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ABSTRACT

As an alternative to traditional precipitation analysis and forecast verification, 1D and 2D spectral de-

compositions of NCEP/Stage IV and Multi-Radar Multi-Sensor (MRMS) precipitation products and

convective-scale model forecasts are examined. Both the stage IV and MRMS analyses and the model

forecasts show a similar weak power-law behavior in 1D spectral decompositions, although the MRMS

analysis does not drop off in power at wavelengths less than approximately 20 km as found in the stage IV

analysis. The convective-scale forecasts produce similar behavior to the MRMS when the forecast model’s

effective resolution is sufficient. Neither theMRMS analyses nor the forecasts suggest the existence of a break

in the spectral slope at the scales for which the analyses and forecasts are valid. The 2D spectra of both

observations and forecasts, expressed in terms of an absolute wavenumber and azimuthal angle, show power

varying significantly as a function of azimuthal angle for a given wavenumber. This azimuthal anisotropy is

significant, and is dominated by the second mode (wavenumber 2). The phase of the mode is the result of the

orientation of precipitation features and, hence, convective system orientations and propagation. Observa-

tions show a shift in orientation (phase) over May–June–July. The convective forecasts reproduce this shift in

phase, although with a consistent but small phase error.

1. Introduction

The expanding use of convection-permitting forecast

models is one of the defining characteristics of the

evolving numerical weather prediction (NWP) enter-

prise over the last few decades. Convection-permitting

model configurations, involving grids with horizontal

cell spacing of a few kilometers or less in which deep

convective updrafts are explicitly simulated, produce

convective-system structure and evolution very similar

to what is observed. These high-resolution model con-

figurations also allow for better representation of terrain

and topographic flow effects, such as blocking, in addi-

tion to better representation of other atmospheric inputs

arising from land use, etc. In research applications,

convection-permitting simulations have been employed

for many decades within regional configurations, and

global convection-permitting models are beginning to

be applied in research applications as computer and

model capabilities grow. Operational NWP centers are

increasingly employing convection-permitting models

on the regional scale, and within the next decade it

should be possible to employ convection-permitting

global operational NWP models.

With the important emphasis on precipitation fore-

casting in NWP applications, there is an increasing need

to develop precipitation analyses for both models and

observations that take into account the increasingly

smaller scales we are simulating and observing to exam-

ine and quantify the realism in convective precipitation

forecasts. Traditional approaches for comparing pre-

cipitation forecasts to observations, such as equitable

threat scores (ETS) and bias (Wilks 2011; Jolliffe and

Stephenson 2003), do not provide any direct measure of

the scale or structure of precipitation features. Gilleland

et al. (2009) provide a comprehensive review of recent

spatial verification methods that describe the scale de-

pendence of precipitation structure and displacement

errors in model forecasts (e.g., Davis et al. 2006; Roberts

and Lean 2008;Harris et al. 2001). Scale in particular is an

important consideration in forecast model performance;
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specifically, what scales are resolved in a model forecast,

and are they resolved properly.

The focus of our study is to assess the performance of

precipitation forecasts at different spatial scales, in

particular the scale dependence of precipitation vari-

ability as compared with observations. As an alterna-

tive to the traditional precipitation analysis and

forecast verification approaches, in this paper we ex-

amine 1D and 2D spectral decompositions of the Na-

tional Centers for Environmental Prediction (NCEP)/

Stage IV and Multi-Radar Multi-Sensor (MRMS)

precipitation products and convective-scale model

forecasts. The analyses are performed over the central

U.S. region using observations and model forecasts

from the period of the National Oceanic and Atmo-

spheric Administration (NOAA) Hazardous Weather

Testbed (HWT) Spring Experiment that took place

during the month of May 2015, and the Plains Elevated

Convection At Night (PECAN) experiment that took

place from early June to mid-July 2015. Forecasts ex-

amined in this study are produced by the global Model

for Prediction Across Scales (MPAS; Skamarock et al.

2012) using variable-resolution meshes to reach

convection-permitting scales, and the regional

Weather Research and Forecasting (WRF) Model.

The 1D spectra can be derived from 2D spectra from

integration over one of the coordinates. Observational

analyses using 1D spectra exhibit a power-law re-

lationship for precipitation as a function of horizontal

scale, and this relationship is consistent with the power-

law relationship observed for the horizontal wind fields,

specifically the kinetic energy. Within the context of the

1D spectral analyses, we consider a number of questions

including the following: 1) do observations show any

break in the power-law scaling and 2) do convection-

permitting model forecasts reproduce the power-law

scaling, and over what scales are the forecast spectra

accurate? The smallest scale where observed power-law

scaling holds is one definition of the effective resolution

of a model configuration, usually evaluated using hori-

zontal or vertical velocity spectra.

Information is lost, however, when 2D spectra is in-

tegrated to produce the 1D spectra. To recover some of

this information about the structure of the precipitation

fields, the 2D precipitation spectra are cast in polar co-

ordinates (horizontal wavenumber, azimuth) and the

characteristics of the spectra as a function of azimuth

for a given wavelength are examined. We consider the

azimuthal variance from the stage IV and MRMS ob-

servational analyses and from the MPAS forecasts, in-

cluding the level of isotropy in the structure of the

azimuthal variance, and we consider how the variance

and structure of the precipitation fields evolve from late

spring (May) through summer (July). The observed 2D

precipitation spectra change noticeably over the

2.5-month period, and this change is also evident in the

forecast spectra.

The paper is organized as follows. We begin in section

2 with a description of the analysis domains, the obser-

vational datasets, and the forecast models. In section 3

we describe the basis for our analyses—the spectral

decompositions and analyses based upon them. Vertical

velocity and horizontal kinetic energy results from the

spectral analyses are given in section 4, followed by

those for precipitation in section 5. Spectral anisotropy

of precipitation is examined in section 6. A summary is

provided in section 7.

2. Description of models and observations

a. Analysis domains and time periods

We focus our spectral analyses over the central

United States where midlatitude continental convection

is most active during the forecast periods. Temporally

averaged vertical velocity, horizontal kinetic energy,

and precipitation spectra are computed from hourly

forecasts and precipitation analyses over a domain with

7203 720 grid points (18003 1800 points for theMRMS

analyses) (shown in red in Fig. 1). In a case study, we run

WRF simulations over smaller forecast domains and the

analysis domain is reduced to 560 3 560 grid points

(orange) for a 3-km simulation, and 796 3 796 grid

points (blue) for a 1-km simulation.

For all domains, we compute the spectra over a region

as large as possible while remaining sufficiently far from

topographically driven features (such as precipitation

formation over the Rockies) that may dominate and

mask the spatial characteristics of convective pre-

cipitation. When defining an analysis domain, we avoid

including any cells within regions of mesh refinement or

lateral boundary relaxation in MPAS and WRF, re-

spectively. The larger analysis domains also help pre-

vent overpenalizing the convection-permitting forecasts

due to small spatial or temporal offsets.

For all model output and observations, we interpolate

variables from their native grids to a regular latitude–

longitude grid. For MPAS and stage IV gridded output,

fields are interpolated to a 0:02583 0:0258 grid

(Dx’ 2:8 km and Dy’ 2:2 km). The MRMS 1-km grid-

ded output exists on a 0:0183 0:018 grid (Dx’ 1:1km

and Dy’ 0:9km). The WRF 3- and 1-km model output

are interpolated onto the 0:0258 and 0:018 grids, re-

spectively, from its native Lambert conformal grid. Over

the analysis region, the change in grid cell spacing is

relatively small, and Fourier analysis is carried out on

these interpolated fields.
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Two sets of experimentalMPAS convective forecasts

over the continental United States define the analysis

time periods. The first set of forecasts is produced as a

part of the HWT Spring Experiment that was con-

ducted by the MPAS group at the National Center

for Atmospheric Research (NCAR). Between 1 and

31 May, daily 5-day (120 h) forecasts were produced

and initialized by the 0000 UTC Global Forecast Sys-

tem (GFS) analysis made available operationally by

NCEP. The second set of forecasts was generated for

the period of the PECAN field campaign. The 3-day

(72 h) forecasts were produced daily between 8 June

and 14 July (also initialized by the operational 0000 UTC

GFS analysis).

b. Stage IV 4-km gridded precipitation estimates

NCEP provides a national precipitation analysis

product using regional hourly and 6-hourly multisensor

precipitation analyses from the 12 National Weather

Service River Forecast Centers (RFC) over the conti-

nental United States. These routine analyses are based

on WSR-88D observations bias corrected using rain

gauge measurements and satellite information; there is

also some manual quality control by forecasters at the

RFCs. Upon receiving the RFC analyses, NCEP then

conglomerates the information onto a national 4-km

grid resulting in the stage IV product (Lin and

Mitchell 2005).

c. MRMS 1-km gridded precipitation estimates

An MRMS system, developed at the National Severe

Storms Laboratory, was recently implemented at NCEP

(Zhang et al. 2014, 2016). This system provides gridded

precipitation estimates over the continental United

States at 1-km grid spacing. The product is generated by

combining information from multiple radars in the

United States and Canada, lightning and rain gauges,

climatology data, satellite data, atmospheric environ-

mental data, and NWP model output. Unlike the stage

IV precipitation estimates, the MRMS estimates are

fully automated and do not benefit from manual quality

control. We obtain hourly accumulated MRMS pre-

cipitation estimates via the archive on the Iowa Envi-

ronmental Mesonet (IEM).1 (A graphical user interface

for the MRMS products is available online at http://

mrms.ou.edu.)

d. MPAS

MPAS is a global nonhydrostatic atmospheric

model using a spherical centroidal Voronoi mesh and

model governing equations discretized on a C grid

(Skamarock et al. 2012). The unstructured centroidal

Voronoi mesh allows for local refinement on the

sphere through the use of a variable-resolution mesh.

Such a mesh may be beneficial for removing numeri-

cal artifacts due to lateral boundary conditions in

traditional two-way nested models. Here we exam-

ine spectral characteristics of convection-permitting

forecasts produced by a variable-resolution MPAS.

Two mesh configurations were used: (i) 50–3 km for

the HWT forecasts and (ii) 15–3 km for the PECAN

forecasts, which contained approximately 6.85 and 6.5

million cells, respectively. The latter configuration is

FIG. 1. Geographical domains used in the spectral analysis. Filled contours show topography

elevation (m).

1 Available online at https://mesonet.agron.iastate.edu.
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computationally less expensive albeit with a higher

horizontal resolution outside of the refined region

because there are slightly fewer cells in the refined

region with nominally 3-km horizontal grid spacing.

Both sets of forecasts used the same physics suite

adapted from the Advanced Research version of the

Weather Research and Forecasting (WRF-ARW)

Model (Skamarock et al. 2008). The following physics

options were used: Mellor–Yamada–Nakanishi–Niino

(MYNN) surface layer scheme (from WRF 3.5) and

planetary boundary layer (PBL) scheme (from WRF

3.6.1; Nakanishi and Niino 2009), the Grell–Freitas

scale-aware cumulus scheme (modified from WRF

3.6.1; Grell and Freitas 2014), theWSM6 single-moment

microphysics scheme (with prognostic variables for

cloud liquid-water, cloud ice, rainwater, snow, and

graupel; from WRF 3.5; Hong and Lim 2006), and the

Rapid Radiative Transfer Model for GCM (RRTMG)

short- and longwave radiation schemes (from WRF

V3.4.1; Mlawer et al. 1997; Iacono et al. 2000).

Figure 2 shows the MPAS, stage IV, and MRMS

average hourly precipitation rate as a function of

forecast lead time over the largest analysis domain for

the two forecast periods. To avoid model spinup errors,

such as that discussed in Skamarock (2004), we do not

use the first 24 forecast hours in our spectral calcula-

tions. MPAS typically overestimates the diurnal pre-

cipitation maximum and underestimates the minimum,

but the model bias does not vary significantly with

forecast lead time. Therefore, we can use all hourly

forecasts beyond spinup to improve the statistical ro-

bustness of the spectral calculations.

e. WRF-ARW

In a case study, the regional WRF-ARW is used to

generate a 48-h forecast at 3- and 1-km horizontal grid

spacings. The 3-km forecast is two-way nested within a

15-km parent domain, initialized from analyses gener-

ated by the WRF Data Assimilation Research Testbed

(WRF/DART using V3.6.1). The WRF/DART is a

continuously cycled system that uses an ensemble ad-

justment Kalman filter and observations from aircraft,

marine, surface, and upper-air observations. The 15–3-km

model configuration follows the NCAR Ensemble

Forecast System (EFS) [see Schwartz et al. (2015) for

more details]. The 3-km forecast is then one-way-nested

to produce the 1-km forecast.

The following physics suite is used in these forecasts:

theMellor–Yamada–Janjić (MYJ) PBL scheme (Mellor

and Yamada 1982; Janjić 1994, 2002) with the Eta sur-

face layer scheme, Tiedtke cumulus scheme (Tiedtke

1989; Zhang et al. 2011) (no cumulus parameterization is

used for the 3- and 1-km domains), Thompson micro-

physics scheme (Thompson et al. 2008) (with prognostic

variables for cloud liquid-water, pristine ice, rainwater,

snow, and graupel), and the RRTMG short- and long-

wave radiation schemes (Mlawer et al. 1997; Iacono

et al. 2000) with aerosol and ozone climatologies. Simi-

lar to the MPAS forecasts, we eliminate the first 24 h of

forecasts in calculating the spatial spectra.

FIG. 2. Average hourly precipitation rate (mmday21) as a function of forecast lead time (h) over the central United

States from MPAS (green), stage IV (black), and MRMS (orange) for the two experimental convection-resolving

forecast periods: (a) HWT duringMay 2015 and (b) PECAN field campaign (June–July 2015). Horizontal lines show

the average hourly precipitation rate over each forecast day.
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3. Spectral power analysis

a. 2D power spectrum

The power spectra are generated using two-

dimensional Fourier transforms. In contrast to a grid-

point to gridpoint evaluation, comparing temporally

averaged power spectra gives an alternative objective

assessment of the modeled spatial features with ob-

servations. By retaining the spectra’s dimensionality,

one can obtain additional information on the spatial

orientation of these features. In this study, we utilize

two-dimensional spectral information to assess model

behavior over a range of spatial scales (from large/

synoptic- to near-grid scales).

The Fourier transform algorithm assumes periodicity

in the input field. We have tested two different tech-

niques to circumvent the aperiodicity of our domain.

One is a detrending technique as described in Errico

(1985); the other is a Hanning window [e.g., as described

in Harris (1978)], which is essentially a spatial cosine-

bell filter that gradually reduces the field from its full

value at the center of the domain to zero at the bound-

aries. The 2DHanningwindow is applied by scaling each

grid point (m, n) of a two-dimensional physical field

with the following coefficient:

c(m,n)5
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1

2
2

1

2
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2p(m2 1)
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x
2 1
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where Nx and Ny are the number of grid points in the x

and y directions, respectively.

In terms of the 1D spectra, the resulting spectral

slopes from the two techniques are very similar, but the

Hanning window generally reduces the overall power.

The detrended fields, however, usually contain patterns

of lines (due to the linear detrending computed at each

row and column separately). Although this does not

affect the resulting 1D spectrum (e.g., Bla�zica et al.

2015), objective interpretation of the 2D spectrum be-

comes difficult when lines of power peaks are reflected

along kx 5 0 and ky 5 0. For this reason, despite the

power reduction, we apply the Hanning window in all of

our 2D spectral analyses. The comparisons of spectral

power and slopes between modeled and observed fields

remain valid since we apply the same Hanning window.

b. 1D power spectrum

Examining the power at the spectral tail near the grid

scale can provide some insight on the model-effective

resolution (Skamarock 2004). To obtain a 1D rainfall

spectrum, past studies (e.g., Crane 1990; Harris et al.

2001; Morales and Poveda 2009; Parodi et al. 2011;

Willeit et al. 2015) have used the detrending technique

followed by azimuthal averaging of the 2D spectrum.

Our 1D rainfall spectra (both simulated and observed)

are computed in amanner consistent with these previous

studies. Azimuthal averaging returns a flat spectrum

when the signal is white noise and is useful for inter-

preting spatial correlation in the field, whereas azi-

muthal integration returns a spectrum with a constant

spectral slope. We also examine simulated 1D horizon-

tal kinetic energy and vertical velocity spectra; for these

spectra, the Hanning window followed by azimuthal

integration is used.

c. Spectral power anisotropy

Previous studies on rainfall spectra have largely fo-

cused on 1D spectra (e.g., Crane 1990; Harris et al. 2001;

Morales and Poveda 2009; Parodi et al. 2011; Willeit

et al. 2015). As mentioned earlier, 2D spectra retain

information such as the orientation of dominant features

at each spatial scale that are unavailable from 1D

spectra alone. Here, in addition to 1D spectra, we also

examine 2D rainfall spectra to objectively identify the

orientation and structure of dominant precipitation

features. Elongated precipitation features are reflected

as anisotropy in the 2D power spectrum. Hinkelman

et al. (2005, 2007) have defined a measure to quantify

such horizontal spectral anisotropy but for determining

elongated cloud fields. Their measure depends on the

geometry of the 2D spectrum. We propose a similar

anisotropy parameter but using the ratio of power var-

iance to the squared mean at each total wavenumber k,

defined as

p
u
(k)5s2

u(k)/m
2
u(k) ,

where su(k) and mu(k) are the standard deviation and

azimuthal average, respectively, of the power co-

efficients S(k, u) at wavenumber k. The normalization

using m2
u reduces the parameter range, which would

otherwise span many orders of magnitude due to the

large differences in power between each wavenumber.

The normalization also highlights the variance due to

anisotropy rather than noise. For an isotropic spectrum,

S(k, u)5 S(k) and su(k)5 0.

Next we define an anisotropy phase f0(k) to quantify

the dominant orientation of anisotropy. The Fourier

transform of a real-valued two-dimensional field is

symmetric about kx 52ky. If the 2D spectrum shows a

peak in power along a particular angle u, the power at an

arbitrary total wavenumber will be in the form of two

sinusoidal waves with a phase shift depending on u at
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which the peak occurs. To quantify this phase shift, we

perform a 1D Fourier transform on S(k0, u) for all

wavenumbers k0 and find the phase angle f(k0) of the

second harmonic, where2p#f(k0)#p. We then map

the phase angle f to the anisotropy phase f0 using

f0 5
�
2f/2 if f# 0

p2f/2 if f. 0,

such that f0(k)5 0 corresponds to (kx, 0) in the 2D

spectrum and the angle increases counterclockwise. The

heaviest rainfall feature will align perpendicular to this

phase; for example, an elongated rainfall feature aligned

in the northeast–southwest direction will show anisot-

ropy at f0 5 3p/4 in the 2D spectrum.

4. Vertical velocity and horizontal kinetic energy

We first present 1D horizontal kinetic energy and

vertical velocity spectra from MPAS over the largest

analysis domain (Fig. 3). The plotted spectra are tem-

poral averages of all hourly spectra from both the HWT

and PECAN forecasts. Similar to past observations (e.g.,

Nastrom et al. 1984; Nastrom and Gage 1985; Julian

et al. 1970; Cho and Lindborg 2001), the k25/3 and the

k23 spectra are reproduced by the model at three pres-

sure levels: 850, 500, and 200hPa (dashed lines in Fig. 3).

We found only small differences in the spectral slopes

among the three monthly spectra from differing weather

conditions and sample sizes (not shown). At wave-

lengths greater than approximately 400km, the slopes in

the kinetic energy spectra at all three levels are shal-

lower than 23, as was also found in the global MPAS

troposphere and stratosphere spectra presented in

Skamarock et al. (2014). The spectrum in the k23 regime

at 850 hPa shows a gentler slope than those at 500 and

200 hPa, consistent with past observational and model-

ing studies (e.g., Julian et al. 1970; Horn and Bryson

1963; Wiin-Nielsen 1967; Hamilton et al. 2008; Ricard

et al. 2013). The slopes at the mesoscale (wavelengths

between approximately 25 and 400 km) correspond well

to the theoretical25/3 slope up to awavelength of 10Dx,

where a departure from the 25/3 slope may be in-

terpreted as reaching the model-effective resolution

(Skamarock 2004). This effective resolution is smaller

than the global average of 6Dx found in Skamarock et al.

(2014) andmay be a result of the dominant local weather

regime (continental convection) examined in this study.

The vertical velocity spectra at pressure levels 850,

500, and 200 hPa are shown in solid lines in Fig. 3. Flat

vertical velocity spectra were also observed in the

stratospheric aircraft measurements (e.g., Bacmeister

et al. 1996) and model simulations (e.g., Terasaki et al.

2009; Bierdel et al. 2012; Langhans et al. 2012;

Skamarock et al. 2014; Stephan and Alexander 2015).

The spectra exhibit a flat shape up to a wavelength of

approximately 10Dx. There appears to be a weak spec-

tral peak near wavelength 30km (as indicated by posi-

tive slopes in Fig. 3b); interestingly, the stratospheric

measurements presented in Bacmeister et al. (1996)

(with a wavelength resolution of about 200m) also

showed a deviation from a flat spectrum at about 25 km.

However, since this is near the filter scale of the model

(where the kinetic energy spectra deviate from k25/3), it

FIG. 3. (a) Spectra and (b) spectral slopes of MPAS horizontal

kinetic energy (dashed lines) and vertical velocity (solid lines) over

the central United States at 850 (blue), 500 (yellow), and 200 hPa

(orange). Spectra are temporal averages over both the HWT and

PECAN forecast periods.
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is unclear whether the weak spectral peak is due to

physical or marginally resolved processes. The model

resolution is still too low to accurately resolve the

spectral characteristics of convective vertical velocities

(Bryan et al. 2003).

5. Precipitation scaling near the grid scale

Some past studies (e.g., Crane 1990; Harris et al. 2001;

Willeit et al. 2015) have found distinct breaks in the

spectral slope at the 15–30-km wavelengths in 1D rainfall

spectra based on radar observations. Crane (1990) com-

puted rainfall spectra using 1-km horizontal grid spacing

radar volume scans just below the freezing level. He

found three scaling regimes: a k25/3 regime at scales be-

tween 13.5 and 50km, a k23 regime at scales between 4

and 13.5km, and a k21 regime below 4km. He attributed

the k25/3 and k23 scalings to an energy input at the 13.5-km

scale and a departure of the two-dimensional turbu-

lence theory at the 4-km scale. Others, however, have

found more consistent scaling (i.e., no break in the

spectral slope) at scales smaller than 30 km. Menabde

et al. (1999) examined the scaling between 500m and

30 km using radar scans with 250-m resolution pixels

and found spectral slopes in the range of k22:11 to k22:42.

Harris et al. (2001) examined rainfall spectra from a

2-km horizontal grid spacing radar and found scaling

from k22:7 to k23:1 at the 4–33-km scales, transitioning

to a much gentler slope at scales greater than 33 km (at

approximately k21 but there was little mentioning of

this scaling).

Harris et al. (2001) also conducted a 3-km numerical

simulation. In addition to a break at 33 km, they also

found a spectral break at 15 km (5Dx) in their model

results and attributed the spectral drop to numerical

filter effects. Willeit et al. (2015) compared rainfall

spectra from 1-km radar observations with those from

2.8-km model simulations. They found that for convec-

tive events, the observed spectra showed a scaling break

at about 15–20 km, whereas the modeled spectra

showed a break at 20–30km, with a slope (k22:21) gentler

than observed (k23:16 for 1-h rainfall accumulations and

k22:72 for rainfall rate) at the smaller scales (5.6–25 km).

These past studies found a range of fitted slope

values in their observed spectra between k22:11 and

k23:1 for rainfall rates, and slightly steeper slopes for

1-h averages. Each study differs in their radar locations,

duration, and reflectivity-to-rainfall rate conversion.

Moreover, all the aforementioned studies used re-

flectivity from different radars, where radar-rainfall

estimates are subject to uncertainties such as range

effects due to beam elevation and attenuation, and

choice of a singleZ–R relationship (Wilson and Brandes

1979). Using single radar measurements also means

that the domain is limited by the maximum range and

azimuthally averaged spectral estimates at scales

greater than 15 kmmay be affected by a smaller sample

size (Crane 1990). To avoid these issues, we use

observed rainfall accumulations from multisensor

precipitation estimates, which utilize a dense network

of rain gauges to bias adjust radar-rainfall estimates

(among other adjustment measures such as satellite

estimates). Over our region of interest in the central

FIG. 4. (a) Spectra and (b) spectral slopes from MPAS (green),

stage IV (black), and MRMS (orange) hourly rainfall accumula-

tions. Spectra are temporal averages over both the HWT and

PECAN forecast periods. Dashed line shows the MPAS spectrum

averaged over all 2100–0300 UTC forecasts, when convection is

most active from the late afternoon to early evening. Spectral

slopes are smoothed using a running average.
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United States, there is also a dense radar network with

some overlapping coverage allowing our domain to be

much larger than those used in the past studies.

Figure 4 shows the 1D rainfall spectrum from MPAS

hourly accumulations compared with those from NCEP/

Stage IV andMRMS.At scales greater than about 40km,

the magnitudes from MPAS show similar scaling behav-

ior as those from stage IV andMRMS. The dashed green

line shows the MPAS spectrum from the diurnally con-

vective hours (between 2100 and 0300 UTC). The shape

of the spectrum is unchanged (similarly for stage IV and

MRMS; not shown). Near the grid scale, the power from

stage IV analyses drops off much faster withwavenumber

than those from MPAS and MRMS. The steeper (more

negative) spectral slope indicates that stage IV small-

scale precipitation features are smoother and more or-

ganized. The higher-resolution MRMS, on the other

hand, shows continued scaling at approximately k23

down to 6km, in rough agreement with those found in

past studies. The rainfall spectrum fromMPAS compares

well withMRMSand shows similar small-scale variability

down to approximately 12km, although the slopes begin

to differ noticeably at about 6Dx [similar to the results

found in Harris et al. (2001) for their model].

To examine the effect of model horizontal resolution

on the near-grid-scale scaling behavior, we conducted

WRF 3- and 1-km forecasts for a 48-h period beginning

at 0000 UTC 28 May 2015. During this period, a squall

line developed over the elevated terrain of NewMexico,

and propagated eastward, sweeping through north-

western Texas, with peak precipitation amounts occur-

ring between 0000 and 0500 UTC 29 May 2015.

Scattered thunderstorms then lingered over much of

eastern Oklahoma, Arkansas, and Missouri between

2100 UTC 29 May and 1200 UTC 30 May 2015. The

distribution of 24-h accumulated precipitation from

stage IV is shown in Fig. 5.

The rainfall spectrum (hourly accumulations) and

slope for the 24-h period are shown in Figs. 6a and 6b,

respectively. Similar to the 4-km stage IV spectrum, the

WRF 3-km simulation shows a sharp spectral drop at the

6–25-km wavelengths, whereas both the 1-km WRF

forecast and MRMS analysis show relatively consistent

scaling down to 6 km. The lack of a sharp spectral drop in

FIG. 5. Stage IV accumulated precipitation (mm) from 0000 UTC 29 May to 0000 UTC

30 May 2015.
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the higher-resolution forecast and analysis indicates that

the drop in the 3-km WRF forecast and the 4-km stage

IV spectra may be due to the coarser resolution in WRF

and smoothing procedures in the objective analyses. The

MPAS spectral slopes show closer resemblance to the

WRF 1-km forecast than MRMS.

The WRF 3-km forecasts use a different set of physics

options than in the 3-kmMPAS forecasts. We conducted

two additional 3-km WRF simulations with the WRF

physics (WP) suite and the MPAS physics (MP) suite.

These 3-km domains (of 581 3 581 grid points) are

smaller than that used previously, but are initialized in the

same fashion. The power spectra from these WRF 3-km

forecasts are shown in Figs. 6a and 6b. We note that

slightly less precipitation is formed in these forecasts, a

consequence of lateral boundary effects using a smaller

domain. Differences are found between the two sets of

physics parameterizations at the synoptic scale, but near

the grid scale their spectral behavior is very similar (and

also similar to that of the previous WRF 3-km forecast).

We can, therefore, conclude that the spectral drop at the

grid scale is independent of physics options.

The 1-km results, using both models and observations,

suggest that the spectral drop seen in the stage IV analyses

is most likely related to its resolution and the density of

the rain gauges used for bias correction. The higher-

resolution MRMS analyses are bias corrected using twice

as many in situ precipitation observations from approxi-

mately 10000 rain gauges (Zhang et al. 2016), and their

spectra do not exhibit this drop.

Finally, we note that there are differences between the

numerical filters for scalars in MPAS and WRF that may

affect the near-grid-scale behavior. In MPAS, no explicit

diffusion is applied on the scalar variables, but the third-

order advection scheme has a fourth-order damping term

and a monotonicity constraint in the scalar advection

scheme behaves like a filter (Skamarock et al. 2012). In

WRF, a fifth-order horizontal advection scheme is used,

which is inherently diffusive with a sixth-order damping

term. In addition tomonotonicmoisture advection, a sixth-

order hyperdiffusion is employed for scalars (Knievel et al.

2007). When examining the two models’ vertical velocity

and horizontal kinetic energy spectra, similar behavior

(but to a lesser effect than for precipitation) is found near

the grid scale, with the vertical velocity spectra showing

larger differences in the spectral slopes than in the kinetic

energy spectra. AWRF-MP simulation without any sixth-

order diffusion indicates that the explicit hyperdiffusion in

WRF partially explains the difference in behavior. The

kinetic energy spectral slopes are found to be much closer

to those from MPAS, but some differences remain in the

precipitation and vertical velocity spectra (especially at

500hPa). Other factors that may affect the near-grid-scale

behavior include the different model levels used and the

more isotropic nature of the MPAS mesh, both of which

warrant further investigation.

6. Orientation of dominant precipitation features

Figure 7 shows stage IV gridded analyses of 6-h rainfall

accumulation on two different days: 1200 UTC 8 July

2015 (Fig. 7a) and 1200UTC 28May 2015 (Fig. 7b). Their

FIG. 6. (a) Spectra and (b) spectral slopes of modeled and ob-

served hourly accumulated rainfall (mm) during forecast hours

24–48 initialized at 0000 UTC 28 May 2015. Analysis domain of the

WRF 1-km simulation is smaller than the others. Spectral slopes

are smoothed using a running average.
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power spectra are shown in Figs. 7c and 7d, respectively.

In Fig. 7a, a linear squall line oriented in the northeast–

southwest direction passed through the analysis region.

Most of the power resides at the synoptic scale, where

wavenumbers 1–20 represent wavelengths between 100

and 2000km (note the logarithmic color scale). In the

spectrum from the first case (Fig. 7c), the orientation of

the squall line is reflected clearly as peaks in the power

spectrum along an angle perpendicular to the physical

feature. In the second case (Fig. 7b), precipitation events

occurred in the form of scattered and less-organized

convective cells. These systems resulted in a spectrum

that is much more isotropic (Fig. 7d).

Figure 8 shows the 2D spectra from MPAS, stage IV,

and MRMS averaged over three different extended

periods. They all show similar variation in the orienta-

tions of the dominant warm-season precipitation fea-

tures with time. The orientations of the physical features

are predominantly in the northeast–southwest direction

(f0 5 3p/4) duringMay (top row) and transitioning to an

east–west direction (f0 5p/2) during June and July

(middle and bottom rows, respectively).

Since the spectrum is symmetric, only even harmonics of

the power along the azimuth are nontrivial. We examined

the variance contributions of the second and fourth har-

monics in the spectra shown in Fig. 8, and found that the

second harmonic contributes 46.6%–62.2%of the variance,

while the fourth harmonic only contributes 9.3%–14.5%.

The phase shifts of the secondharmonic are, therefore, used

to compute the anisotropy phases in Fig. 9. It is interesting

that at scales smaller than approximately 100km, themodel

consistently overestimates the phase, consistent with Fig. 8.

Near the grid scale, the anisotropy phases decrease sharply

in stage IV, which is associated with reaching the Nyquist

wavenumber (at a wavelength of 9.5km).

There is a clear indication of a slow clockwise rotation

from May to July. These dominant orientations are

consistent with the frequently observed springtime me-

soscale convective systems with well-defined squall lines

that orient in the northeast–southwest direction. During

late June and into July, nocturnal convection becomes

more active and persistent ‘‘heavy precipitation cor-

ridors’’ confined within a narrow latitudinal band of

38–48 are frequently observed in the region (Carbone et al.

FIG. 7. Stage IV 6-h accumulated precipitation analyses for (a) a squall-line case at 1200 UTC 8 Jul 2015 and (b) a

scattered thunderstorms case at 1200UTC 28May 2015 (purple boxes indicate the analysis domain), and (c),(d) their

corresponding 2D power spectra (mm2). White boxes indicate 2Dx of the stage IV grid (where Dx’ 4:75 km).
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2002; Tuttle and Davis 2006). MPAS is able to re-

produce the spectral anisotropy well in May and July,

but with an underestimation in June (Fig. 10). The un-

derestimation indicates that the MPAS spectrum is

slightly more isotropic than those from stage IV and

MRMS, and that the predicted precipitation features

were less organized than observed.

7. Summary

We investigated the spectral properties of two na-

tional precipitation estimate products, the NCEP/Stage

IV and MRMS analyses, which are based on multiple

radars and in situ observations. These products are used

to evaluate the precipitation forecasts from the global

variable-resolution MPAS and the regional WRF over

the central United States. Characteristics of 1D and 2D

spectra of convective precipitation from observations

and models are used to identify structural differences at

various spatial scales.

The 1D precipitation spectrum based on stage IV ana-

lyses shows a distinct break in the spectral slope at ap-

proximately 25km. The steeper slope at the smaller

scales implies smoother and more organized precipitation

FIG. 8. Two-dimensional power spectra (mm2) of 6-h accumulated rainfall from (middle column) MPAS forecasts initialized on (top)

1–31May 2015, (middle) 8–30 Jun 2015, and (bottom) 1–14 Jul 2015, and the corresponding spectra from (left) stage IV and (right)MRMS

analyses. The 2D power spectra are truncated at the 6-km wavelength. White boxes indicate 2Dx of the stage IV grid (where

Dx’ 4:75 km).
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structures.On the other hand, theMRMS spectrum shows

near uniform scaling at k23 between 6 and 100km. The

scale break in stage IV appears to be a result of the hor-

izontal resolution, where finescale structures are likely

smoothed out by the analysis procedure and limited by the

density of the in situ observations. MPAS at a 3-km

nominal grid spacing shows better agreement with the

MRMS results, whereas the regional WRF at the same

nominal grid spacing shows a similar scale break as that

from stage IV. At a 1-km grid spacing, however, theWRF

spectrum shows scaling similar to MRMS. Additional

simulations indicate that the differences are not sensitive

to physics options. MPAS is able to reproduce the small-

scale variability observed in the MRMS analysis down to

12km (’4Dx).
By examining the full 2D average spectra, dominant

precipitation orientations and structures are identified

from the model and observations. Two statistical mea-

sures, an anisotropy phase and an anisotropy parameter,

are used to quantify the orientation and structure of

precipitating systems. These measures characterize the

precipitation structure at various spatial scales and set

aside differences in magnitude. MRMS, stage IV, and

MPAS all show dominant features aligned in the

northeast direction during the month of May, gradually

shifting to an east–west direction in June and July, al-

though MPAS tends to underestimate the phase angles.

FIG. 9. Anisotropy phases of the 6-h accumulated precipitation

spectra for MPAS (lines with circle markers), stage IV (thin solid

lines), and MRMS (thick solid lines). Colors indicate spectra av-

eraged over forecast periods initialized on 1–31 May (green), 8–30

Jun (blue), and 1–14 Jul 2015 (red).

FIG. 10. Anisotropy parameter computed from the 6-h accu-

mulated rainfall spectra fromMPAS (green), stage IV (black), and

MRMS (orange) over forecast periods initialized on (a) 1–31 May,

(b) 8–30 Jun, and (c) 1–14 Jul 2015.
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The shift in the orientation in the June and July forecasts

is likely associated with rainfall corridors confined

within a latitudinal band as frequently observed during

the late summer over the Great Plains. The anisotropy

parameter is used as a measure of the frequency of

structured events.Well-organized systems such as squall

lines have a larger anisotropy parameter, whereas more

spatially sporadic thunderstorms have a smaller value.

In this respect, MPAS agrees fairly well with stage IV

except in June, where the forecast precipitating systems

appear to be somewhat more disorganized.
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