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ABSTRACT

An evaluation of medium-range forecasts of tropical cyclones (TCs) is performed, covering the eastern

North Pacific basin during the period 1 August–3 November 2014. Real-time forecasts from the Model for

Prediction Across Scales (MPAS) and operational forecasts from the National Centers for Environmental

Prediction (NCEP) Global Forecast System (GFS) are evaluated. A new TC-verification method is in-

troduced that treats TC tracks as objects. The method identifies matching pairs of forecast and observed

tracks, missed and false alarm tracks, and derives statistics using a multicategory contingency table meth-

odology. The formalism includes track, intensity, and genesis.

Two configurations of MPAS, a uniform 15-km mesh and a variable-resolution mesh transitioning from

60 km globally to 15 km over the eastern Pacific, are compared with each other and with the operational GFS.

The two configurations of MPAS reveal highly similar forecast skill and biases through at least day 7. This

result supports the effectiveness of TC prediction using variable resolution.

BothMPAS and theGFS suffer from biases in predictions of genesis at longer time ranges;MPAS produces

too many storms whereas the GFS produces too few. MPAS better discriminates hurricanes than does

the GFS, but the false alarms in MPAS lower overall forecast skill in the medium range relative to GFS. The

biases in MPAS forecasts are traced to errors in the parameterization of shallow convection south of the

equator and the resulting erroneous invigoration of the ITCZ over the eastern North Pacific.

1. Introduction

Tropical cyclone (TC)prediction is a societally important

problem forwhich there is increasing emphasis onmedium-

range forecasts (Gall et al. 2013; Yamaguchi et al. 2015).

The challenge is to resolve the finescale aspects of the

tropical cyclonewhile properly simulating the environment

within which it occurs. Global models with variable hori-

zontal resolution have recently been explored as a way of

providing regional high resolution without lateral bound-

aries that can compromise the quality and interpretation of

medium-range prediction skill (Park et al. 2013). Global,

variable-resolution TC prediction was explored by

Zarzycki and Jablonowski (2015) using a hydrostatic

model. Ultimately, nonhydrostatic models are needed to

resolve the inner-core aspects of tropical cyclones.

The Model for Prediction Across Scales (MPAS) is a

nonhydrostatic global model designed for mesoscale

and convective-scale weather and climate prediction

research (Skamarock et al. 2012, 2014; Klemp et al.

2015). One of the main features of MPAS is its use of an

unstructured Voronoi mesh, on which the grid spacing

can vary smoothly in space. This avoids some of the

problems with traditional nesting approaches (Park

et al. 2014; Hashimoto et al. 2016). The existence of two

meshes, one uniform, the other variable, within the same

global model, allows us to consider questions related to

prediction skill in the variable-resolution configuration

relative to uniform resolution. It is clear that, over time,

the effects of the presumably less accurate prediction on

the coarse part of the variable mesh will influence the

fine-mesh region. An important question is how quickly

this will occur, especially in the tropics where influences

from the coarse-mesh region will affect TC forecasts.

The present paper addresses two related issues in

medium-range prediction of TCs and their environment.
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The first issue concerns how variable- and uniform-

resolution forecasts compare to each other out to a lead

time of 10 days. The hypothesis is that variable resolu-

tion provides a computationally economical strategy for

examining tropical cyclones in a particular basin. The

viability of variable resolution requires that the rela-

tively coarse resolution over the remainder of the globe

does not produce differences that compromise the

quality of forecasts within the high-resolution region.

The second issue is the current absence of a verifica-

tion strategy appropriate for medium-range forecasts of

TCs. Most storms present at days 7–10 are not present in

the initial condition. Existing mainstream verification

approaches1 do not account for errors due to the erro-

neous formation of storms during the forecast, or missed

events, and do not consider the consequences of errors

in the timing of TC-track initiation and dissipation. The

present paper, therefore, devotes substantial material to

the development of a verification methodology appro-

priate for extended-range TC forecasts. This verification

methodology is then applied to the different MPAS

configurations, and to the operational (hydrostatic)

Global Forecast System (GFS), to discern important

facets of medium-range TC forecast skill and the biases

that reduce skill.

The essential consideration for verification is viewing

TC tracks as objects whose properties are evaluated.

While the matching of TC tracks is fairly trivial for

storms already present at model initialization time, the

case is far more complicated for tracks that begin during

the forecast. Halperin et al. (2013) provide a recent

study of genesis prediction skill for theAtlantic, whereas

Chan and Kwok (1999) and Elsberry et al. (2009) ex-

amine genesis prediction over the northwest Pacific. The

present study is made novel by focusing on the eastern

North Pacific and, more importantly, the inclusion of TC

formation as part of a more comprehensive evaluation

framework.

The finest MPAS mesh spacing considered herein is

15 km, which is comparable to current operational

global model grid spacing, although less than the oper-

ational GFS in 2014. Accurate prediction of TC intensity

and structure is potentially compromised at this grid

spacing, especially in cases with a small radius of maxi-

mum wind. The eastern Pacific basin, the focus of this

study, harbors some of the smallest tropical cyclones

observed (Knaff et al. 2014).

To provide a context for the verification results,

MPAS forecasts are compared with the TC forecasts

from the operational GFS model from the National

Centers for Environmental Prediction (NCEP).2 Be-

cause both MPAS and the GFS have evolved sub-

stantially since 2014, the results herein should not be

viewed as a comparison of current model capabilities.

The two models have different dynamics, different

physical parameterizations, different abilities to resolve

TCs, and different biases in the overall tropical atmo-

sphere that lead to some important differences at longer

lead times. A significant part of the paper is devoted to

understanding how model bias affects the quality of TC

forecasts, and to diagnosing the causes of such biases.

Because the verification methodology requires a sig-

nificant amount of text to explain, we include the details

of our track computation, track matching, and skill-

score computation in the appendix. Section 3 presents

results that are at least partly grounded in operational

standards, but which have new components that arise

from our verification approach. The conclusions, in

section 4, reinforce the need for more comprehensive

verification strategies, and support the efficacy of

variable-resolution modeling of tropical cyclones in

global models.

2. Methodology

a. Model configuration

The geographical area of interest is the eastern Pacific

basin for the 95-day period of 1 August–3 November

2014. There were 14 tropical cyclones in the eastern

Pacific basin during this period, 10 of which had a life

cycle fully contained within the evaluation period with

an average duration of approximately 9 days. There

were six major hurricanes during the period. Hurricane

Ana, which formed in the central Pacific, was also in-

cluded in the sample of storms. Between 1 August and

7 October, there were only 4 days without an active

tropical cyclone in the eastern Pacific basin.

For the simulations considered herein, MPAS was

configured with a nearly uniform mesh of 15-km cen-

troid spacing, and a variable mesh (Fig. 1) with cell-

center spacing that smoothly stretched from 15 to 60 km,

with the higher resolution concentrated over the eastern

and central Pacific. The variable-resolution configura-

tion is denoted MPAS-EP. In the variable-resolution

mesh, roughly 53% of the cells have a mean diameter

1 For instance, the position and intensity verification statistics

computed by the National Hurricane Center of the National

Oceanic and Atmospheric Administration consider only storms

that exist at model initialization time.

2 In 2015 theNCEPGFSmodel was upgraded to a grid spacing of

roughly 13 km whereas the 2014 version of the model, examined

herein, was roughly twice as coarse.
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less than 16km. Simulations using the variable mesh

require roughly 20% of the computational cost of sim-

ulations using the uniform mesh. There is a modest

overhead in running the variable-resolution configura-

tion because the time step is constrained by 15-km

portion of the mesh.

A total of 95 daily forecasts were integrated out to

10 days during the continuous period 1 August–3 No-

vember 2014. MPAS was initialized at 0000 UTC by

straight interpolation of the NCEP GFS initial condi-

tion, obtained on the native GFS vertical coordinate, to

the MPAS grid. The model top was placed at 30 km

and a total of 55 levels were positioned as close to the

levels of the operational GFS as possible. The opera-

tional GFS3 uses 64 levels, but 9 are above 30km.

The MPAS physical parameterizations include a ver-

sion of the Tiedtke cumulus parameterization, the

Yonsei University (YSU) planetary boundary layer

(PBL) scheme (Noh et al. 2003; Coniglio et al. 2013), the

RRTMG radiation scheme, the WSM6 cloud physics

scheme, and a simple oceanmixed layer scheme (Pollard

et al. 1973; Davis et al. 2008). The YSU, RRTMG, and

WSM6 schemes are the same as used in the Weather

Research and Forecasting (WRF) Model, version 3.7.

The Charnock formulation is used for surface drag, and

the CoupledOcean–Atmosphere Response Experiment

(COARE) formulation is used for heat and moisture

fluxes over the ocean (Fairall et al. 2003). The Tiedtke

scheme used here is based on themodified version of the

scheme from Zhang et al. (2011). There are a few

changes made for this work (R. Torn 2014, personal

communication). The closure for shallow convection is

changed to depend on subcloud layer moist static energy

following ECMWF Cy37r2, rather than moisture con-

vergence. The trigger function takes into account ad-

vection, PBL, and radiation tendencies, which leads to

more realistic convection initiation over land. The en-

trainment rate for shallow convection is reduced from

0.0012 to 0.0006, and this makes shallow convection a bit

more active. The convective adjustment time scale is

reduced from 1h to 40min. It is worth noting that these

parameters were based on forecast results for the trop-

ical Atlantic.

b. Verification

Traditionally, only storms that are tracked from the

initialization time, as a pair of corresponding forecast

and observed features, are evaluated. However, for the

eastern North Pacific forecasts considered herein, only

in 12%of all 10-day forecast periods is a storm present in

the initial condition still tracked at day 10. Without

considering storms forming during the forecast period, a

major component of forecast model evaluation is

neglected. As will be shown, systematic errors in the

prediction of TC occurrence point the way to further

diagnosis to understand model biases that can become

large in medium-range forecasts.

Using 6-hourly output from both versions of MPAS

and from the GFS, we tracked all tropical storms and

hurricanes, even those that developed during the fore-

cast, using essentially the same tracker that is used in

operations [the so-called Geophysical Fluid Dynamics

Laboratory (GFDL) tracker; see the appendix for de-

tails]. We then assessed which tracks in MPAS and the

GFS corresponded to tracks of observed tropical

FIG. 1. Centroid spacing for variable-resolution MPAS mesh. Contour interval is 8 km.

3Details about the physical parameterizations in the operational

GFS may be found online at http://www.emc.ncep.noaa.gov/GFS/

doc.php.
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cyclones. The tracks of observed tropical cyclones came

from the Tropical Cyclone Guidance Project (Vigh

2015), which maintains an archive of operational

‘‘working best tracks.’’ These are not the official post-

season best tracks but they have the benefit of including

the invest stage before TC genesis. By focusing on

tracks, we considered the full storm history in deciding

whether a forecast storm corresponded to an observed

storm. In addition to considering tracks that began

during the forecast period, we considered forecast and

observed tracks with differing end points in time, as well

as unmatched forecast and observed tracks. This al-

lowed us to assess a full set of statistics of missed events

and false alarms. Details of the track matching strategy

and verification methodology appear in the appendix.

The outcome of the verification methodology is a

Heidke skill score S (Doswell et al. 1990) computed

from a 3 3 3 contingency table. The three event

categories—(i) no storm, (ii) weak storm, and (iii) strong

storm—allow us to evaluate not just the dichotomous

case involving the existence of a storm, but also allow us

to evaluate forecast quality relative to a threshold of

maximum wind speed V for matching forecast and

observed tracks.

While the tracks of storms were obtained from

6-hourlymodel output fields on a 0.58 grid in latitude and
longitude, MPAS intensity was defined as the maximum

wind at any point (within 200 km of the cyclone center)

on the original unstructured mesh. For the GFS, in-

tensity was taken from the tracker. We compared the

maximum GFS wind from the official a-deck files with

the maximumwind obtained from the tracker and found

only minor intensity differences, as expected. Given the

0.58 grid, we expect that some GFS maximum winds are

biased low relative to the winds on the native 27-km grid.

Position and intensity errors were evaluated for all

matched (forecast, observed) pairs, including pairs

along tracks that began after the model initialization

time. We also computed position and intensity error

statistics by running the tracker in so-called ‘‘de-

terministic mode.’’ In this mode, only storms that ex-

isted at model initialization time were evaluated. This

resulted in far fewer samples at lead times beyond

4–5 days than were obtained by including tracks that be-

gan during the forecast period. However, this approach is

consistent with current operational forecast evaluation

procedures.

The software used to compute TC statistics for

matched pairs is the Model Evaluation Tools for

Tropical Cyclones (MET-TC). This code accepts

forecast–observation paired data and computes a va-

riety of standard statistics (mean error, median error,

mean absolute error, root-mean-squared error) and

produces box-and-whisker graphical representations

of error distributions.

3. Results

a. Position and intensity verification

The present section provides some statistics of TC

forecasts where there is a corresponding pair of forecast

and observed storms along a matched pair of tracks. In

deterministic mode, tracks all begin at model initializa-

tion time (t 5 0), whereas in genesis mode, tracks may

begin throughout the forecast period. A total of 221

forecast tracks matched the track of an observed storm

from the 95 MPAS forecasts. Roughly half of these be-

gan after t 5 0.

For matched tracks, the distribution of position error

was computed for all common times along the forecast

and observed tracks. The results are presented in Fig. 2

using box-and-whisker plots. There is no statistically

significant difference between the position errors of the

GFS and MPAS, or between either configuration of

MPAS. Careful comparison of Figs. 2a and 2b indicates

that the GFS results at day 8 are somewhat better for

storms tracked from t 5 0 (Fig. 2a), but that the small

sample size compromises the statistical significance of

the result. When genesis cases are included (Fig. 2b), the

errors in the three sets of forecasts are indistinguishable.

While we expect differences between the MPAS and

GFS forecasts to be small in the short range (because

MPAS is initialized with the GFS), the fact that differ-

ences are small through day 8 reflects the importance of

larger-scale (synoptic-scale) motions on track. In addi-

tion, the difference between uniform and variable-

resolution MPAS performance is nearly imperceptible

through day 8. This demonstrates that variable resolu-

tion allows comparable forecast performance for a given

basin for a small fraction of the cost of globally uniform

resolution.

To evaluate intensity errors, we focus on intensity

biases and intensity distributions rather than on de-

terministic intensity forecast skill because predictability

of intensity is rather limited, especially at the long lead

times considered herein. Biases provide information

about systematic errors in physical processes and about

the limitations of resolution and the effects of dissipa-

tion. We characterize the distributions by their median

values (Fig. 3), rather than the arithmetic means. Over

the eastern North Pacific, both configurations of MPAS

exhibit similarly small median intensity biases, whereas

the GFS median bias is about 10 kt (1 kt5 0.5144ms21)

weaker than observed. This result is quantitatively

similar whether the evaluation is confined to storms that
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exist at t 5 0, or whether genesis during the forecast is

included. In other basins, where the variable-resolution

MPAS has a cell-center spacing of 60 km, the biases of

the MPAS-EP forecasts are very similar to those of the

GFS, about 10 kt (not shown). The uniform-resolution

MPAS maintains smaller median-intensity biases in

other basins (not shown).

The comparison of intensity between the different sets

of forecasts is not surprising owing to the strong signature

of the underlying grid spacing on the maximum winds

that can be produced, and because of the smoothing

inherent in GFS winds using the tracker. If instead of

the winds from the MPAS native grid, we use the

maximum wind derived from the tracker, both config-

urations of MPAS have a similar intensity bias as in the

GFS (not shown).

The above does not imply that MPAS intensity

forecasts are without bias. This point is brought out by

FIG. 2. (a),(b) Distributions of forecast TC position errors for each lead time out to 192 h, for

a homogeneous sample of forecasts between 1 Aug and 3 Nov 2014, for the eastern North

Pacific basin. Units are nautical miles (n mi; 1 n mi 5 1.852 km). Asterisks denote the sample

mean, colored bars indicate the inner quartile range with median at the thinnest point, dashed

lines span the 5th to 95th percentiles, and circles indicate outliers. MPAS denotes uniform

resolution, and MPAS-EP denotes variable resolution. The number of storms at each forecast

time appears above the plot. In (a), storms are required to exist at the initial time and in

(b) storms are not required to exist at the initial time.
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looking at the distribution of intensity values for the

forecast storms versus the observed intensity values.

This metric is not strictly related to bias, but it does

examine discrimination, that is, the ability of the model

to distinguish storms of different intensities (Murphy

1993). In this case, discrimination is partly influenced by

bias and partly influenced by the rarity of intense hur-

ricanes. From Fig. 4, it is clear thatMPAS fails to predict

intensities greater than about 110 kt over the east Pa-

cific, whereas the observed intensities reach 140 kt. The

discrimination of both MPAS and the GFS is relatively

good through the range of 40–80-kt maximum intensity,

but weak at higher intensities. MPAS better predicts

storms of hurricane intensity, but it also overestimates

the intensity of the weakest disturbances. MPAS pro-

duces relatively unbiased intensity forecasts across the

most commonly observed intensities (30–60 kt), and this

contributes to the relatively small MPAS intensity bias

overall. The negativeGFS intensity bias is evident for all

observed intensities greater than 50kt.

b. Categorical verification

The preceding section discussed only the forecast TCs

corresponding to observed TCs. This section addresses

forecasts, especially in the medium range (4 days or

more), when there is not necessarily a correspondence

FIG. 3. (a),(b) Median intensity errors (forecast 2 observation), with bars indicating inner

quartile ranges, for GFS (black), uniform-resolution MPAS (red), and variable-resolution

MPAS (green) for the east Pacific. In (a), storms are required to exist at the initial time and in

(b) storms are not required to exist at the initial time.
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between forecast and observed storms. The categorical

verification methodology described in section 2 and the

appendix is applied here.

For the full 33 3 contingency table and V5 64kt, the

Heidke skill curves reveal that the two configurations of

MPAS perform comparably at all lead times (Fig. 5a).

Furthermore, the GFS attains higher skill scores by an

appreciable margin after day 3. The decay rate of S in

Fig. 5a is strongly suggestive of synoptic-scale pre-

dictability. The fact that some skill is evident even at day

FIG. 4. Intensity distributions of matched storm pairs conditioned on observed intensity

binned in 10-kt increments beginning with [15, 25) knots for the observed bin labeled ‘‘20 kt.’’

(a) MPAS-EP and (b) GFS. The number of pairs in each bin appears at the top of each plot,

below which is the number of distinct storms represented in each bin. Shaded boxes denote the

median and interquartile range, asterisks denote the mean, and whiskers denote the minimum

and maximum.
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10 implies that there is value in longer-range TC fore-

casts. While a threshold intensity is needed to define S,

the relatively slow decay of skill implies that the multi-

category skill score mainly contains information related

to storm tracks.

However, if we restrict the evaluation to matched

tracks (represented by the cells enclosed by the red box

in Fig. A1c), and compute the Heidke skill score for the

dichotomous forecasts of hurricane intensity (following

Table A1), it is apparent that the MPAS scores are

higher for the first 4 days or so (Fig. 5b). In this 2 3 2

case, cell MM from the 3 3 3 table (correct forecasts of

storms below intensity V) becomes the sum of correct

negative forecasts, and cellsMY andYM becomemisses

and false alarms, respectively. ForV5 64kt, the number

of correct negative forecasts along matched tracks is

relatively large; hence, the Heidke score for the 2 3 2

case reduces approximately to (A3). A summary of both

Figs. 5a and 5b is that the GFS forecasts are better

overall, but the MPAS forecasts are better able to dis-

cern hurricane intensity along matching tracks, at

least at short lead times. The latter result is somewhat

FIG. 5. Heidke skill scores for (a) the full 33 3 contingency table given the intensity threshold

V 5 64 kt, (b) the 2 3 2 contingency table for matched tracks, and (c) the sum of false alarms

(YN 1 MN in Fig. A1c, solid) and misses (NY 1 NM in Fig. A1c, dotted).
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expected given the GFS winds come from a relatively

coarse 0.58 grid.
The difference in overall skill (Fig. 5a) results mainly

from a greater number of false alarms inMPAS than the

number of misses in the GFS. The time series of false

alarms (YN 1 YM from Fig. A1c) and missed events

(NY 1 NM from Fig. A1c) indicate that the relatively

large number of false alarms inMPAS coincides with the

time when the Heidke score from the 33 3 contingency

table is higher for the GFS (Fig. 5c). Note that the

Heidke score treats all false alarms the same, regardless

of intensity, and the same for missed events. It turns out

that the sums YN and NY, which represent false alarms

and misses of hurricane intensity, respectively, are small

compared to termsMN andNM. Thus, most of the false

alarms andmisses are relatively weak storms. The larger

number of false alarms decreases the skill score by in-

flating the total counts in the denominator of (A1) while

also increasing the hits due to random guessing. The

number of false alarms would be reduced by roughly a

factor of 3 if the MPAS maximum winds were derived

from the tracker instead of the native grid. This would

increase S computed from the 3 3 3 contingency table,

but it would decrease the Heidke skill of intensity

forecasts.

The relatively rapid loss of skill exhibited in Fig. 5b

clearly relates to the difficulty of intensity prediction. It

also appears that there may be a significant adjustment

problem in the GFS at early lead times given the loss of

skill in the first 12 h. The nonzero values of S in Fig. 5b at

long lead times are not necessarily indicative of skill. For

the 2 3 2 case, Doswell et al. (1990) showed that S is

approximately twice the critical success index (CSI) in

the limit of rare events, and CSI . 0 as long as YY . 0

(see Table A1).

A straightforward extension of our verification

method provides information specifically about TC

genesis prediction skill. Having a pair of matched tracks,

we compute the time of genesis separately for the

forecast and observed storms. Genesis is the first oc-

currence of a maximum wind speed of at least 34 kt. The

ordered pairs (forecast genesis, observed genesis) are

shown in Fig. 6a. Cases in which an observed storm or a

forecast storm has amaximumwind of 34 kt or greater at

model initialization time are not counted in genesis

statistics. Forecasts of genesis without corresponding

observed genesis along a matched track appear below

the abscissa; observed genesis with no corresponding

forecast genesis appears to the left of the ordinate.

Correct forecasts of no genesis are not shown in the

figure. Results for all four GFS daily cycles are included.

It is clear that MPAS-EP (and MPAS, not shown)

produce genesis too early, and theGFS tends to produce

genesis too late. We can quantify genesis skill by

computing a Heidke score using (A5), assuming that

genesis is a rare event. Pairs that occur between the two

solid blue lines in Fig. 6a are identified as correct genesis

forecasts (cell YY of Fig. A1c). These lines bound an

initial timing error of 24 h. The tolerance grows linearly

to 72h by day 8. For reference, Halperin et al. (2013)

used a constant error tolerance of 24h for forecasts ex-

tending to 96h. Pairs above the higher line represent

early genesis (cell YM in Fig. A1c). False alarms (YN)

represent forecasts of genesis along a matched track that

does not occur during the forecast period. Pairs below the

lower solid line represent late genesis (MY). Missed

events (NY) denote observed genesis with no genesis

predicted along the matched track during the forecast.

Correct forecasts of no genesis along a matched track

appear in cellMM. These six cells correspond to the same

six defined by Halperin et al. (2013, see their Fig. 5b).

(Elements NM and MN from Fig. A1c remain un-

populated.) In addition to skill scores for matched tracks,

we also compute the statistics for false alarms and missed

tracks; each false alarm track will increment the count in

cellYN,while eachmissed genesis event during a forecast

period will increment the count in cell NY.

The 3 3 3 contingency tables corresponding to the

scatterplots are presented in Fig. 6b. The Heidke skill

scores for genesis along matched tracks are 0.78 for the

GFS, 0.68 for MPAS-EP, and 0.71 for MPAS. While the

GFS and MPAS exhibited the opposite timing bias

(GFS late, MPAS early), the MPAS errors were some-

what larger and, combined with the relatively large

number of false alarms, produced a somewhat lower

skill score. Adding unmatched tracks to the genesis

statistics reduces all Heidke skill scores: 0.66 for GFS,

0.44 for MPAS-EP, and 0.44 for MPAS.

To gain some understanding of what may contribute

to the excessive number of false alarms in MPAS, most

of which are minimal tropical storms, we examined

biases in numerous fields (relative to the GFS analyses

used for initialization). Some of the clearest signatures

of bias are found in the near-surface variables (Fig. 7).

Global plots of the moist static energy (MSE) bias at

120 h, in uniform MPAS, reveal that values over the

tropical oceans near and poleward of the equator are too

large (Fig. 7a), primarily owing to excessive water vapor

mixing ratio. The positive wind speed bias at 10m

(Fig. 7b) bears some resemblance to the bias in MSE

over oceans. Over the tropical eastern North Pacific, the

wind speed bias is particularly large where the surface

winds blow predominantly across the equator in re-

sponse to the northward-directed gradient of sea surface

temperature and associated pressure gradient force. A

similar bias occurs over the tropical Atlantic Ocean.
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Given that the analyses over tropical oceans have

uncertainties as well, we also compared 10-m winds to

wind estimates from the Advanced Scatterometer

(ASCAT). ASCAT wind speeds4 were paired with the

closest MPAS centroid (to which both wind components

were mapped), allowing at most a 1.5-h time displace-

ment. The MPAS–ASCAT wind speed pairs were

grouped into 18 bins and the speed difference was av-

eraged to obtain the wind speed bias. An analogous

procedure was followed for the GFS winds on the 0.58
grid. While the MPAS winds have a high bias (Fig. 7c),

the GFS forecast surface winds appear to be too weak

over the eastern Pacific (and elsewhere) (Fig. 7d). This

FIG. 6. (a) Scatterplot of (forecast 2 observed) genesis times for matched tracks. Points

plotted below abscissa indicate the time of predicted genesis in cases where observed genesis

either did not occur, or occurred after the end of the forecast period. Points plotted to the left of

the ordinate indicate observed genesis times in cases where the forecast did not produce genesis

by 192 h. GFS (black squares) andMPAS-EP (red diamonds) forecasts are shown only through

day 8. Dashed blue line is the 1:1 line and solid blue lines bound the region of correct genesis

forecasts. (b) Counts in the 3 3 3 contingency table (see Fig. A1c) for genesis forecasts along

matched tracks in MPAS, MPAS-EP, and the GFS.

4 In accord with the ASCAT user manual guidance, winds were

not used if themonitoring flag, theKNMI quality control flag or the

variational quality control flag were set.
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GFS bias and its attendant low bias in surface fluxes (not

shown) may contribute to the reduced number of TCs in

the GFS compared with observations. While Chou et al.

(2013) have suggested a correction to the ASCAT data

for underestimates of wind at wind speeds above

roughly 12m s21, that correction was not applied here.

Over cooler water near and to the south of the

equator, stratocumulus is common beneath a warm and

dry midtroposphere. Air flowing across the equator is

warmed and moistened by surface fluxes, reducing

convective inhibition as air approaches the intertropical

convergence zone (ITCZ) (Raymond et al. 2006). Zonal

averages of meridional wind and sea level pressure

(Fig. 8) reveal the excessive southerly flow across the

equator that is consistent with an anomalous pressure

gradient. Enhanced destabilization results in more

widespread rainfall. Rainfall in the forecast ITCZ av-

erages more than 25mmday21, which is nearly twice the

typical rate indicated by Raymond et al. (2006). En-

hanced boundary layer convergence contributes to rel-

ative vorticity, producingamaximumof about 23 1025 s21,

which is twice the composite relative vorticity at 0 h,

FIG. 7. Uniform-resolution MPAS bias spatial distributions at 120 h, averaged over all

forecasts, for (a) 2-m moist static energy, normalized by heat capacity Cp (K); (b) 10-m wind

speed (m s21) compared to GFS analysis; (c) 10-m MPAS wind speed bias compared to

ASCATwinds (m s21); and (d) 10-mGFSwind speed bias compared to ASCATwinds (m s21).
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and roughly 2/3 of the Coriolis parameter at 128N. The

origins of false alarm tracks (Fig. 8) are in close prox-

imity to the anomalously strong convergence, rainfall

and vorticity, but the false alarms are skewed poleward

toward larger values of the Coriolis parameter.

The pressure anomaly of about 0.8 hPa near the

equator is consistent with a cold bias in the 850-hPa

temperature (Fig. 9a) over the tropical South Pacific

basin, as well as over the tropical Atlantic. A represen-

tative sounding from the equatorial eastern Pacific

shows that the cold bias arises from erroneous lifting of

the inversion atop the stratocumulus layer (Fig. 9b). It

appears that shallow convection in the Tiedtke scheme

is too vigorous in this region. A temperature reduction

averaging 38C over the layer between 880 and 820 hPa is

consistent with a decrease in layer thickness of about

6m. If we assume that this reduction in layer thickness is

manifested in the sea level pressure, it accounts for most

of the 0.8 hPa excess near the equator. Therefore, we

hypothesize that the error in shallow convection to the

south of the equator enhances the pressure gradient

force in the boundary layer, which in turn, erroneously

accelerates the cross-equatorial flow and invigorates the

ITCZ farther north. Other effects arising from errone-

ous temperature gradients produced by errors in shallow

convection were also noted by Torn and Davis (2012).

Although the entrainment parameter we use is

smaller than that used by Zhang et al. (2011), sensitivity

tests indicate that the bias in shallow convection is not

altered by simply increasing its entrainment rate. An

entirely new version of the Tiedtke scheme (C. Zhang

2015, personal communication) has been tested in

MPAS and appears to have no cold bias at 850 hPa.

FIG. 8. Averages over 95 forecasts and 908–1208W longitude of

precipitation (red) from120 to 144 h, 10-mmeridionalwind difference

between 120 and 0 h (dV, black), and sea level pressure difference

(dP, 120minus 0 h, blue) fromMPAS-EP.Also graphed are the track-

initiation latitudes of false alarms in MPAS-EP (green bars).

FIG. 9. (a) Temperature bias at 850 hPa averaged over all 120-h uniform-MPAS forecasts.

(b) Representative skew T–logp showing the temperature (purple) and dewpoint temperature

(green) profiles at the point indicated by the yellow dot in (a), which is valid at 0000 UTC 29

Aug 2014. The dashed line is the 96-h forecast and the solid lines show the corresponding

analysis.
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Future work will be devoted to understanding why this is

so, and investigating the consequences for the model

ITCZ representation and TC prediction.

c. Prediction with variable resolution

While it is apparent that TC prediction using variable

resolution produces similar results to prediction with uni-

form resolution out to 10 days, at least in the basin where

the resolution is the same, this section examines more

general forecast aspects, as well as how the forecasts using

the two MPAS configurations begin to diverge. For these

purposes, it is useful to partition the eastern North Pacific

into two regions: tropical (08–23.58N) and extratropical

(23.58–458N). In what follows, we normalize root-mean-

square differences between the two MPAS configurations

by the spatial standard deviation computed from the

analysis over the corresponding latitude belt and over all

longitudes. For each variable there is one normalizing

factor for the tropics and a different factor for the extra-

tropics. The normalization allows a comparison of differ-

ent variables and regionswith differing intrinsic variability.

Wind differences at 500 hPa grow faster in the tropics

initially (Fig. 10). The curves cross around day 4, with

faster growth in the midlatitudes thereafter. Differences

grow rather slowly in the tropics between days 2 and 7.

The behavior in the tropics may be related to initially

rapidly growing differences due to the intrinsically un-

predictable nature of deep convection. However, slower

difference growth at longer time scales may result from

the quasi-linear nature of tropical waves compared with

quasi-exponential difference growth in midlatitude

baroclinic waves.

Some insight into the behavior of forecast differences

comes from examination of time–longitude (Hovmöller)
diagrams of the evolution of 500-hPa wind differences

(Fig. 11). Other variables (e.g., 200-hPa geopotential

height and 500-hPa temperature) exhibit similar behavior.

Differences in the extratropics grow relatively uniformly

around the hemisphere, with some modest enhancement

in the Pacific and Atlantic storm tracks. In the tropics, the

growth of normalized differences varies strongly with

longitude. Differences grow rapidly over North Africa,

punctuated by the diurnal cycle, and relatively rapidly

over Southeast Asia and the Indian Ocean. Differences

grow most slowly over the longitude band 808–508W, and

also 308–608E, which are both regions of reduced rainfall

(not shown). Strong tropical cyclones that differ in the two

models are evident as quasi-vertical streaks in the tropics.

The behavior in Fig. 11 appears driven by differences in

treating deep convection in the uniform and variable

MPAS configurations. If convection is weak, or if the

resolution in the two configurations is similar, the solu-

tions diverge at a later time. Over Africa and Southeast

Asia, differences grow rapidly over the first diurnal cycle,

presumably because of the differing treatment of deep

convection on the 60- and 15-kmmeshes even though the

cumulus scheme is the same. The slower growth of dif-

ferences over the tropical eastern Pacific contrasts with

more rapid difference growth elsewhere that arises be-

cause the parameterization scheme is not ‘‘scale aware.’’

Over the longitude band 1308E–1808, the apparent

eastward-propagating signal arises because of the gradi-

ent in cell-center spacing (Fig. 1) and the increasing

similarity of convection as the cell spacing in the two

configurations converges farther east. Westward move-

ment of differences from Africa is evident, and may

have a physical basis because it does not occur in the

gradient of mesh spacing, and because westward move-

ment is expected in the tropical easterlies. However, the

westward migration of differences appears to affect only

the eastern Atlantic during the forecast period.

Over the eastern Pacific, we can see how tropical cy-

clones tend to exacerbate the differences between the

two model configurations (Fig. 11). Differences tend to

grow faster over the longitude range 1208–908W, where

most of the TCs develop. Differences near day 10 in this

longitude band approach values in other longitude

bands where errors initially grow much more rapidly.

FIG. 10. RMSdifferences in 500-hPa vector wind betweenMPAS

and MPAS-EP for the tropics (red) and extratropics (blue). RMS

differences are normalized by the RMS spatial variance within the

respective regions. Inset map shows the geographical extent of the

two regions.
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Overall, it appears that differences between the two

configurations do not exhibit significant zonal propaga-

tion; hence, the region of finer variable resolution is not

rapidly influenced by differences elsewhere. It is possi-

ble that differences in the midlatitudes eventually in-

fluence the tropical eastern Pacific, perhaps by

influencing tropical cyclone behavior. Overall, the local

nature of differences between the two configurations is

consistent with the similarity of TC statistics over the

eastern Pacific. This suggests that a variable-resolution

approach to forecasting tropical cyclones appears prac-

tical well into themedium range. Further examination of

variable-resolution forecasts in other basins will be

needed to demonstrate the generality of this finding.

4. Conclusions

We have examined the performance of the Model for

Prediction Across Scales (MPAS) for eastern Pacific

tropical cyclones in 2014, and compared forecasts

integrated on a nearly uniform 15-km mesh with those

integrated on a variable-resolution mesh ranging from a

15-km cell spacing over the eastern Pacific to 60km

across the remainder of the globe (denoted MPAS-EP).

Both forecasts were also compared with the operational

GFS forecasts.

The time period was 1 August–3 November 2014 (95

forecasts). Because the models were integrated to

10 days, a new verification method was developed to

account for tropical cyclones that developed during the

forecast period. This method, based on defining storm

tracks as objects, allowed us to assess false alarms

(forecast tracks that were not observed), missed events

(observed tracks with no counterpart in a particular

forecast), and correct negative forecasts. The method

also allowed us to evaluate track and intensity errors for

storms not present in the model initial condition.

Overall, the evaluation of forecast skill showed that

the two configurations of MPAS performed nearly

identically to each other over the eastern Pacific and

FIG. 11. (a),(b) Time–longitude diagrams of the latitude and forecast-averaged standard

deviation of vectorwind difference (MPASminusMPAS-EP) at 500 hPa. TheRMSdifferences

are normalized by the respective spatial standard deviations for each latitude band. The lati-

tude bands are illustrated above each panel. Vertical solid white lines in (b) bound the ap-

proximate extent of 15-km grid spacing in the variable-resolution configuration.
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performed comparably to the GFS. For a homogeneous

sample of matched tracks, the position errors were

similar. MPAS had a smaller intensity bias than GFS

andmore ability to discriminate hurricane intensity than

GFS, consistent with its somewhat finer resolution. The

GFS was more skillful for TC genesis. Both configura-

tions of MPAS produced an excessive number of weak

storms late in the forecast period, whereas the GFS

missed a large number of events. The false alarms in

MPAS reduced the Heidke skill score and the skill of

genesis forecasts.

It was shown that the excessive number of weak

storms in MPAS stemmed from an overall bias of

boundary layer wind speed in the cross-equatorial flow

over the eastern Pacific. Related to this was a positive

bias in moist static energy, average rain rate, and

boundary layer convergence in the intertropical con-

vergence zone. The wind biases were traced to pressure-

gradient errors that resulted from excessive vertical

mixing of the Tiedtke shallow convection parameteri-

zations in the tropical eastern South Pacific. A future

publication will quantify the performance of TC fore-

casts using a different version of the Tiedtke scheme that

does not have this bias.

The variable and uniform configurations of MPAS

produced very similar forecasts of TCs, with quantita-

tive similarity in most cases through day 7. Furthermore,

the difference between solutions over the tropical east-

ern Pacific exhibited slow growth between days 2 and 7.

Where the MPAS configurations possessed widely dif-

ferent horizontal resolution, and where convection was

frequent, the growth of differences was much more

rapid. However, differences in such regions were fairly

localized. This suggests that variable resolution is a cost-

effective approach to medium-range prediction of TCs.

Future investigation will expand the use of variable-

resolution MPAS to TC prediction in other basins, uti-

lizing improvements in convective parameterization and

the multicategorical verification methodology. While

the forecasts analyzed herein were performed at hy-

drostatic scales, future work will report on the extension

to nonhydrostatic scales where the TC inner core should

be well resolved.
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APPENDIX

Tracking, Track Matching, and Verification
Methodology

Output from MPAS was saved every 6h. To process

MPAS output, evaluate forecasts, and provide input for

the tracking algorithm [the ‘‘GFDL tracker,’’ hereafter

simply ‘‘the tracker;’’ Knutson et al. (2007), their ap-

pendix B],A1 an interpolation routine mapped each

MPAS forecast to the same 0.58 latitude–longitude grid

using linear interpolation from the MPAS cells to the

latitude–longitude gridcell centers. Prior to interpola-

tion, smoothing was performed iteratively on the native

MPAS mesh. During each pass the cell values were av-

eraged with their neighbors. Each cell was assigned a

number of smoothing passes that varied inversely with

its size. Following the smoothing, Delaunay triangula-

tion was used to find the closest MPAS cell centers and

obtain weights for the final interpolated values. These

weights varied inversely with the local separation of

centroids, yielding a relatively uniformly smoothed

mesh even with variable resolution. For vorticity, which

is defined at cell vertices, the interpolation was preceded

by a step where the values of vorticity at cell vertices

were averaged to obtain centroid values. The smoothed

output was helpful for identifying TC tracks, and was

essential in preventing the vortex tracker from identi-

fying a plethora of short tracks.A2

Output on the 0.58 grid was used to identify and track

tropical cyclones. Cyclone centers were based on a con-

sensus of 850- and 700-hPa vorticity, 850- and 700-hPa

wind speed, 850- and 700-hPa geopotential height,MSLP,

10-m wind speed, and 10-m vorticity. For thresholds, we

used the same namelist settings as in the tracker test cases:

trkrinfo%mslpthresh50.0015, trkrinfo%v850thresh51.5,

and trkrinfo%contint5100. These parameters are slightly

different than those described in Knutson et al. (2007).

Identification of a warm-core vortex utilized two di-

agnostics, cyclone phase space (CPS; Hart 2003) and an

A1 The tracker code was obtained online at http://www.dtcenter.

org/HurrWRF/users/downloads/index.tracker.php, version v3.5b.
A2 To allowall tracks to be discovered, the parametermaxstorm_mg

had to be set to 5000.
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area-mean temperature anomaly criterion (phaseflag5’n’,
phasescheme5’both’, and wcore_depth51.0), motivated

by Vitart et al. (1997). The CPS calculation determined if

the storm structure resided in the symmetric warm core

category.

It is common to apply a skill score to assess model

performance. In this case, the Heidke skill score was

applied to multicategory TC forecasts that are able

to account for more characteristics of TCs than

simply their existence. The Heidke score for di-

chotomous forecasts was summarized in detail by

Doswell et al. (1990). Aberson (2008) discussed a

multicategory form of the Heidke skill score for TC

intensity evaluation. The score takes the following

form:

S5
C2E

T2E
, (A1)

where C is the number of correct forecasts, T is the total

number of forecasts, and E is an estimate of the number

of correct forecasts that could be obtained by random

guessing. Essentially, S measures the ability of the

forecasts to predict the correct category, measured

across all possible categories, relative to the ability of a

random chance forecast.

Dichotomous forecasts lend themselves to an evalu-

ation using a 23 2 contingency table (Table A1). In this

case, the elements of (A1) are as follows:

C5YY1NN; E5
SF

Y
SO

Y
1SF

N
SO

N

T
;

T5YY1NY1YN1NN , (A2)

where YY and NN represent the number of hits and

correct negative forecasts, respectively. Here, the

double-letter notation refers to elements of TableA1. In

addition, �FY is the sum of forecast events, �FN is the

sum of forecast nonevents, and �OY and �ON are the

analogous sums for observations. Furthermore, NY

represents the number of events observed but not pre-

dicted (misses), and YN refers to the number events

forecast but not observed (false alarms). In the limit that

NN is large, which is true for rare events, (A1) can be

approximated as

S5
YY

YY1
YN1NY

2

. (A3)

This expression is related to the critical success index

(CSI) as noted by Doswell et al. (1990).

Dichotomous forecasts are not sufficient to capture

the variety of possibilities concerning TC forecasts. It

is straightforward to extend the Heidke skill score to

arbitrarily many categories (Aberson 2008). In our

methodology, we will consider three possible situa-

tions: (i) no tracked disturbance, (ii) a tracked dis-

turbance that has maximum wind speed (intensity)

less than a threshold V at some instant, and (iii) a

tracked disturbance with intensity $V.A3 For tropical

storms, V 5 34 kt in the observations and in each

model; for hurricanes, V 5 64 kt. We assert that three

categories are the minimum needed to describe fore-

cast quality.

Using three categories (Fig. A1), the totals in (A1) are

defined as follows:

C5YY1MM1NN;

E5
SF

Y
SO

Y
1SF

M
SO

M
1SF

N
SO

N

T
, (A4)

where T is the sum of all elements in the 3 3 3 table;

and the subscripts Y, M, and N refer to a tracked

disturbance that is instantaneously at or above

the threshold V (Y for ‘‘yes’’), below V (M for ‘‘min-

imal intensity’’), or no tracked disturbance at all

(N for ‘‘no’’). IfNN, the correct forecast of no tracked

disturbance, is large compared to all other elements

of the 3 3 3 table, then the Heidke skill score re-

duces to

S5
YY1MM1

MY1YM

2

YY1MM1MY1YM1
NY1NM1YN1MN

2

.

(A5)

From (A5), it is clear that the multicategory score offers

what amounts to ‘‘partial credit’’ through the appear-

ance of off-diagonal elements MY and YM in the nu-

merator. These cells account for points along a matched

track where the intensity is incorrectly predicted relative

to the threshold V; cell MY includes forecasts below

TABLE A1. The 2 3 2 contingency table for dichotomous

(forecast 2 observed) pairs, where S denotes the sum of either

a row or column.

Observed

Forecast YY (hit) YN (false alarm) SFY

NY (miss) NN (correct negative) SFN

SOY SON T

A3 Because the observations only include tracks of disturbances

reaching tropical storm strength, we do not include simulated dis-

turbances that never achieve at least minimal tropical storm

strength.
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FIG. A1. (a)–(c) Summary of track-matching and evaluation method. (a) The tolerance for

the track separation at the initial common time D in order to define matched tracks.

(b) Schematic of a pair of tracks where storm location is indicated by symbols (closed circle for

less than tropical storm intensity). Dashed ellipses encircle common times. Black pairs of

capital letters refer to specific elements of the 3 3 3 contingency table in (c) that are in-

cremented according to the example in (b) for V 5 34 kt (see text for details).
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intensity V paired with observations above V, and vice

versa for cell YM.

The track-matching and contingency-table population

methodology is illustrated in Fig. A1. The tracks of a

forecast and an observed storm, moving from right to

left, are shown in Fig. A1b, where the red curve and

symbols indicate the forecast track. For each forecast

and observed track pair that overlaps in time, at least

partially, we evaluate a match based on the position

error at the earliest common time. The tracks match if

the separation D is less than the threshold Dmax(t)

(Fig. A1a). This threshold is approximately the 95th

percentile of NHC forecast errors for a given lead time

out to day 5 (Fig. 2).A4 The maximum separation al-

lowed is 1000km, and this value is used beyond day 5.

While this separation threshold is large, it is still small

enough to ensure that the forecast and observed storms

are part of the same tropical wave trough.

One might question whyDmax should depend on lead

time at all. The intent is to identify a tropical cyclone in a

forecast that is the counterpart of an observed tropical

cyclone. Because tropical cyclone formation is slaved to

synoptic-scale tropical waves, this amounts to equating

matching tolerance with the growth of synoptic-scale

errors during a forecast. The lead-time dependence of

Dmax(t) is an attempt to account for that error growth.

The NHC track forecast error dependence on lead time

is a convenient quantitative measure for the growth of

errors, and hence, for the variation of spatial displace-

ment tolerance with time.

Along the portion of matched forecast and observed

tracks coincident in time, YY, MY, YM, and MM are

incremented according to whether the forecast and

observed storms simultaneously achieve intensity V.

For the schematic in Fig. A1, assuming V 5 34 kt, YY

will increase by 3, whereas MM and MY will each in-

crement by 1. The first forecast point has no observed

counterpart, and because the intensity is less than 34 kt,

MN is incremented by 1; this is a false alarm. The final

observed point has no corresponding forecast, and

since the observed intensity exceeds 34 kt, NY is in-

cremented by 1; this is a missed event. For V 5 64 kt,

YYwould be incremented by 1;MM by 3; andMY,NM,

andMN by 1 each. From (A5), one can deduce that the

Heidke score does not depend on V in this example.

More generally there is a dependence on V, but the

dependence is fairly weak. This also means that the

evaluation results using the full 33 3 contingency table

should not be sensitive to the low-intensity bias that

characterizes coarse-resolution models.

In the event that there is no matching track for the

forecast in Fig. A1b, YN and MN are incremented at

each 6-h interval along the track according to whether

or not the forecast storm attains intensity V. For V 5
34 kt, YN and MN would each be incremented by 3. In

the event that the observed track in Fig. A1b has no

counterpart, NY and NM would be incremented by 5

and 1, respectively. The partitioning between NY and

NM, or YN and MN depends on the threshold V, but

the overall skill score is not affected. However, because

the maximum intensity achieved by storms is weakly

correlated with their longevity,A5 unmatched tracks

that achieve a high intensity will tend to result in a

greater penalty than unmatched tracks of weak events.

To qualify as a false alarm, an unmatched simulated

storm must be over water at some point, last at least

24 h, and reach tropical storm intensity between 08 and
308N at some point. Matched forecast tracks are not

required to reach tropical storm intensity. This is done

to account for initialization limitations, especially for

decaying storms, or timing errors of genesis late in the

forecast.

Completion of the full contingency table for detecting

tropical cyclones requires an estimate of correct negative

forecasts, in other words, correct forecasts of the non-

occurrence of a TC. We assume that ‘‘skillful’’ forecasts

of the nonoccurrence of a TC are confinedwithin an area,

AT, that covers the region where tropical cyclones typi-

cally occur within a given basin. If a tropical cyclone track

begins in a forecast at some time t, then our matching

distance threshold (Fig. A1) precludes a correct negative

forecast within an area AS(t)5p[Dmax(t)]
2. If an ob-

served storm is present, by analogy, we must exclude the

same areaAS(t) fromAT in our estimation of the number

of correct negative forecasts. We assert that the sum of

all area at lead-time t that is not within the area AS

surrounding a forecast or observed storm is equal to the

total area of correct negative forecasts. In the absence of

any forecast or observed storm, the area occupied by a

correct negative forecast is simply AT. Dividing the sum

of all area of correct negative forecasts by AS(t) (with

units of area per event) yields the number of correct

negative forecasts. The number of correct negative

forecasts can therefore be expressed as

A4 The growth of the 95th percentile of NHCerrors is assumed to

approximate the growth of synoptic-scale errors. The 95th per-

centile is chosen to allow large errors that still permit a plausible

connection of forecast and observed storms.

A5Analysis of all eastern Pacific storms from2001 to 2013 reveals

R2 5 0.25 for the correlation between maximum intensity and

storm longevity, according to the Extended Best Track dataset

(Demuth et al. 2006).
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where sums apply to n forecasts valid at lead time t. The

tallies YY, MY, YM, and MM are subtracted in (A6)

because the separation of points along matched tracks is

usually much less thanDmax(t) (by construction); hence,

the forecast and observed storms correspond to ap-

proximately the same area. For a basin such as the

eastern North Pacific, we assume that AT is represented

by a region defined as 108–308N, 1008–1608W. The

number of correct negative forecasts is dominated by the

first right-hand-side term in (A6) at early forecast lead

times due to the smallness ofDmax(t) (Fig. A1a). At long

lead times, Dmax(t) increases to the point where the

bracketed term in (A6) is not negligible with respect to

the first term. At these longer lead times, the number of

correct negative forecasts becomes comparable to other

elements of the 3 3 3 table, especially if the number of

storms produced by the model increases.
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