
Spherical Harmonic Spectral Estimation on Arbitrary Grids

NICHOLAS R. CAVANAUGH

Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, California

TRAVIS A. O’BRIEN

Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, Berkeley, and

Department of Land, Air, and Water Resources, University of California, Davis, Davis, California

WILLIAM D. COLLINS

Climate and Ecosystems Science Division, Lawrence Berkeley National Laboratory, and Department

of Earth and Planetary Science, University of California, Berkeley, Berkeley, California

WILLIAM C. SKAMAROCK

National Center for Atmospheric Research, Boulder, Colorado

(Manuscript received 19 July 2016, in final form 2 May 2017)

ABSTRACT

This study explores the use of nonuniform fast spherical Fourier transforms onmeteorological data that are

arbitrarily distributed on the sphere. The applicability of this methodology in the atmospheric sciences is

demonstrated by estimating spectral coefficients for nontrivial subsets of reanalysis data on a uniformly

spaced latitude–longitude grid, a global cloud resolving model on an icosahedral mesh with 3-km horizontal

grid spacing, and for temperature anomalies from arbitrarily distributed weather stations over the United

States. A spectral correction technique is developed that can be used in conjunction with the inverse trans-

form to yield data interpolated onto a uniformly spaced grid, with optional triangular truncation, at reduced

computational cost compared to other variance conserving interpolation methods, such as kriging or natural

spline interpolation. The spectral correction yields information that can be used to deduce gridded obser-

vational biases not directly available from other methods.

1. Introduction

Spectral coefficient and spectral density estimation are

considered core techniques in geophysical data analysis.

Spectra serve to concisely summarize variability as a func-

tion of spatial or temporal scale in both one-dimensional

and multidimensional data. In geophysical time series,

for example, the strongest spectral peaks are often

observed at frequencies corresponding to the daily and

annual cycles. Spectra also capture aspects of variability

intrinsic to the system being sampled, for example in the

atmospheric sciences, the ‘‘weather,’’ ‘‘macroweather,’’

and ‘‘climate’’ regimes (Lovejoy and Schertzer 2013).

Spectral coefficients are easily estimated for data with a

uniform sampling frequency using the fast Fourier

transform (FFT), a discrete computational algorithm that

decreases computational complexity to O (N log N)

versus brute force spectral estimation, which has a com-

putational complexity of O (N2).

Analogous to temporal spectra, horizontal (or wave-

number) spectra can also be calculated using the FFT on

data that are evenly geographically spaced to examine

the signal’s power as a function of wavelength. This
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technique can be extended to two or more dimensions

by simply using higher-dimensional FFTs. For data on

the sphere, the combination of the FFT across lat-

itudinal bands and a (fast) Legendre transform across

meridional bands leads to the (fast) spherical Fourier

transform (FSFT), which has been shown to be very

useful in the atmospheric sciences to yield estimates of

power or energy as a function of spherical wavenumber

(Baer 1972). In particular, spherical harmonic analysis is

often used to examine atmospheric spectral scaling prop-

erties that relate to turbulence theory (Lovejoy and

Schertzer 2013) and to understand the fidelity of climate

model simulations at small scales (Baldwin andWandishin

2002; Skamarock 2004; Hamilton et al. 2008; Skamarock

et al. 2014). FSFTalgorithms have also played a prominent

role in Navier–Stokes solvers in global atmospheric

models (Bourke 1974; Bourke et al. 1977; Wedi et al.

2013), and are used, for example, in the current im-

plementations of the NOAA GFS (NCEP 2016) and

ECMWF IFS (ECMWF 2016) models.

FFT-based algorithms have achieved such ubiquity in

the atmospheric sciences due primarily to the avail-

ability of data on uniformly spaced grids. Weather and

climatemodels most often output data in this format and

observations are commonly interpolated onto grids us-

ing one of many available interpolation algorithms [e.g.,

optimal interpolation (OI) or kriging (Gandin 1963)].

OI is a simple yet effective probabilistic method of

geospatial interpolation relying on the covariance sta-

tistics of arbitrarily distributed data sources to provide

the least squares optimal estimate of the expected value

at unobserved spatial points of interest. We use OI as a

comparable method of interpolating unevenly spaced

data in this study since OI generally outperforms other

interpolation methods when interpolating common

meteorological variables (Hofstra et al. 2008).

While spherical harmonic spectral estimation on

nonuniformly spaced data using optimization tech-

niques is possible, the sheer quantity and dimensionality

of geophysical data makes the problem computationally

intractable at scale. However, recent advances in com-

putational mathematics have led to the introduction and

distribution of nonuniform (N) fast Fourier algorithms,

namely the NFFT and the NFSFT (Potts et al. 1998;

Keiner et al. 2009, as well as many others), which can

yield transform estimates from data with an arbitrary

sampling structure.

In this study, we illustrate the estimation of spherical

harmonic spectral coefficients using the NFSFT algo-

rithm, which utilizes both nonuniform fast Fourier and

Legendre transforms. We first demonstrate the flexibility

of the algorithm using uniformly spaced atmospheric

data from reanalysis by estimating spectral coefficients

globally, hemispherically, and over global ocean and land

taken separately. Second, we demonstrate the power and

extensibility of the method by estimating spectral co-

efficients directly from a global cloud resolving model on

an icosahedral mesh with 3-km horizontal grid spacing,

followed by inverse transforming (iNFSFT) the data

onto a uniformly spaced latitude–longitude grid. Finally,

we demonstrate the use of the NFSFT in estimating

spectral coefficients directly from weather observations

placed at arbitrary geographic locations. The inverse

transform, followed by a spectral correction (reweight-

ing) that accounts for the original sampling distribution,

yields a gridding algorithm that is more computationally

efficient than kriging/OI.While we discuss applications of

this algorithm within the context of the atmospheric sci-

ences, we also note that these methods are broadly ap-

plicable in the geosciences and elsewhere. Throughout

the study, we utilize power spectra strictly to summarize

the results of spectral coefficient estimation.

2. Methodology and data

a. Fast, nonuniform spherical harmonic transforms

Any square integrable function f (u, f) distributed on

the sphere can be decomposed into an infinite sum of

Laplace spherical harmonic functions, Ylm, such that

f (u,f)5 �
‘

l50
�
l

m52l

f̂
lm
Y

lm
(u,f), (1)

where u is latitude, f is longitude, and l and m are the

indices of the spectral coefficient matrix f̂ . A lower-

resolution representation of f (u, f) can also be con-

structed by summing l 2 [0, M], whereM corresponds to

the desired total wavenumber (triangular) truncation. A

spectrum,Ef (l), can be constructed as a function of total

wavenumber l such that

E
f
(l)5 �

l

m52l

c
lm
jf̂

lm
j2 , (2)

where clm is a normalizing constant. In the atmospheric

sciences, f is often taken to be wind speed or potential

temperature, making Eq. (2) proportional to kinetic or

potential energy, respectively. Provided a finite data

sample of f (u, f) at arbitrary locations on the sphere, a

NFSFT algorithm can quickly and efficiently provide

estimates of the spherical harmonic expansion co-

efficients f̂ lm, from which a spectrum can be estimated.

For this study, we utilize the NFFT3C package

(Keiner et al. 2009), which includes an implementation

of the NFSFT algorithm described by Potts et al. (1998).

The Potts et al. (1998) NFSFT algorithm leverages a
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decomposition of the spherical harmonic transform

into a Fourier transform in the zonal direction and a

Legendre transform in the meridional direction. For

the zonal component, the NFSFT utilizes an NFFT,

which approximates a DFT to arbitrary precision by

1) spreading information from N nonuniformly spaced

data points, using a convolution function with a known

spectral transform (e.g., a Gaussian), onto a uniform

grid with M points; 2) utilizing a standard FFT to

transform the convolved data to spectral space; and

3) using the convolution theorem to approximately re-

move the spectral effects of the convolution (Dutt and

Rokhlin 1993; Kunis and Potts 2003; Keiner et al. 2009).

The NFFT approximation, for which errors are typically

at the level of machine-precision, has a computational

complexity of O (M logM1N log«), where « is the tar-

get accuracy of the approximation. Assuming M’N,

this is faster than the O (N2) complexity required for a

standard DFT. For the meridional component, the

NFSFT utilizes a fast Legendre transform for data at

arbitrary locations in which 1) Chebyshev transform

coefficients are efficiently calculated by taking advan-

tage of a recurrence property of Chebyshev polynomials

that allows fast polynomial multiplication using fast,

discrete cosine transformations; and 2) a change of basis

from Chebyshev to Legendre polynomials (Potts et al.

1998). Altogether, the NFSFT algorithm requires

O (N2 log2N1N log«) calculations compared to the

O (N3) calculations for a standard, discrete SFT.

b. Interpolating nonuniform data

Data taken at arbitrary locations can be considered

the product of indicator functions (centered at the data

locations) and a continuous field f. When considering a

sample of f taken at arbitrary locations on the sphere

(identified here using dot notation, e.g., _f ),

_f (u,f)5 f (u,f) � _g(u,f), (3)

where _g(u, f)5 1(u, f) is an indicator function equal to

1 at the sample points, and zero everywhere else. By the

convolution theorem, the SFT of _f is the convolution of

f and _g: b_f 5 f̂ lm*
b_glm, where the asterisk denotes convo-

lution. The inverse transform can be used to interpolate

f to an alternate set of points [e.g., as demonstrated in

Keiner et al. (2009)]; however, simple application of the

inverse transform on b_f neglects the effect of _g on the

spherical harmonic coefficients. The convolution theo-

rem offers a simple means to correct for the nonuniform

location of points _g, such that

f
alt

5
~f
alt

~g
alt

, (4)

where alt indicates _f represented on the alternate set of

points and the tilde (;) indicates the result of the inverse

transform. When _g is densely sampled on a uniformly

spaced grid, ~g is equal to 1 everywhere on that same

uniformly spaced grid; however, for an arbitrary set of

points, ~galt is a wavenumber-M-dependent representation

of _g at the alternate point locations that is related to the

original, spatially varying sampling density. This factor

provides the appropriate weights for ~f alt to represent
_f on

the alternate spatial points. Henceforth, we will refer to

falt as corrected and ~f alt as uncorrected. In this text, we

only consider uniformly spaced latitude–longitude grids

as an alternate set of spatial points, but recognize that

Eq. (4) holds for any arbitrary set of alternate points.

c. Data

Reanalysis data used to demonstrate the horizontal

spectral coefficient estimation on both densely sampled

and geographically subsampled (sparse) uniformly spaced

grids come from the Climate Forecast System Reanalysis

(CFSR; Saha et al. 2010) at the 200-hPa pressure level.

CFSRhas a uniformhorizontal grid spacing of 0.58 andwe
estimate spectral coefficients using daily averages.

The Model for Prediction Across Scales (MPAS)

cloud resolving model, which has 65 536 002 cells on an

icosahedral mesh with 3-km horizontal grid spacing, is

used to illustrate spectral analysis for nonuniformly

spaced dense data on the sphere. We operate on 41 time

slices of 200-hPa winds, each separated by 6 h, beginning

on 0000 UTC 20 January and spanning to 0000 UTC

30 January 2009 to stay comparable with Skamarock

et al. (2014). Further model details can be obtained from

Skamarock et al. (2014).

Weather station temperature anomalies are taken from

the Hadley Centre’s quality controlled subset of the In-

tegrated Surface Database at 0000 UTC (HadISD; Dunn

et al. 2012).We remove all data that have been flagged for

quality control. We then calculate anomaly time series by

removing the seasonal cycle, estimated from a centered

5-day running mean (with missing data removed) for

stations that are at least 90% complete over 1981–2010.

3. Uniformly spaced grids

We first demonstrate spherical harmonic spectral co-

efficient estimation on a dense and uniformly sampled

two-dimensional latitude–longitude grid: CFSR 200-hPa

u and y winds during January 2005. We illustrate one

time slice of these fields in Figs. 1a and 1b and illustrate

spectra for the total winds in Fig. 1c. The spectral esti-

mation procedure for data of this type is usually accom-

plished using discrete Fourier techniques. In the case of

complete and uniformly spaced data, the NFSFT will
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yield the same result as the standard FSFT, shown in

Fig. 1c. Skamarock (2004) demonstrated that numerical

model diffusion schemes yield unphysical spectral char-

acteristics beyond the wavenumber associated with 4–6

times the grid scale (illustrated as vertical lines). These

characteristics manifest themselves as a departure from

the canonical k23 or k25/3 scaling regimes related to at-

mospheric turbulence (illustrated as diagonal lines in the

top-right corner)—we revisit this assertion in section 5.

Next, we demonstrate the use of the NFSFT in esti-

mating spectral coefficients derived from each hemi-

sphere, taken separately. The NFSFT requires only the

raw data input on the sampled half-sphere for the

spectral estimation. In Fig. 1c, we show that the energy

estimated for the Northern and Southern Hemispheres

are similar both to each other and to the spectra for the

entire sphere, with the Southern (summertime) Hemi-

sphere showing a greater degree of k25/3 scaling.

Finally, we illustrate in Fig. 1c spectra derived from a

nontrivial subsampling of uniformly spaced data on the

sphere, that is, for the global ocean and global land taken

separately. The spectrum for global ocean behaves simi-

larly to the spectrum for all data, initially decaying at near

k23 but flattening somewhat near wavenumber 50. The

spectrum for global land, however, decays at close to k22:4

over the entire inertial range. The authors do note, how-

ever, that these differences are subject to uncertainty

estimates and require further investigation using higher-

resolution data andoptimal spectral estimation techniques.

While the FSFT algorithm is unable to estimate spectra

for sparsematrices,wedo acknowledge themethodological

developments of Harig et al. (2015, and references

therein) and DelSole and Tippett (2015), which could be

used to accomplish the same task. In particular, the

problem of localized spherical spectral estimation has

been studied in depth by Wieczorek and Simons (2005,

2007), who propose a family of spherical multitapers

based on Slepian functions that can be used prior to

spectral estimation using standard techniques. When

performing spectral estimation on localized regions of the

sphere, spherical harmonic basis functions are shown to

be nonoptimal, since they are not strictly orthogonal on

the region of interest. This nonoptimality contributes to

spectral leakage in the estimated spectral coefficients. By

contrast, the multitaper Slepian functions are orthogonal

on both the whole sphere and the region of interest, and

explicitly address the trade-off between the concentra-

tion of information in the spatial domain versus the

concentration of information in the spectral domain

through the number of taper functions, thereby mitigat-

ing or eliminating spectral leakage. Strictly speaking, the

NFSFT methodology presented here maximizes con-

centration only in the spatial domain, and we therefor

expect some level of nonoptimality (bias) in the esti-

mated power spectra. We leave it up to the reader to

determine the NFSFTs suitability in such situations.

4. Nonuniformly spaced grids

In this section, we demonstrate spectral estimation

directly from MPAS on an icosahedral mesh with 3-km

horizontal grid spacing (Skamarock et al. 2014). MPAS

FIG. 1. Spectral estimation on a uniformly spaced latitude–longitude grid: CFSR 0.58. (a) fu(u, f): 200-hPa uwind
for 0000 UTC 1 Jan 2005. (b) fy(u, f): 200-hPa y wind for 0000 UTC 1 Jan 2005. (c) Efu1y

(l): 200-hPa KE spectra

averaged over January 2005 for global (black), Northern Hemisphere (magenta), Southern Hemisphere (green),

global land (brown), and global ocean (blue). Points indicate wavenumber-0 values. Vertical lines denote model

effective resolution, as discussed in text. Diagonal lines show k23 and k25/3 scaling.

3358 MONTHLY WEATHER REV IEW VOLUME 145



performs numerical calculations on a global icosohedral

mesh (Fig. 2a), which generally requires interpolation

to a uniformly spaced grid for further analysis, including

spectral estimation. This additional step can add both

computational time and spectral bias if themethod is not

variance conserving. Here, the method is variance con-

serving and the rate limiting step for further analysis is

the NFSFT estimation, which comes at a computational

complexity of O (N2 log2N) (Kunis and Potts 2003).

In Fig. 2b, we illustrate the kinetic energy spectra from

MPAS averaged over 41 time slices for u and y winds at

200hPa estimated via NFSFT. The kinetic energy for

total winds (solid black) is directly comparable to Fig. 6

in Skamarock et al. (2014) (see online supplemental

Fig. S1), demonstrating the accuracy of the NFSFT al-

gorithm for global analysis. The largest differences be-

tween the spectra presented here and that of Fig. 6 in

Skamarock et al. (2014), which are subtle, lie primarily

in the largest and smallest wavenumbers. Skamarock

et al.’s (2014) approach utilizes localized radial basis

functions to reconstruct zonal and meridional velocities

at the icosahedral cell centers, and then uses linear

interpolation to construct u and y winds on a uniformly

spaced latitude–longitude grid. They then use the

SPHEREPACK functions within NCL to estimate the

spectral coefficients (W. C. Skamarock 2016, personal

communication). We note that the spectral departure

beyond 4D is stronger in Skamarock et al. (2014), sug-

gesting that at least part of this spectral effect at small

scales may be due to nonvariance conserving regridding

algorithms. We also illustrate the individual u- and y-

kinetic energy spectra in Fig. 2b.

In Figs. 2c and 2d, we show the unweighted wind fields

estimated by iNFSFT, transformed onto a 18 uniformly

spaced latitude–longitude grid at T180 truncation, and in

Fig. 2e, we show the weights (spectral correction) esti-

mated on the same grid. Figure 2e clearly demonstrates a

higher observation density near the equator, as would be

expected from representing a 3-km icosahedralmesh on a

latitude–longitude grid. Also apparent from Fig. 2e are

the six grid transition points that have higher observation

densities. One of these points is depicted in our icosahe-

dral network schematic (Fig. 2a) just west of Baja Cal-

ifornia, Mexico. Note that the units for Figs. 2c–e are

FIG. 2. Spectral estimation on an icosahedral mesh and interpolation to a uniformly spaced latitude–longitude grid: MPAS 3-km global

cloud resolving model. See algorithm 1. (a) Schematic of MPAS icosahedral mesh. (b) Ef (l): 200-hPa KE spectra estimated from the

nonuniformly spaced data averaged over 41 (total) 6-h time slices for 200-hPa total wind (black), 200-hPa u wind (blue), and 200-hPa

y wind (red). (c) ~f u,alt(u, f): uncorrected u winds transformed onto a 18 uniformly spaced latitude–longitude grid at T180 truncation.

(d) ~f y,alt(u, f): as in (c), but for y winds. (e) ~galt(u, f): spectral correction of the icosahedral mesh at T180 truncation. (f) fu,alt(u, f):

corrected 200-hPa u winds on a 18 uniformly spaced latitude–longitude grid at T180 truncation. (g) fy,alt(u, f): as in (f), but for y winds.

Points indicate wavenumber-0 values. Vertical and diagonal lines as in Fig. 1. The alternative cubic spline interpolation operation is

indicated by the dashed arrow between (a) and (g).
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arbitrary and depend on the degree of triangular trun-

cation M. By elementwise matrix division of the un-

corrected wind fields (Figs. 2c and 2d) by the observation

network correction (Fig. 2e), the corrected wind fields

(Figs. 2f and 2g) can be recovered at the desired tri-

angular truncation on a uniformly spaced latitude–

longitude grid.

5. Arbitrary networks

We now direct our attention to estimating spectral

coefficients directly from meteorological data with arbi-

trary network configurations. Here, we focus on a dif-

ferent scaling field—temperature anomalies. Figure 3a

shows a high-quality subset of HadISD surface temper-

ature anomaly observations at 0000 UTC 1 January 2005

between 258–508N and 608–1308W. The NFSFT can di-

rectly estimate the temperature anomaly variance spec-

tral coefficients from these observations, illustrated by

the spectra with the solid blue line in Fig. 3b. Unlike the

dense networks analyzed in sections 3 and 4, which yield

energy spectra that decay monotonically as power laws,

station data are clearly influenced by the network

configuration and tend to yield spectra that flatten at

higherwavenumbers. In this case, we can see by analyzing

the spectrum of the network (Fig. 3b, dashed black) that

its structure is nontrivial and is very likely affecting the

spectral behavior estimated from the temperature data.

Taking cues from Skamarock (2004), we define the ef-

fective resolution of the meteorological network as the

wavenumber in which the variance spectrum is no longer

power-law scaling, but note that a more sophisticated

methodology might be devisable. We move forward with

our analysis at a triangular truncation of M5 63.

As in section 4, we can iNFSFT both f̂ and ĝ to obtain

the uncorrected temperature field (Fig. 3c) on a uni-

formly spaced latitude–longitude grid (in this case, 0.258
horizontal grid spacing at T63 truncation), as well as the

observation weights (Fig. 3d). From Fig. 3d it is clear

that observation density varies spatially, resulting in a

nontrivial spectral correction. Comparison of Figs. 3c

and 3d show strong spatial similarities in the patterns of

~galt and
~f alt, which indicates that the network density is

modulating the interpolated field. We can correct for

this modulation by dividing ~f alt by ~galt. At this point, we

choose to remove the geographic locations that have

FIG. 3. Spectral estimation on a weather station network of arbitrarily located observations and interpolation to a uniformly spaced

latitude–longitude grid: HadISD temperature anomalies over the United States. See algorithm 1. (a) _f (u, f): station temperature

anomalies for 0000UTC 1 Jan 2005. (b)E(l): 0000UTC temperature variance spectra averaged over 2005 (solid blue), 0000UTC network

spectrum averaged over 2005 (dashed black), and corrected 0000 UTC temperature variance spectra averaged over 2005 (dotted blue).

(c) ~f alt(u, f): uncorrected temperature anomalies transformed onto a 0.258 uniformly spaced latitude–longitude grid at T63 truncation for

0000UTC 1 Jan 2005. (d) ~galt(u, f): spectral correction at T63 truncation. (e) falt(u, f): corrected temperature anomalies transformed onto

a 0.258 uniformly spaced latitude–longitude grid at T63 truncation for 0000 UTC 1 Jan 2005. Black regions indicate negative or near-

negative observation density corresponding to (d). (f) 0000UTC temperature anomalies interpolated to a 0.258 uniformly spaced latitude–

longitude grid using kriging/OI. In (a), (d), (e), and (f), black dots mark the locations of weather stations and in (a), (e), and (f) observed

station temperatures are illustrated on the color scale as the gridded data. Vertical and diagonal lines are as in Fig. 1. The alternative

kriging or OI operation is indicated by the dashed arrow between (a) and (f).
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negative or near-negative weights, which lead to de-

generacies in the corrected temperature field. The de-

generacy arises when attempting to divide by ~galt when
~galt / 0, leading ~f alt /6‘ in circumstances where sta-

tion density is very low. We then elementwise divide the

uncorrected temperature field by the network correc-

tion, yielding a corrected temperature field that has been

interpolated by spherical harmonics onto a uniformly

spaced 0.258 latitude–longitude grid over the United

States. Finally (and optionally), we can estimate a cor-

rected temperature variance spectrum from the cor-

rected uniformly spaced temperature field by transforming

only the areas with positive network densities—we

illustrate this corrected spectrum in Fig. 3b

(dotted blue).

Traditionally, kriging or OI, being the best least

squares predictor, is used to transform data observed on

arbitrary networks onto uniformly spaced latitude–

longitude grids. Kriging has a computational complexity

of O (N3). Simple kriging assumes that the expectation of

the field is known (in our case for temperature anomalies,

zero) and relies on covariance information to yield a

probabilistic prediction at unobserved locations. In this

sense, simple kriging is quite similar mathematically to

principal component analysis, where the covariance ma-

trix is factored to yield orthogonal basis functions, termed

empirical orthogonal functions (EOFs). An infinite

(sufficient) weighted sum of these EOFs yields a com-

plete representation of the original data field. Similarly, a

Laplace spherical harmonic expansion also has the

completeness and orthogonality properties, signifying its

equivalence with EOF-based approaches for spatial re-

construction on a global domain (Shen et al. 1994).

Moreover, the Laplace spherical harmonics are the OI

functions for homogeneous isotropic randomfields on the

sphere (Shen et al. 1994), and thus the back-transformed

observations truncated at their effective resolution can be

treated similarly to OI data if the appropriate conditions

are met. The NFSFT algorithm, however, achieves this

result with greater computational efficiency when using a

large number of samples when compared to OI algo-

rithms: [O (N2 log2N) vs O (N3)].

In Fig. 3f, we show the original data (Fig. 3a) optimally

interpolated onto the 0.258 grid. We indicate the alter-

native OI operation in Fig. 3 by a dashed arrow between

Figs. 3a and 3f. We argue that the OI fields are compa-

rable to fields interpolated using spherical harmonics on

variance conservation principals; however, we note that

additional methodological research may be required to

hone the technique. In Fig. 4a, we show the average

deviation between OI 0000 UTC HadISD temperature

anomaly fields with fields that have been interpolated

via spherical harmonics over 2005. While these de-

viations do show some spatial structure (perhaps further

FIG. 4. Performance of spherical harmonic interpolation vs kriging. (a) Average deviation (color shaded) be-

tween T63 spherical harmonic interpolation vs kriging over 2005 estimated on a 0.258 uniformly spaced latitude–

longitude grid. Average sampling density (contours) at T63 truncation over 2005, roughly corresponding to Fig. 3d.

Bin width is 0.01. (b) Average deviation plotted against average sampling density. (c) As in (a), but for absolute

deviation (color shaded) with contours as in (a). (d) As in (b), but for absolute deviation.
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indicating a need for additional methodological re-

search), they are in general small in amplitude and

spatial scale compared to the climatological anomalies

themselves, and are likely related in part to our T63

truncation choice. In Fig. 4c, we show the average ab-

solute deviations between the OI dataset and our

spherically interpolated dataset. In most regions, the

average absolute deviation is less than 18C, particularly
in regions of high station density. It would be interesting

for a future study to examine a full uncertainty analysis

of the kriging methodology related to the validity of the

kriged estimate.

In Figs. 4b and 4d we show average deviation and

absolute deviation as a function of the spectral sampling

density (the contours in Figs. 4a and 4c). These figures

indicate that the difference between the spectral repre-

sentation and the kriged representation increases as the

spectral station density (correction) approaches 0. This

is to be expected, since ~f alt /6‘ as ~galt / 0 as a con-

sequence of spectral transform degeneracy in instances

of (near) zero sampling density. In these same circum-

stances, that is the case where the interpolation is

probabilistically uninformed, kriging yields an estimate

of f that converges on 0. The degenerative zones, shown

in Fig. 3e in black and corresponding to the regions of

high deviation and absolute deviation in Figs. 4b and 4d,

should be considered regions in which both the kriging

and spherical harmonic interpolation methodologies are

unlikely to be valid.

6. Discussion and conclusions

In this study, we demonstrate the use of the NFSFT

for spherical harmonic spectral estimation by applying

the algorithm directly to arbitrarily sampled atmo-

spheric data. We illustrate the utility of this methodol-

ogy by estimating spectral coefficients on subsamples of

reanalysis data on a uniformly spaced grid, MPAS

model data on an icosahedral mesh, and weather station

data directly.

Spectral analysis is a common tool in geophysics

involving a coordinate transformation from data in real

space (i.e., latitude and longitude) to data in a complex

spectral space. Numerical atmospheric models are often

truncated at a specific wavenumber that corresponds to

the smallest resolved spatial scale; we analogously show

that weather observations can be treated in the same

manner using the NFSFT. In this sense, the NFSFT al-

gorithm allows observations to be de-noised and spec-

trally truncated at their effective resolution, perhaps

providing better quality observations for ingestion by the

assimilation schemes of global reanalyses. The NFSFT

back transform has the same desirable properties as the

forward transform (i.e., the flexibility of arbitrary spatial

configurations); as a result, arbitrarily sampled observa-

tions can be back transformed onto uniformly spaced

grids and spectrally corrected for ease of use. With re-

spect to the steps enumerated in Figs. 2 and 3, the algo-

rithm is as follows:

Algorithm 1 Spectral Regrid
input: _f (u, f)

output: falt(u, f)

begin
1: analysis:
_f (u, f)/ f̂ lm, _g(u, f)/ ĝlm via NFSFT
2: signal synthesis:
f̂ lm / ~f alt(u, f) via iNFSFT
3: network synthesis:
ĝlm / ~galt(u, f) via iNFSFT
4: correction/deconvolution:
~f alt(u, f)/~galt(u, f)5 falt(u, f)

end

Spectra are often used to help understand the be-

havior of the turbulent regimes that describe large-scale

atmospheric dynamics (Lovejoy and Schertzer 2013).

Nonuniform spectral methods allow for a more sys-

tematic examination of these turbulent regimes because

the input data are not required to be densely populated

or uniformly sampled. Beyond the simple geographic

subsampling shown here, data can also be selected based

on dynamical considerations (e.g., convective vs non-

convective, low pressure vs high pressure), potentially

yielding new fundamental insights about the nature of

atmospheric dynamics and turbulence.

Finally, the NFSFT algorithm can be readily applied

to climate model simulations computed on non-

uniformly spaced or variable-mesh grids without having

to first interpolate data onto a uniformly spaced grid.

This methodology may help alleviate the practical bur-

den of dealing with data computed on more sophisti-

cated grids, which is becoming increasingly common,

and may come at a reduced computational cost and bias

compared to interpolation onto uniformly spaced grids.

Wieczorek and Simons (2005, 2007) have shown that

spherical harmonic basis functions are nonoptimal for

power spectral estimation on localized regions because

they are nonorthogonal within localized domains. They

argue that optimal spectral estimation cannot be per-

formed without first multiplying the data by a specially

designed multitaper before spectral estimation. The

observation density-related spectral correction ~g oper-

ates very much like a taper function, and can be opti-

mized to various levels of smoothness (e.g., through

spectral truncation) or to be orthogonal on the region of

interest; however, a full mathematical treatment of these
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procedures is beyond the scope of this paper. We,

therefore, leave it up to the reader to decide whether the

NFSFT methodology is suitable for their purposes.

The NFSFT algorithm is also just one in a growing

suite of nonuniform fast spectral algorithms (Keiner

et al. 2009). Many of the concepts documented in this

study also follow for temporal spectral analysis, where

the NFFT can be used to provide information about

systems that have been nonuniformly sampled in time

(e.g., biological systems). By weaving these components

together, complete (space–time) spectral representa-

tions can be efficiently estimated for any arbitrarily

sampled multidimensional system, with the atmosphere

being just one of many examples.
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