge of the pool (analogous to a gravity current). In the X = 120 simulations, the low-level environmental air
is somewhat warmer at higher latitudes due to the gradient wind balance imposed on the initial environmen-
tal state (see Figure 10). Thus, the cold pool and its associated convergence line in the X = 120 simulations
propagate laterally a little more rapidly with increasing latitude than in the simulation on a flat plane.
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We have also conducted supercell simulations with horizontal grid spacings of A ~ 1 km (~1.1° mesh contain-
ing 40,962 grid cells), 2 km (~2.2° mesh containing 10,242 grid cells), and 4 km (~4.3° mesh containing 2562
grid cells) to assess the impact of reduced horizontal grid resolution on the evolution and structure of the simu-
lated suprecells. Figure 14 displays the vertical velocity and rainwater fields at 5 km at 2 h for the range of hori-
zontal grid spacings from 0.5 to 4 km. Although noticeable quantitative differences are evident in the
structures of these vertical velocity and rainwater fields, the overall structure and propagation of the splitting
supercells is quite similar across this range of horizontal resolution. In the coarsest resolution A ~ 4 km simula-
tion, however, there is noticeably less detail in the convective structure and horizontal extent of the supercells
is larger (particularly in the rainwater field). These results are consistent with those from previous studies that
have found that the overall structure of convective systems could be reasonably captured in forecast simula-
tions with explicit treatment of convection with horizontal grid spacings of about 4 km or less [Weisman et al.,
1997, 2008; Kain et al., 2008].

The resolution dependence of the evolving supercells is further illustrated in Figure 15, depicting the time
variation of the maximum vertical velocity and the overall precipitation rate over the 2 h integrations. The
close quantitative agreement between the A ~ 0.5 and 1.0 km results suggests that the macroproperties of
the convection are nearly converged at these resolutions. As the horizontal grid spacing is further increased,
the maximum updraft intensity decreases while the precipitation rate increases (over the second hour). This
sensitivity is to be expected given the marginal resolution of the updraft cells at the coarser resolutions. The
increased precipitation rate produced by the less intense updrafts appears to result from the increased hori-
zontal extent of the rainwater fields in the underresolved simulations.

To assess the sensitivity of the supercell results to the time step, we reran the 2 km simulation (originally
conducted with a 12 s time step) with a 6 and 3 s time step. The results with these smaller time steps are
nearly indistinguishable from those at the larger time, confirming that the coarser time step is sufficient to
represent the convective processes.

4. Summary

Evaluating the behavior of global models at nonhydrostatic scales can be a significant challenge since simulation
with O(km) global grids required to resolve these scales are computationally of prohibitive expense. Within
MPAS, this computational burden can be avoided by reconfiguring the unstructured global Voronoi mesh to
correspond to a flat plane of hexagonal grid cells with doubly periodic lateral boundaries. This option, however,
is typically not available in other nonhydrostatic global models, which limits the opportunities for intercompar-
ing models in this configuration. Nonhydrostatic processes can be economically simulated in a global context if
the radius of the sphere is significantly reduced. In our view, the magnitude of the sphere-radius reduction
should be constrained such that the nonhydrostatic results on the smaller sphere maintain strong similarity to
the corresponding results obtained in a Cartesian geometry. This correspondence confirms the physical realism
of the simulated phenomena and permits quantitative comparisons with previously documented analytic and
numerical solutions. The mountain-wave and supercell test cases presented above satisfy this requirement as
the results from simulations on the reduced-radius sphere exhibit close correspondence with the results
obtained in a Cartesian geometry.

Appendix A: Two-Dimensional Linear Analytic Solution for a Schar Mountain

The linear wave equation for flow with an isothermal mean state T, and a constant mean wind U is well suited
for analysis, since it can be written in a form that has constant coefficients. Removing the dependency on the
mean density profile

3
i )= (22 ) w(x.2)=exp (15 s x.2), @
p
w; is periodic with height and satisfies the wave equation:
NZ ﬁZ

V2W1+(W_Z) w; =0, (A2)

where
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g g
N == d p=-". A3
o ™ PTRT (A3
For a single Fourier mode, w (x, z)=w; (k, z)exp (ikx), and (A2) becomes:
da*w .
o TN =0, (A4)
where
N2 B2
27" _F 2
vz 4 (AS)
The lower boundary terrain profile is given by
2
h(x)=hoexp (— 2—2) cos? n?x , (A6)
and its corresponding Fourier transform is
R 00 X2
h(k):hOJ exp (— ﬁ) [1+cos Kx]cos kx dx, (A7)
0
2 2 2
= \/T%hod{exp {— dz (K+k)2} +2exp {— %kz} +exp [— dz (K—k)z} }, (A8)

where K=27/¢. Solving (A4) subject to the lower boundary condition W (k, 0)=ikUh (k) and applying a
radiation condition to ensure upward propagation of wave energy, yields:

R . explisgn(kymz] ~ for m*>0
w1 (k,z)=ikUh (k) . (A9)
exp (—|m|z) for m><0
Taking the inverse Fourier transform recovers the 2-D vertical velocity field,
1 z\ [ . .
w(x,z)= 5, &XP (%) Jim w1 (k,z)exp (ikx) dk
U ” - (A10)
—— ~exp <%) {J k h(k)sin (m z+kx) dk+J kh(k)exp (—|m| z)sinkxdk},
Y 0 K
where
(VB
k= (m Z) ) (A11)

Appendix B: Three-Dimensional Linear Analytic Solution for a Circular Mountain

The 3-D linear wave equation for flow with an isothermal mean state T, and a constant mean wind U can
be derived in the same manner as the 2-D wave equation in Appendix A. For a single horizontal Fourier
mode, wy (x,y,z)=w-(k,|,z)exp [i(kx+ly)], the 3-D counterparts to (A4) and (A5) become:

d?i
d;f +m2ir, =0, (B1)
with
K2+ (N? B
Zzi - — 2 _
mt==3 (uz k) T (B2)

The circular terrain profile is given by

2 2
h(x)=hoexp <—Xd#)cosz<gs/x2+y2), (B3)

and its corresponding Fourier transform is
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R 00 OO 2 2
h(k, l):4hoj J exp (—X (;y >cos2 (g \/x2 +y2)cos kxcos ly dy dx. (B4)
0

0

Solving (B1) subject to the lower boundary condition W (k, I, 0)=ikUh (k, 1) and applying a radiation condi-
tion to ensure upward propagation of wave energy, yields:

. exp [isgn(k)mz] for m? >0
W1 (k, 1, z) =ikUh (k, ) plisgn(k)mz] } (85)
exp [—|m|z] for m><0
The 3-D vertical velocity field is then obtained by taking the inverse Fourier transform of (B5):
wix,y,2)= —exp (P2 Jw r irn (k. 1, 2)exp [i(kx+y)]) dkdl
Vs An2 p P o) IACASES) p y
. (B6)
U ,BZ 00 ko ) oo .
== Sew (S J J kh(k,l)sin (mz+kx) dk+J kh(k,l)exp [—|m]| z]sin kx dk pcosly dl,
0 0 k*

where k* is the value of k for which m =0 in (B2). To evaluate this linear solution, the forward transform of
the terrain (B4) and the inverse transform to recover w in (B6) are integrated numerically.

Appendix C: Listing of the Kesler Microphysics Subroutine

The KESSLER subroutine implements the Kessler (1969) microphysics
parameterization as described by Soong and Ogura (1973) and Klemp
and Wilhelmson (1978, KW). KESSLER is called at the end of each
time step and makes the final adjustments to the potential
temperature and moisture variables due to microphysical processes
occurring during that time step. KESSLER is called once for each
vertical column of grid cells. Increments are computed and added
into the respective variables. The Kessler scheme contains three
moisture categories: water vapor, cloud water (liquid water that
moves with the flow), and rain water (liquid water that falls
relative to the surrounding air). There are no ice categories.

! Variables in the column are ordered from the surface to the top.

l-—- - - input variables ---- - -

t - potential temperature (K)

qc - cloud water mixing ratio (g/g)

qr - rain water mixing ratio (g/g)

rho - dry air density (not mean state as in KW) (kg/m~3)

pk - Exner function (not mean state as in KW) (p/p0)#**(R/cp)
dt - time step (s)

z - heights of thermodynamic levels in the grid column (m)
nz - number of thermodynamic levels in the column

! rainnc - accumulated precip beneath the grid column (mm)
l=== - output variables ---—- -
Increments are added into t, qv, gc, qr, and rainnc which are
returned to the routine from which KESSLER was called. To obtain
the total precip qt, after calling the KESSLER routine, compute:
gt = sum over surface grid cells of (rainnc * cell area) (kg)
[here, the conversion to kg uses (1073 kg/m~3)*(107-3 m/mm) = 1]

|
!
!
|
|
!
|
|
!
!
!
|
|
!
|
|
! qv - water vapor mixing ratio (g/g)
!
!
|
!
!
|
|
!
!
|
!
!
!
!
!

implicit none

real t (nz), qv (nz), qc (nz), qr (nz), rho(nz), z (nz)
real r (nz), rhalf(nz), velqr(nz), sed(nz), pk (nz), pc(nz)
real rd, cp, lv, ern, grprod, prod, qvs, psl, dt, rhoqr, rainnc
integer k, nz
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Lt physical constants ——-- - -
287 ! gas constant for dry air, J/(kgK)

rd = .
cp = 1003. ! heat capacity at constant pressure, J/(kgK)
1v = 2.5e6 ! latent heat of vaporization, J/kg
psl = 1000. ! reference sea level pressure, mb
rhoqr = 1000. ! density of liquid water, kg/m~3
| —— e e
do k=1,nz

r (k) = 0.001*rho (k)
rhalf (k) = sqrt(rho(1)/rho(k))

| liquid water terminal velocity (m/s) following KW eq. 2.15
velqr(k) = 36.34x(qr(k)*r(k))**0.1364*rhalf (k)

end do
l-——- precipitation accumulated beneath the column
rainnc = rainnc + 1000.*rho(1)*qr(1)*velqr(1)*dt/rhoqr ! mm rain
I--—- sedimentatiion term using upstream differencing
do k=1,nz-1
sed(k) = dt*(r(k+1)*qr(k+1)*velqr(k+1) &
-r(k )*qr(k )xvelgr(k ))/(r(k)*(z(k+1)-z(k)))
end do
sed(nz) = -dt*qr(nz)*velqr(nz)/(.5*%(z(nz)-z(nz-1)))
do k=1,nz
|- autoconversion and accretion rates following KW eq. 2.13a,b
grprod = qc(k) - (qc(k)-dt*amax1(.001*(qc(k)-.001), 0.)) &

/ (1.+dt*2.2%qr (k) **.875)

gc(k) = amaxl(qc(k)-qrprod,0.)

qr(k) = amaxl(qr(k)+qrprod+sed(k),0.)
f—————— saturation vapor mixing ratio (g/g) following KW eq. 2.11

pc(k) = 3.8/(pk(k)**(cp/rd)*psl)

qus = pc(k)*exp(17.27*(pk(k)*t(k)-273.) &

/ (pk(k)*t(k)- 36.))

l———- water vapor adjustment to reach saturation following KW eq. 3.9

prod = (qv(k)-qvs)/(1.+qvs*(4093.*1v/cp)/ (pk(k)*t (k)-36.)**2)
|——mm— evaporation following KW eq. 2.14a,b

ern = aminl(dt*(((1.6+124.9% (r (k) *qr (k))**.2046) &
*(r (k) *qr (k) )**.525) /(2.55e6%pc (k) &
/(3.8 *qvs)+5.4e5))*(dim(qvs,qv(k)) &

/ (r (k) *qvs)) ,amax1(-prod-qc(k),0.),qr(k))
|- saturation adjustment following KW eq. 3.10
t (k) = t(k) + lv/(cp*pk(k))*(amaxl( prod,-qc(k))-ern)

qv(k) = amaxl(qv(k)-max(prod,-qc(k))+ern,0.)
qc(k) = gc(k)+max(prod,-qc(k))
qr(k) = gr(k)-ern

end do

end subroutine KESSLER
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