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ABSTRACT

A global atmospheric analysis and forecast system is constructed based on the atmospheric component of

the Model for Prediction Across Scales (MPAS-A) and the Data Assimilation Research Testbed (DART)

ensemble Kalman filter. The system is constructed using the unstructured MPAS-A Voronoi (nominally

hexagonal) mesh and thus facilitates multiscale analysis and forecasting without the need for developing new

covariance models at different scales. Cycling experiments with the assimilation of real observations show

that the global ensemble system is robust and reliable throughout a one-month period for both quasi-uniform

and variable-resolution meshes. The variable-mesh assimilation system consistently provides higher-quality

analyses than those from the coarse uniform mesh, in addition to the benefits of the higher-resolution fore-

casts, which leads to substantial improvements in 5-day forecasts. Using the fractions skill score, the spatial

scale for skillful precipitation forecasts is evaluated over the high-resolution area of the variable-resolution

mesh. Skill decreasesmore rapidly at smaller scales, but the variablemesh consistently outperforms the coarse

uniformmesh in precipitation forecasts at all times and thresholds.Use of incremental analysis updates (IAU)

greatly decreases high-frequency noise overall and improves the quality of EnKF analyses, particularly in the

tropics. Important aspects of the system design related to the unstructured Voronoi mesh are also in-

vestigated, including algorithms for handling the C-grid staggered horizontal velocities.

1. Introduction

The development and application of variable-resolution

global atmospheric models are areas of active research

because these models achieve high resolution locally

without the need for nested domains whose lateral

boundary conditions are artificial and subject to unknown

errors, and because the variable-resolution models are

simpler compared to those that combine global and sep-

arate, regional models. The global nonhydrostatic Model

for Prediction Across Scales (MPAS; Skamarock et al.

2012) provides horizontally variable-resolution using un-

structured meshes, and also addresses the pole problems

encountered inmodels using traditional latitude–longitude

grids. We have developed a data assimilation system for

MPAS that employs an ensemble Kalman filter (EnKF;

Evensen 1994) as implemented in the Data Assimilation

Research Testbed (DART; Anderson et al. 2009). This

paper presents an overview of the assimilation system,

with special attention to details of its implementation on

the native MPAS unstructured mesh and a demonstration

of its variable-resolution capabilities.

Data assimilation (DA) systems have been previously

developed for a few other variable-resolution atmo-

spheric models that employ stretching or cell division to

locally enhance grid resolution (Laroche et al. 1999;

Fox-Rabinovitz et al. 2002). While these systems utilize

variable-resolution grids in their forecast model to cal-

culate observation–forecast differences, the analysis in-

crements are computed on separate uniform-resolution

grids and then interpolated back to the native grids. The

system presented here, in contrast, works entirely on

the MPAS native mesh. The analysis thus retains the

variable-resolution nature of the model forecasts.

A major challenge for data assimilation on variable-

resolution meshes is the need for estimating back-

ground error covariances on such meshes in a

computationally efficient way. This difficulty is mini-

mized in the EnKF because the required covariances

are simply estimated from an ensemble of forecasts on

the model’s native mesh. Many assimilation schemes,

however, employ correlationmodelswhose computationalCorresponding author: Dr. Soyoung Ha, syha@ucar.edu
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implementation is tied in some fashion to logically rect-

angular or uniform-resolution grids. These issues will be

discussed further in section 2.

The atmospheric component of MPAS (MPAS-A)

uses spherical centroidal Voronoi meshes that enable

global high-resolution simulations using either a quasi-

uniform- or a variable-resolution horizontal mesh con-

figuration. The variable-resolution meshes allow for

smooth transitions from coarse- to fine-resolution regions

(Ringler et al. 2008; Ringler et al. 2010; Thuburn et al.

2009; Skamarock et al. 2012), unlike rectangular-grid re-

gional models such as the Advanced Research Weather

Research and Forecasting (WRF) Model (WRF-ARW;

Skamarock et al. 2008) that use nesting with abrupt tran-

sitions in resolution and need artificial lateral boundaries.

The MPAS mesh is also locally isotropic and conforming,

in contrast to grids that are stretched or nested (Côté et al.
1993; Fox-Rabinovitz et al. 2002). For brevity, the quasi-

uniform and the variable-resolution meshes are simply

described as the uniform and the variable meshes, re-

spectively, throughout this paper.

MPAS uses a C-grid staggering of the prognostic

variables in which the prognosed horizontal winds are

the velocities normal to and located at the cell edges,

and it is based on the work of Thuburn et al. (2009) and

Ringler et al. (2010). In the assimilation, the horizontal

winds are needed at arbitrary observation locations, and

while approaches for handling the C-grid staggered

horizontal velocities are clear for rectangular-grid

models, there are certain subtleties that appear in the

assimilation of the horizontal winds on unstructured

C-grid staggered meshes. We examine several options

for the choice of wind variables within the analysis, for

the reconstruction and interpolation methods needed

for the wind observation operators, and for applying the

analysis increments to update the winds in section 2.

In this paper we summarize the implementation and

the performance of the system.We demonstrate that the

MPAS–DART system is robust, reliable, and applicable

to variable-resolution meshes as well as to quasi-

uniform meshes, by using retrospective studies that as-

similate real observations for a one-month cycling

period. We also examine the effect on forecast skill of

using variable-resolution meshes in the cycling system,

in addition to evaluating the effective scale at which

forecasts become useful in the local refinement area of

the variable-resolution mesh.

The quality of data assimilation in global atmospheric

models is often degraded by spurious waves generated

from dynamical imbalances arising from the analysis

increments and subsequent adjustment. To reduce such

spurious waves, we have implemented incremental

analysis updates (IAU; Bloom et al. 1996) withinMPAS.

Although IAU is not crucial to the performance of the

system on variable-resolution meshes, it is helpful, es-

pecially in the tropics, and we briefly describe its im-

plementation and impact.

The paper is organized as follows. Section 2 describes

each component of the MPAS–DART system, discus-

sing the observation operators for unstructured meshes

in detail. The configurations of global ensemble cycling

experiments for the retrospective case study are pre-

sented based on coarse uniform meshes in section 3.

Comparing to the performance over the coarse uniform

mesh, the benefits of variable-resolution meshes are

summarized during the cycles and extended forecasts in

section 4, which also discusses its resolvable scales

through the power spectra of ensemble analysis in-

crements and precipitation forecasts. A summary and

discussion is presented in section 5.

2. Analysis and forecast systems

a. The MPAS atmospheric solver

The MPAS-A model solves the fully compressible

nonhydrostatic equations using a horizontally un-

structured spherical centroidal Voronoi mesh and it

employs a C-grid staggering of the prognostic variables

(Skamarock et al. 2012). The model uses a hybrid

terrain-following height coordinate, described in Klemp

(2011), which allows for the progressive smoothing of

the coordinate surfaces with increasing height so as to

remove smaller-scale terrain structure from the co-

ordinate surfaces. The governing equations are cast in

flux (or conservative) form, and the prognostic variables

are dry-air density rd, the horizontal momentum rdu and

vertical momentum rdw, the coupled potential temper-

ature rdu, and the coupled forms of moisture rdqy, cloud

rdqc, and precipitation species.

On a horizontally unstructured C-grid centroidal

Voronoi mesh, the horizontal momentum normal to

the cell edge (u in Fig. 1a) is prognosed. Scalar vari-

ables such as potential temperature, dry-air density,

and moisture are prognosed at the cell centers where

they represent cell-averaged values in the finite-

volume formulation. The prognosed vertical momen-

tum is also C-grid staggered on the vertical cell faces

located half a grid level above and below the cell cen-

ters. All other quantities are diagnosed from the

prognostic variables (e.g., pressure). In particular, the

zonal and meridional wind components at cell centers,

which are needed for the physics parameterizations,

are diagnosed from the normal velocities u at all the

edges of a given cell using a radial basis function (RBF)

reconstruction (Bonaventura et al. 2011).
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The MPAS-A forecast model used in all experiments

presented here is based on the release version 4 (http://

mpas-dev.github.io/), employing a physics suite adopted

from theWRFModel. By default, it uses the ‘‘mesoscale_

reference’’ suite. This includes the Monin–Obukhov sur-

face layer (Monin and Obukhov 1954), the Noah land

surface model (Tewari et al. 2004), WRF single-

moment 6-class microphysics scheme (WSM6) (Hong

and Lim 2006), Tiedtke cumulus (Tiedtke 1989),

Yonsei University (YSU) planetary boundary layer

(Hong et al. 2006), and the Rapid Radiative Transfer

Model for GCM applications (RRTMG) longwave and

shortwave radiation schemes (Iacono et al. 2008). For

more details, see Skamarock et al. (2008). The model

physics operate on cell-centered variables, and for the

horizontal momentum they use the zonal and meridi-

onal wind components. Physics tendencies for the

horizontal winds are produced at cell centers, and they

are projected onto the edges to update the horizontal

momentum.We also turn on the gravity wave drag over

orography (GWDO) parameterization during the

forecast, with the related static fields representing to-

pography at corresponding grid resolutions. The static

fields for the variable meshes are created based on Kim

and Doyle (2005).

b. The DART analysis system

Data assimilation is performed by the EnKF as

implemented in DART (http://www.image.ucar.edu/

DAReS/DART/). Speaking broadly, given observa-

tions and an ensemble of forecasts valid at the analysis

time, the assimilation produces an ensemble of analyses

whose mean and covariance approximate the Kalman

filter update. The analysis ensemble then provides initial

conditions for an ensemble of forecasts to the next

analysis time. Readers are referred to Houtekamer and

Zhang (2016) for a review of the ensemble Kalman filter

for atmospheric data assimilation with an extensive list

of references therein.

The specific variant of the EnKF that we employ is

the ensemble adjustment Kalman filter (EAKF) of

Anderson (2001); the relationship of the EAKF to other

ensemble Kalman filter variants can be subtle, especially

for nonlinear problems with finite precision arithmetic,

and is discussed in Tippett et al. (2003). The EAKF

employs serial processing of observations, that is, the

ensemble analysis is performed for a single observation,

then the resulting analysis ensemble is used as the

background for the next observation, and so on until all

observations valid at the analysis time are assimilated.

The application of EnKF to the MPAS variable mesh

can be understood from the analysis equations. Because

of the serial processing, it is sufficient to consider the

analysis based on a single observation such as

y5H(x)1 e ,

where x is the state vector, H(�) is the (possibly non-

linear) observation operator relating x to the observed

quantity, and e is a random observation error assumed

to have zero mean and known variance s2
o. Letting su-

perscripts a and b denote analysis and background

FIG. 1. Depiction of the horizontal MPAS grids that are constructed using an unstructured centroidal Voronoi

tessellation. Primary cells are shown as hexagons in solid lines while the dual of the hexagonal mesh is marked as

dotted triangles. (a) As illustrated, all scalar fields and reconstructed zonal and meridional winds are defined at the

primary cell centers (red dots) and normal velocity u is defined at cell edges (blue square). In MPAS–DART,

vertices (green triangle) are used to search the triangle in the dual mesh that encloses an arbitrary observation

point. (b) A barycentric interpolation to an observation point (red star) is depicted within the triangle.
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quantities, respectively, and overbars signify an ensem-

blemean for anNe-member ensemble, the EnKF update

of the ensemble-mean background forecast xb given y

can be written as

xa 5 xb 1k[y2H(xb)] , (1)

where yb [H(xb) and the Kalman gain k is given by

k5
cov(xb, yb)

s2
y 1s2

o

. (2)

In addition, the update that produces each member’s

analysis xai , corresponding to the covariance update of

the Kalman filter, is

xai 5 xbi 1bk[H(xbi )2H(xb)] , (3)

where b5 [11so(s
2
y 1s2

o)
21/2]21 (Whitaker and Hamill

2002).

In the EnKF, the background error covariance be-

tween the state and observed variables, cov(xb, yb), and

the prior variance for the observed variable, s2
y, are

sample estimates that are computed directly from the

forecast ensemble:

cov(xb, yb)5
1

N
e
2 1

�
Ne

i51

(xbi 2 xb)[H(xbi )2H(xb)] , (4)

s2
y 5

1

N
e
2 1

�
Ne

i51

[H(xbi )2H(xb)][H(xbi )2H(xb)] ,

(5)

where xb 5 1/Ne�Ne

i51x
b
i and H(xb)5 1/Ne�Ne

i51H(xbi ).

Therefore, applying Eqs. (1)–(5) on the native model

mesh is straightforward regardless of the mesh’s struc-

ture (i.e., each element of xb resides on the native mesh).

This enables EnKF to handle both the uniform- and

variable-resolution MPAS meshes transparently once

the observation operator H is built on the native mesh.

Nerger et al. (2007) and Du et al. (2016) also capitalize

on the ease of implementation of the EnKF on variable-

resolution meshes, but in the case of finite-element

ocean models.

Other covariance models, not based on sample esti-

mates from a forecast ensemble, may bemore difficult to

apply to variable-resolution and unstructured meshes.

For example, a simple way to build isotropic, homoge-

neous correlation models is to capitalize on the fact that

they are diagonal in a spectral expansion (Laroche et al.

1999), but fast spectral transforms rely on regular grids.

Other covariance models may be applicable on general

meshes but more inconvenient to apply for variable-

resolution meshes (Fox-Rabinovitz et al. 2002). Finally,

if the background correlation length scales are pre-

scribed based on a fixed grid spacing, there is little to be

gained from computing analysis increments directly on a

variable-resolution mesh with locally higher resolution,

as argued by Laroche et al. (1999). These factors, in our

view, have led to a dearth of atmospheric data assimi-

lation systems that utilize native variable-resolution

meshes during the assimilation process.

The ensemble covariances used by the EnKF suffer

from sampling error. To ameliorate its effects, we use

localization applied to the observation-state covariance

inEq. (4), followingHamill et al. (2001) andHoutekamer

and Mitchell (2001). Specifically, if xi and ki are the ith

elements of x and k, respectively, covariance localization

replaces ki by r(di, L)ki, where di is the distance between

the locations of xi and the observation y, and r(di, L) is

the fifth-order polynomial, compactly supported corre-

lation function of Gaspari and Cohn [1999, in their Eq.

(4.10)] that is identically zero for di greater than the

localization radius L. We also employ inflation, in

which the deviation of each member forecast from the

ensemble mean is increased, before the assimilation

step, by a spatially and temporally varying factor

computed according to the scheme of Anderson (2009).

Further specifics of the filter configuration will be dis-

cussed in section 3a.

c. An interface between MPAS and DART

The MPAS–DART interface1 is composed of several

routines to facilitate the communication between the

analysis and the forecast system: 1) routines that read

from and write to the MPAS restart files and translate

to/from the analysis state vectors defined in DART;

2) observation (or forward) operators that interpolate

the analysis state vectors to an arbitrary (e.g., observa-

tion) location of each observation type, including variable

transformations when needed; and 3) a script that con-

trols the integration of the MPAS model from one

analysis time to the next. As described in section 2b,

the entire analysis algorithm works directly with the

unstructured mesh.

1) ANALYSIS VARIABLES

In MPAS–DART, the state variables updated by the

EnKF algorithm are the uncoupled prognostic variables

of theMPASmodel such as potential temperature u, dry

1Here the term ‘‘interface’’ does not mean an online or direct

coupling as used in other communities, but describes the frame-

work that enables to exchange the information between the two

components: the MPAS forecast model and the DART analysis

system.
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density rd, three-dimensional velocities, and all the hy-

drometeors (qy, qc, qr, qi, qs, and qg). The analysis var-

iables can be extended to include diagnostic variables,

such as surface pressure. Observations of the diagnostic

variables then affect the prognostic analysis variables

through cross correlations, and the diagnostic fields are

reset once the model is advanced from the analysis.

As the discrete state vector for theEnKF is represented

directly on the native MPAS mesh, several approaches

are considered in assimilating horizontal wind given that

MPAS-A prognoses the horizontal momentum u on and

perpendicular to cell faces whereas the observed windsV

are typically zonal and meridional wind components (see

Fig. 1a). We will discuss the horizontal wind analysis

approach in detail in the section 2c(3).

During the continuous analysis/forecast cycles,MPAS–

DART is run in a restart mode carrying along all the

physical tendencies and land surface states to make them

consistent throughout the cycling period. Once the state

variables are updated through the Kalman filter analysis,

they are recoupled with the updated dry density rd. The

uncoupling of the MPAS prognostic variables for the

analysis update, and the recoupling of theDARTanalysis

variables as they are passed back toMPAS-A, take place

in the interface routines. The coupling process is also

described with an example in section 2d.

2) OBSERVATION OPERATORS FOR SCALAR

VARIABLES

To compute prior observations (i.e., the prediction for

observed variables based on the model forecasts), ob-

servation operators for all the analysis variables on the

unstructured meshes are needed. Underlying all the

observation operators is an interpolation from the un-

structured centroidal Voronoi mesh to an observation

location. To accomplish this interpolation in the hori-

zontal, we employ a barycentric (e.g., area weighted)

interpolation that uses the Delauney triangular mesh,

which is the dual of the Voronoi mesh, as depicted in

Fig. 1b. Note that the cell centers in the Voronoi mesh

are located at the vertices of the triangular mesh. To

interpolate to an observation point, the dual-mesh tri-

angle containing the observation point is first identified

by finding the vertex of the Voronoi mesh closest to that

point. The interpolated value x̂ is then given as

x̂5
�
3

i51

A
i
x
i

�
3

i51

A
i

, (6)

where Ai is the area of each triangle i, and xi are the

scalar values at the Voronoi cell centers (triangle

vertices) as shown in Fig. 1b. In this algorithm, all the

grid points are treated in a three-dimensional Cartesian

coordinate with the origin at the center of the earth, thus

avoiding singularity issues at the poles.We also note that

the interpolation is continuous across the triangle faces.

Any vertical interpolation takes place before horizontal

interpolation [i.e., values at the triangle vertices are in-

terpolated to constant-height surfaces before the

barycentric interpolation in Eq. (6) is applied]. When

the observed variable is different from the analysis vari-

able (e.g., temperature observations for the update of

potential temperature in the analysis), the spatial in-

terpolation is first applied to the input variables (such as

potential temperature, dry density, and water vapor

mixing ratio) individually, then the observed variable is

computed from those fields interpolated at the observed

location. For surface observations, the height difference

between the observation site and the model terrain

height is checked, and if the discrepancy is larger than a

predefined threshold (which is 100m in the current

study), the observation is rejected.

3) OBSERVATION OPERATORS FOR HORIZONTAL

WIND

In the horizontal C-grid discretization used in MPAS,

normal velocities u are prognosed at cell edges. As the

horizontal winds are typically observed as zonal and

meridional winds, we need a variable transformation as

well as a spatial transformation in the observation op-

erator H to compute the prior observations for hori-

zontal wind. We have examined several options that

differ in their choice of the wind variable for the analysis

state vector, the horizontal interpolation method, and

how the analysis increments are applied to update the

wind analysis field for the model integration. We discuss

two main options here. The first approach is to use the

reconstructed zonal and meridional winds at cell centers

along with barycentric interpolation in the observation

operator, followed by projecting the analysis increments

in the horizontal winds onto the normal velocities at cell

edges. This approach is analogous to that used by

MPAS-A model physics for the horizontal winds. Al-

ternatively, we can directly use the MPAS prognostic

normal velocities in the observation operator by re-

constructing zonal and meridional wind components at

the observation locations using theRBF. In this case, the

MPAS prognostic normal velocities are used as analysis

variables and the wind field is updated directly through

the analysis (as opposed to the incremental update in the

first approach). For reconstructing the velocity at an

observation point, while the barycentric interpolation

in the first approach is always applied using the values

from three Voronoi cell centers (that are located at the

NOVEMBER 2017 HA ET AL . 4677



vertices of the dual-mesh triangle), the RBF approach

can make use of as many edges as users choose. Our test

of the RBF approach in DART indicate that using too

few points in the RBFs can result in distinct disconti-

nuities between the nearby prior observations (the in-

terpolation is not continuous), and using a large stencil

with too many points may lead to smoothing the values

excessively and is computationally expensive. A more-

detailed discussion of velocity reconstruction on the

Voronoimesh is given by Peixoto andBarros (2014).We

compare the two approaches in the cycling context in

section 3.

d. Incremental analysis updates (IAU)

In the EnKF analysis, covariance localization and in-

flation are typically used to ameliorate the effect of

spurious correlations due to the limited ensemble size,

but they also produce dynamical imbalances and in-

consistencies between the state variables in the back-

ground ensemble covariance (Mitchell et al. 2002;

Houtekamer and Mitchell 2005; Kepert 2009; Greybush

et al. 2011). When the forecast model is initialized from

the analysis, it can experience spurious oscillations

driven by imbalances introduced in the analysis step.

Within regional models, spurious waves (noise) gener-

ated by imbalanced initial conditions are absorbed by

the sponge layer at the lateral boundaries as the waves

propagate out of the domain. But the spurious waves in

global models can contaminate solutions for much lon-

ger periods until they are damped out by model filters.

To deal with such noise and render the analysis more

dynamically consistent, the IAU is widely employed as a

means of distributing analysis increments over a certain

time window (Bloom et al. 1996; Zhu et al. 2003;

Polavarapu et al. 2004, and many more).

We implemented IAU within MPAS as follows. As

pointed out in section 2c, the continuous prognostic

equations inMPAS are cast in flux form while the EnKF

analysis vector consists of uncoupled variables including

dry density rd. Therefore, when analysis increments for

uncoupled variables are applied to the model, they need

to be first ‘‘recoupled’’ with the updated dry density. Let

us consider potential temperature u, for example. After

the analysis is complete at time t, the analysis increment

(du5 ua 2 ub) is multiplied by the updated dry density rd
to give an increment [d(rdu) 5 udrd 1 rddu] for the

corresponding coupled variables. Assuming a constant

forcing over the time window (Dt) centered on the

analysis time over which IAU affects the model in-

tegration, the analysis increments for the coupled vari-

ables d(rdu) are then divided by the number of time

steps within the window (n5Dt/Dt) and incorporated

into the tendency every time step when MPAS is

integrated from t2Dt/2. In this study, Dt5 6 h, fol-

lowed by a free forecast for 3 h to the next analysis time.

Recent studies have introduced four-dimensional

IAU to consider the propagation of the analysis in-

crements with more sophisticated time filtering within

the assimilation window (Lorenc et al. 2015; Buehner

et al. 2015; Lei and Whitaker 2016). We implemented

the IAU to make further extension to include the time-

varying increments straightforward, but for simplicity

we only consider the IAUwith the constant forcing here.

3. Cycling experiments

As the MPAS–DART system is built on the native

coordinate of the MPAS model, it is immediately appli-

cable for variable-resolution MPAS meshes and various

grid resolutions. To demonstrate that the MPAS–DART

system runs reliably and performs well on both uniform

and variablemeshes, global ensemble cycling experiments

are conducted on two different meshes. In this section, we

describe the details of the experiment setup and present

the results over the coarse uniform mesh on which the

configurations for MPAS–DART are determined.

a. Experiment design

In the retrospective case study presented here, the

global analysis/forecast ensemble systems are config-

ured on 120-km uniform (with total of 40 962 cells) and

120–30-km variable meshes (with total of 133 890 cells),

respectively. Figure 2 depicts the variable mesh with the

high-resolution region (i.e., the 30-km grid spacing re-

gion) covering the contiguous United States (CONUS).

A transition zone with the width of roughly 3000km

separates the high-resolution region from the low-

resolution, 120-km mesh for the rest of the globe. In

each experiment, both analysis and forecast ensemble

systems are configured on the sameMPASmesh and use

56 vertical levels up to 30km (;10hPa).

In the cycling experiments, a 96-member ensemble is

used for a 1-month period from 0000 UTC 25 May 2012

cycling every 6 h. To construct the initial ensemble for

global cycling experiments, independent random draws

from a Gaussian distribution with tiny standard de-

viation2 are added to a first guess [which is the NCEP

Final Operational Global Analysis (FNL) data in this

study] valid at 15 May 2012, from which the model is

freely run for 10 days. The 10-day ensemble forecasts are

then recentered on the FNL analysis at the initial cycle

(e.g., 0000 UTC 25 May 2012). This initial ensemble is

2 The amplitude of random noise is 0.0001 multiplied by each

state vector.
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first generated on the 120-km uniform mesh, then hori-

zontally regridded to the 120–30-km variablemesh using

the barycentric interpolation. As such, both meshes can

be cycled from the same initial ensemble forecasts.

Throughout the paper, the experiments on the 120-km

coarse uniform and the 120–30-km variable meshes are

also called ‘‘x1’’ and ‘‘x4’’ respectively.

b. Model and filter configurations

The model configuration is the same between the two

different mesh experiments, except for the Runge–

Kutta time step Dt, which is based on the finest grid

spacing Dx in each grid mesh. In this study, the 120-km

uniform and the 120–30-km variable meshes use the

integration time step Dt as 600 and 150 s, respectively.

The analysis variables used in these experiments are

potential temperature, dry density, horizontal wind,

vertical velocity, all the hydrometeors, surface pressure,

precipitable water, 10-m u- and y-wind components, 2-m

temperature, potential temperature, and water vapor

mixing ratio.

In the EnKF analysis, the impact of each observation

is localized by a function of the distance between the

observation and state variables, according to the com-

pactly supported correlation function of Gaspari and

Cohn (1999). The radius of the ellipsoidal covariance

localization function is set to 1200km in the horizontal

direction and 6km in height in all the experiments.

Different localization radii were tested in various ver-

tical coordinates (such as pressure or scale height) in the

cycling context, but overall the results were not signifi-

cantly distinguishable, especially in terms of 5-day fore-

casts from the EnKFmean analyses. In our global cycling

experiments, the localization generally affected the sta-

bility of the ensemble system more than the analysis

quality per se. It was also found that a proper localization

radius might be different in different regions (e.g.,

Northern vs Southern Hemisphere or troposphere vs

stratosphere) due to the inhomogeneous global observing

network and differences in the relevant dynamics. There-

fore, we do not optimize individual experiments but

demonstrate that the same filter design can be applied to

different grid configurations in this study.

To better deal with the sampling error in the

96-member ensemble, the prior covariance is inflated

before observation operators are applied every cycle,

and the coefficient is spatially and temporally adaptive

to heterogeneous observations and the systematic error

in prior covariance estimates (Anderson 2007, 2009,

2012). In this study, initial mean and standard deviation

of the inflation factor is 1.0 and 0.6, respectively, and the

inflation mean value is damped by 10% before the next

assimilation cycle.

c. Observations

In the cycling experiments, the same real observa-

tions are assimilated in both meshes for the 1-month

period. We assimilate all the observations available

in the operational data stream for the NCEP Global

Data Assimilation System (GDAS) except for satellite

radiances. Included are radiosonde soundings (raob),

Aircraft Communication, Addressing, and Reporting

System (ACARS), marine (MARINE), meteorological

terminal aviation routine weather report (METAR)

and other land surface observations (SFC), satellite

winds (SATWND), GPS radio occultation (GPSRO) re-

fractivity data, and GPS precipitable water (GPSPW). A

sample observing network valid at 1200 UTC 1 June 2012

is plotted in Fig. 3. All the observations available within

a window of 61.5h around each analysis time are

assimilated.

The assimilation system utilizes observations directly

from the NCEP GDAS files. As part of observation

preprocessing, we implemented a data compression ca-

pability for ACARS and satellite winds (by averaging

such dense observations within each grid cell to produce

FIG. 2. Grid resolutions in 120–30-km variable mesh (named

‘‘x4’’), contouring every 30 km in solid lines, superimposed over

relative vorticity at 500 hPa (colored) at 36-h forecast valid at

1200 UTC 29 May 2012.
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superobs) in MPAS–DART, but the impact of super-

obing those data was mostly insignificant in our test

experiments. Meanwhile, the GPSRO data provide ex-

cessively high vertical resolutions for our 56-level

MPAS model, especially in the upper-level atmo-

sphere, so we retain GPSRO data only every 200m in

the vertical.

Observation errors are assumed independent between

different observation types and between different ob-

servations of a given type. Observation error standard

deviations are specified as in the NCEP GDAS, except

for the relative humidity observations for which the

standard deviation is reduced from 20% to 10%.

From the DART point of view, one of the biggest

changes in treatment of observations is to assimilate

the refractivity data from all the available GPS sat-

ellites using the same observation error variance as in

the NCEP Gridpoint Statistical Interpolation analysis

system (GSI) (Cucurull 2010). The original (or old)

observation errors were defined based on Kuo et al.

(2004). Figure 4a illustrates the old and new re-

fractivity observation errors in extratropics and

tropics, respectively, and Figs. 4b–d show the resulting

bias error of 6-h forecast with respect to the re-

fractivity data when the GPSRO data are assimi-

lated with those errors during the cycles. Here,

tropics range from 208S to 208N including the grid-

resolution transition zone. In the new observation

error specification, the absolute error is reduced up

to a factor of 10 (e.g., from 0.3 to 0.03 at 17 km over the

tropics), leading to a significant bias reduction throughout

the entire atmosphere in all different regions. With the

GPSRO observation error adjustment in the analysis,

the forecasts are consistently improved in all other

variables both in rms and bias error. The largest

positive impact is observed in temperature in the

upper atmosphere over the tropics (not shown). Be-

cause of the quality of GPSRO retrievals, we dis-

card all the refractivity data below 3 km in the

experiments.

d. Wind data assimilation

We compare two different wind data assimilation

methods introduced in section 2c(3) in the ensemble

cycling context. Here the first method uses the re-

constructed winds at cell centers in the observation op-

erator and is called ‘‘cell_wind,’’ and the second

approach uses the normal velocity at edges, and is

named ‘‘edge_wind.’’ For the comparison between the

two methods, we use normal velocity from edges com-

prising the same three cells so that the wind correlations

in the background error covariances are computed from

the same set of edges in both cases. Except for the way

horizontal wind observations are assimilated and up-

dated, all other configurations for the analysis and the

forecast are identical.

FIG. 3. Sample observing network used in cycling experiments, valid at 1200 UTC 1 Jun 2012. A total number of

observations is shown in the parentheses of each observation type at the bottom.
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Figure 5 depicts the root-mean-square (rms) fit of 6-h

ensemble-mean forecasts to zonal-wind sounding ob-

servations. As shown in the time series, the 6-h forecasts

from the ensemble mean analyses using the re-

constructed cell-center winds as analysis variables con-

sistently outperform the ones using the normal velocities

on edges. That is consistent throughout the entire at-

mosphere, as averaged over the entire globe in the

vertical profile. Verification for the meridional wind

component produces a similar result while the forecast

fits to radiosonde temperature show little difference

between the two experiments (not shown). Based on this

test, we employ reconstructed winds at cell centers as

analysis variables for winds in all the following experi-

ments presented in this paper.

e. The effect of IAU

In the global analysis, it is critical to effectively sup-

press high-frequency oscillations for the numerical sta-

bility and the quality of subsequent forecasts. To

examine the level of such noise, a time series of surface

pressure tendencies (Pa s21) as an area-weighted, global-

averaged absolute value is shown for MPAS forecasts

from different initial conditions over the 120-km uniform

mesh in Fig. 6. The cold start simulations from the NCEP

FNL analyses generate moderate noise from the initial

FIG. 4. (a) Vertical profile of two different refractivity observation errors assigned to GPSRO observations

during the assimilation over tropics and extratropics, respectively, and domain- and cycle-averaged bias error of 6-h

forecast (prior) with respect to GPS refractivity observations that are assimilated using those different observation

error variances over the (b) Northern Hemisphere, (c) Southern Hemisphere, and (d) tropics. Forecast bias errors

averaged over all levels are written next to the corresponding experiment names in (b)–(d).
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time (green line). In the forecasts from the EnKFmean

analyses without IAU (black), however, the noise is

initially large due to the imbalances in the ensemble

analysis, and then quickly drops for the first 5 time

steps. Afterward, the noise is only slightly reduced, and

mostly remains for 6-h forecast. With IAU, the forecast

starts from t 5 23 h, distributing analysis increments

for 6 h centered on the analysis time, followed by 3-h

free forecast, as described in section 2d. The use of IAU

during the cycles suppresses the noise throughout the

forecast time, which turns out to be as effective as the

cold-start simulation. In our cycling experiments, 6-h

forecasts (or 9-h forecasts with IAU) are used as

background (or prior) for the next cycle, thus the high-

frequency noise at t5 6 h can contribute to the forecast

error growth and the quality of analysis (which is up-

dated based on the background forecasts) during cy-

cles. The variable mesh also shows a very similar trend

for both cases with and without IAU (not shown). As

the time series pattern and the relative magnitudes of

the noise are consistent throughout the cycles, only one

sample cycle is presented here.

To examine the effect of the noise reduction on cycling

experiments, we make a comparison of prior ensemble

mean forecast verification against surface altimeter ob-

servations (Fig. 7). As the IAU needs a longer forecast

length to run from the beginning of the IAUwindow (i.e.,

9 h instead of a 6-h forecast to start 3h before the analysis

time) in each ensemble member every cycle, it requires

30%more computation time in total. Tomake a good use

of such excessive computational resources, we investigate

which one ismore effective between the IAUand a larger

ensemble size. The default experiment (‘‘e96’’) uses a

96-member ensemble, the ‘‘e192’’ experiment employs

192members (without IAU), and ‘‘e96_IAU’’ is the same

as ‘‘e96’’ but with IAU during the cycles. Here the prior

forecasts are verified against commonobservations between

FIG. 5. Root-mean-square errors (rmse) of 6-h ensemble mean forecast in two experiments with different ob-

servation operators for horizontal winds, verified against radiosonde zonal wind observations over the globe, are

shown in (a) a time series at 700 hPa and (b) the vertical profile (averaged for the cycling period). The mean values

over the cycles [in (a)] and over the vertical profile [in (b)] are written next to the experiment names.

FIG. 6. Area-weighted global mean absolute surface pressure

tendencies at each time step for MPAS forecasts from the analyses

valid at 1200 UTC 11 Jun 2012. The forecasts from the EnKF an-

alyses with IAU on or off are compared over the uniform (x1)

mesh. The MPAS forecasts from the NCEP FNL analyses are

marked in green.
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the three experiments. During the cycles, rms errors are

largely overlapping, especially in the Northern Hemi-

sphere. Over the tropics, however, the IAU drastically

reduces the error for the entire cycling period, being

significantly more effective than the large ensemble ex-

periment. In this particular region, the model-minus-

observation bias is consistently reduced by a factor of 2

when the IAU is used (not shown). Thus, the forecast

improvement by IAU is mostly attributed to the re-

duction of the systematic error over the tropics. Overall,

doubling the ensemble size is not as effective as the IAU

in this particular case. It should be noted, however, that to

be consistent with all other experiments the same model

and filter configurations are used in ‘‘e192’’ except for the

ensemble size, whichmight notmaximize the effect of the

large ensemble run (e.g., in terms of localization).

4. Benefit of the variable-resolution mesh

a. Free forecasts

The performance of the ensemble analysis relies on

the quality of background ensemble forecasts that are

used to compute the background error covariance. It is

thus important to investigate how the MPAS model

behaves, especially in the skill of MPAS forecasts on the

variable mesh relative to the ones over the uniform

meshes, before comparing cycling experiments for our

own analysis. Figure 8 compares the anomaly correla-

tion coefficient (ACC) of geopotential height at 500 hPa

over the Northern Hemisphere (NH) for MPAS fore-

casts over three different meshes. The 5-day forecasts

are initialized from the half-degree NCEP FNL analyses

for 1–25 June 2012, twice daily, every day, to make a

total of 50 samples. The forecast skill of the 120–30-km

variable mesh (red) lies between the ones for 30- (blue)

and 120-km (orange) uniform meshes, representing the

benefit of local refinements that cover about one-third of

the verification area. After the 84-h forecast, however,

the variable mesh gets closer to the coarse uniformmesh

in ACC because the flow becomes gradually dominated

by the large-scale features simulated over the coarse

mesh area. The ACCs in other regions show that the

variable mesh is almost the same as the coarse uniform

mesh because simulations are basically done at the same

120-km resolution. Because of the small sample size,

ACC values in different meshes are not significantly

FIG. 7. Time series of 6-h ensemble mean forecast rms fit to surface altimeter settings during the cycles, over four

different regions. The default 96-member ensemble (‘‘e96’’ in black) is compared to a large ensemble run (‘‘e192’’

in red) and the same 96-member ensemble but with IAU (‘‘e96_IAU’’ in blue) over the 120-km uniform mesh.
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different in a statistical sense, but it is confirmed that the

MPAS model behaves as expected. Specifically, the er-

ror in the fine-mesh region will ultimately be dominated

by the coarse-mesh error as has been observed in global

MPAS simulations for idealized shallow-water equa-

tions tests (Ringler et al. 2011), and as suggested in full

atmospheric model tests (e.g., Rauscher et al. 2013).

b. 6-h ensemble forecasts during the cycling

From the ensemble cycling perspective, it is of the

highest priority to make sure that the simulations on

the variable mesh remain robust and reliable during the

cycling period, and the quality of 6-h forecasts is critical

because it is used as the background of the analysis

during the 6-h cycling. Figure 9 compares cycling results

on the 120-km uniform (x1) and the 120–30-km variable

(x4) meshes in 6-h ensemble mean forecast error with

respect to surface altimeter observations. Here, we turn

off IAU in the assimilation cycle to demonstrate that the

cycling experiments are reliable and perform reasonably

well in both meshes even without the aid of IAU. The

rms error over the variable mesh does not significantly

increase or decrease with cycles, and largely overlaps

with that in the coarse uniform mesh over the same

coarse mesh region (e.g., Southern Hemisphere). But as

confirmed in the temporal averages over the cycling

period, the variable mesh performs slightly better than

the coarse uniform mesh everywhere. Because of

computational limitations, we have not conducted an

ensemble cycling experiment at global 30-km resolution,

but the comparison between the two meshes in the cy-

cling experiments gives results consistent with MPAS

free forecasts from the FNL analyses (shown in Fig. 8).

In theDAcycling, it is common to check the observation-

minus-forecast (o2 f ) statistics to see if the improvements

are made through the analysis. But in this particular mesh

comparison (x1 vs x4), the (o 2 f )s are not statistically

distinguishable inmost fields, thuswe focus on the extended

forecasts from the EnKF mean analyses on the two

meshes, as illustrated in the following sections.

c. Extended forecasts

To examine the performance of 5-day forecasts, we

extend the MPAS forecasts from the EnKF mean ana-

lyses from 28 May to 25 June 2012, twice daily (at 0000

and 1200 UTC), every other day, to make a total of 30

samples, and verify them against the NCEP FNL ana-

lyses. While the (o 2 f )s during cycles are very similar

between the two meshes with or without IAU, 5-day

forecasts from their EnKFmean analyses produce larger

differences when the IAU is used during the assimilation

cycle. Since the use of IAU produces better forecasts,

especially in the tropics, the results presented here are

based on that configuration. Effects of omitting IAU are

briefly summarized later in this subsection.

Figure 10 compares the time series of rms error in

temperature at 500hPa for 5-day forecasts using the two

meshes. As a baseline, MPAS cold-start simulations ini-

tialized from the FNL analyses3 are also presented. The

cold-start forecasts isolate the effect of using the variable

mesh in the forecastmodel (by using the same analyses on

both meshes). They show no error at the initial time since

all the forecasts are verified against the FNL analyses.

Note that the EnKF analysis is produced on the same

meshes as in the forecast model throughout the cycling

while the half-degree FNL analysis is initialized by an

interpolation to the corresponding meshes and has no

extra information for the high-resolution part.

In cold-start simulations from the FNL analysis, the

variable mesh produces better forecasts and slower

growth of forecast error than the coarse uniform mesh

over the CONUS domain (Fig. 10a, cf. orange and

green dashed curves). This demonstrates that locally

enhancing resolution in the forecast model with the

variable mesh improves the forecasts.

FIG. 8. ACC of geopotential height at 500 hPa over the Northern

Hemisphere (NH), for MPAS forecasts on different resolution

meshes. The ACC is computed as a function of forecast lead time,

initialized from the same 0.58 3 0.58 FNL analysis, for a total of 50

samples (for 1–25 Jun 2012, twice daily, every day). The averages

over all the lead times are written for each mesh.

3 The FNL analyses include many more observations (especially

radiances from various satellite-borne instruments) than our EnKF

analyses, and thus can be expected to yield better forecasts, espe-

cially over the Southern Hemisphere.
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More importantly, Fig. 10a also shows that forecasts

from the variable-mesh EnKF analyses are substantially

better over the CONUS domain than those from the

uniform-mesh analyses (cf. red and blue solid curves).

Since the improvement of the day-5 forecasts is nearly

twice as large as that observed for the cold-start fore-

casts (that do not contain finescale features initially), it is

clear that the variable-mesh analysis system provides

better analyses, in addition to the benefits of the higher-

resolution forecasts. Meanwhile, forecast errors are

statistically indistinguishable between the two meshes

over the Southern Hemisphere where both have the

same 120-km resolution, regardless of the analyses used

as initial conditions (Fig. 10c). [Because forecast error is

so much larger in the Southern Hemisphere, the im-

provement of the variable-mesh (x4_EnKF) over those

on the uniform mesh (x1_EnKF) is apparent for the

CONUS domain (Fig. 10a) but not for the globe

(Fig. 10b).] Thus, the variable-mesh assimilation system

offers significant benefits and no obvious drawbacks,

other than increased computational cost, relative to that

using the uniform mesh.

Over the tropics, irrespective of the meshes, MPAS

forecasts from the EnKF analyses show much slower

error growth rates than those from the FNL analyses,

leading to better forecasts after 84 h. This is related to

the analysis improvements with IAU in this region, as

we will discuss further below.

Improvements from the variable mesh are also ap-

parent at other levels and in other variables. Figure 11

shows vertical profiles of the rms and mean temperature

forecast errors over the CONUS for day-5 forecasts. The

locally higher-resolution forecasts reduce rms errors

throughout the troposphere, particularly between 250

and 925 hPa (Fig. 11a). Use of the variable mesh in the

EnKF analysis also significantly reduces the systematic

bias relative to the uniform mesh, with reductions of up

to 0.8K between 300 and 400hPa. In these vertical

profiles, the benefit of the variable mesh in the EnKF

analysis is much larger than that in the FNL analysis

FIG. 9. As in Fig. 7, but for the comparison between two different meshes, verified against common observations

between the two experiments. Here, x1 means the 120-km quasi-uniformmesh (same as ‘‘e96’’ in Fig. 7) while x4 is

the 120–30-km variable-resolution mesh with the entire CONUS domain simulated at 30-km resolution. Cycle-

mean rms errors are also presented in the legend.
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throughout the midtroposphere. Statistics for rms errors

are summarized for zonal wind and height, in addition to

temperature, at three different isobaric levels in Table 1.

They are statistically different between the two meshes

up to 90% significance level in the Student’s t test, ex-

cept for zonal wind.

The effect of IAU on 5-day forecasts is twofold. First,

regardless of meshes, the EnKF analysis error is con-

siderably reduced over tropics, consistent with the sur-

face altimeter verification in the observation space, as

depicted in Fig. 7. Without IAU, the analysis error in

500-hPa temperature, for instance, is increased from

;0.8 to;1.1K in both meshes, leading to day-5 forecast

error as large as 0.1K (not shown). Second, over the

CONUS domain, while the use of IAUdoes not produce

any sizable differences over the coarse uniform mesh,

the forecast error in the variable mesh quickly grows

after 84 h leading to day-5 forecast errors similar to those

from the uniform mesh when the IAU is turned off.

Thus, the suppression of high-frequency oscillations

seems to affect longer forecasts more significantly, over

the variable mesh, in particular.

d. Skillful scales on the variable mesh

Of particular interest in the use of variable-resolution

EnKF analyses is to see if the higher-resolution part of

FIG. 10. Verification of MPAS forecasts from different analyses in terms of temperature at 500 hPa, with respect

to the NCEP FNL analyses, over the (a) CONUS, (b) globe, (c) Southern Hemisphere, and (d) tropics. The rms

errors are computed from 28 May to 25 Jun 2012, twice daily (at 0000 and 1200 UTC), every other day. The error

averaged over 5-day forecasts is shown for each experiment.
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the variable mesh can successfully capture mesoscale

features in the analysis, and if so, what its effective res-

olution would be for the mesoscale applications. To gain

insight into themodel-effective resolution in the analysis

during the cycling experiments, we make spectral ana-

lyses of ensemble analysis increments in surface pres-

sure in both meshes. To compute spectra, we interpolate

the global analysis increments in surface pressure from

their native grids into a rectangular latitude–longitude

mesh at 0.258 3 0.258 resolution. Then the interpolated

field is analyzed over the CONUS domain extending

from 258 to 558N and from 1508 to 608W. For the peri-

odicity in the Fourier transform, the data are first de-

trended to remove the least squares linear trend along

each longitude and tapered with a spatial split-cosine-

bell function. A Fourier transform is then applied to

produce the spectrum. This process is repeated over

each ensemble member for 50 sample cycles during the

period of 1–25 June 2012, twice daily (0000 and

1200 UTC), every day.

Figure 12 represents the power spectra of surface

pressure increments averaged over ensemble members

and cycles. All the spectra are truncated at theminimum

wavelength resolvable on their native MPAS meshes

(i.e., the 2Dxwavelength whereDx is 30 and 120 km in x4

and x1 meshes, respectively). The spectra of increments

in both meshes have almost the same power at the

synoptic scale (.1000km) and produce a similar slope

around their own 6D wavelength (e.g., 180 and 720km

for x4 and x1, respectively). At the smaller scales, how-

ever, the analysis increments in the variable mesh have

substantially more energy in the mesoscale region. We

also checked other variables such as 2-m temperature,

upper-level winds, and temperature, in both analysis

increments and their full analysis fields, and consistently

found the advantage of resolving mesoscale features with

more power at the wavelength ,1000km in the variable

mesh (not shown).

We now focus on precipitation forecasts over the

variable mesh (x4) to examine the skillful scale in me-

soscale simulations from the EnKF analyses over the

CONUSdomain. FollowingRoberts (2008) andRoberts

and Lean (2008), the fractions skill scores (FSS) are

computed over the unstructured mesh to determine the

smallest scale, on average, over which the model has

useful skill. For that, the fraction of occurrences of

specified rainfall accumulations are computed within

different-sized sampling areas (neighborhood cells).

When Dx is a nominal grid spacing in consideration (i.e.,

30 km in the CONUS region), each grid cell is consid-

ered as the radius of 1Dx, and the surrounding neigh-

borhood cells as 2Dx, and so on. In 6-h cycling

experiments, only 6-h accumulated rainfall is considered

for the verification, and 6-hourly accumulations in

NCEP Stage-IV data are used as observations. Once the

4-km resolution observations are projected onto the

FIG. 11. Vertical profile of day-5 temperature forecast error with respect to the NCEP FNL analysis in (a) rms and

(b) bias error over the CONUS domain. Vertically averaged errors are shown in the legend.

TABLE 1. The rms errors of MPAS day-5 forecasts verified

against NCEP FNL analyses computed over the CONUS domain

from 28 May to 25 Jun 2012, twice daily, every other day (making

a total of 30 samples). The errors in temperature, zonal wind, and

height are compared between 120-km uniform (‘‘x1’’) and 120–

30-km variable (‘‘x4’’) meshes at three different isobaric levels.

T (K) U (m s21) Z (m)

x1 x4 x1 x4 x1 x4

250 hPa 2.53 2.31 11.33 11.02 70.20 63.42

500 hPa 2.41 2.15 6.78 6.73 42.11 41.84

850 hPa 2.82 2.67 4.91 4.91 28.24 28.65
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variable mesh over the 30-km resolution area, observa-

tion and model fractions exceeding thresholds are

computed over a range of spatial scales (nDx). In this

investigation, percentile rather than accumulation thresh-

olds are presented to focus on the spatial accuracy of

precipitation forecasts removing the impact of the bias in

rainfall amounts, as in Roberts and Lean (2008).

Figure 13 presents ensemble forecast skills during the

cycling experiment, as a function of horizontal scale in

kilometers, for the 85th, 90th, 95th, and 99th percentile

thresholds. The 85th percentile represents more wide-

spread areas of weak rain and the 99th percentile more

localized and rare events. On average, the thresholds are

equivalent to accumulation thresholds of about 0.5, 1.0,

3.0, and 13mm over this particular summer month. Skill

is lowest at the grid scale (i.e., 30 km)where the fractions

are binary ones or zeros, and then improves with spatial

scale for all four thresholds. In a large domain (typically

with a small wet ratio), forecasts can be considered

skillful if FSS goes above 0.5 (Mittermaier et al. 2013).

Thus, the smallest scale at which the model has useful

skill can be found by the first intercept at the reference

value of 0.5. For example, 6-h MPAS forecast

represents a lower bound of useful scales as 5Dx
(;150km) for the 95th percentile and 14Dx (;420 km)

for the 99th percentile. In 6-h ensemble forecast, FSS

has larger variabilities across members (e.g., thicker

lines) at higher thresholds, as the localized events are

more uncertain. Within the radius of 420km, for ex-

ample, ensemble spread at the 99th percentile is almost

double the ones at the other three percentile thresholds.

FSS is also computed for extended forecasts from the

EnKF mean analysis during cycles–twice daily, every

day for 1–25 June 2012 to make total of 50 samples.

Comparing Figs. 13 and 14a shows that the MPAS

forecast skill quickly gets worse with increasing thresh-

olds in 12-h forecast. For example, the smallest skillful

scale for the 85th percentile is almost the same between

6-h ensemble and 12-h deterministic forecasts, but ex-

pands from 150km (;5Dx) in 6-h forecast to about

210 km (;7Dx) in 12-h forecast at the 95th percentile.

Because of a small sample size for very localized rainfall

events, MPAS cannot make skillful forecasts at 12 h for

the 99th percentile in this 30-km resolution area re-

gardless of horizontal scale.

Figure 14b shows the change of the smallest skillful

scale as a function of forecast lead. The scale increases

with lead time for all three thresholds, as expected.

Because of the sampling error, there are temporal var-

iations in terms of skillful forecast scales, which becomes

more evident with heavier rainfall events specified as

higher percentile thresholds. Also, the slope gets steeper

with higher thresholds, implying that forecasts of more

localized heavy rainfall events lose skill more quickly

with time. Overall, the variable-mesh MPAS simula-

tions from the EnKF analysesmake skillful precipitation

FIG. 13. FSS of 6-h ensemble forecasts from the EnKF analyses

on the variable mesh (x4), as a function of horizontal scale for

different percentile thresholds, over the CONUS domain. For each

percentile 96 ensemble members are drawn on top of each other,

and the horizontal dashed line at FSS 5 0.5 represents the refer-

ence level of skillful forecasts.

FIG. 12. Spectra of ensemble analysis increments in surface

pressure in both the 120-km uniform mesh (‘‘x1.EnKF’’) and the

120–30-km variable mesh (‘‘x4.EnKF’’), averaged over 96-ensemble

members and a total of 50 cycles during 1–25 Jun 2012 (twice daily,

every day) over the CONUS domain.
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forecasts at the scales between 3Dx and 21Dx depending
on the target time and the threshold values.

Figure 15 illustrates the performance of precipitation

forecasts over the two different meshes. For this com-

parison, 5-day forecasts from the coarse uniform mesh

(x1) are first projected onto the variable mesh (x4).

Considering the representative scale of the original

120-km mesh, the FSS is compared within the radius of

600 km (e.g., 5Dx) for three different percentile

thresholds over the CONUS domain. While the vari-

able mesh is skillful for most of the forecast leads ir-

respective of thresholds, the uniform mesh quickly

loses forecast skill with increasing percentile to become

unskillful for heavy rain events (e.g., 95th percentile)

after 2-day forecasts. Consistent with the results for

other fields displayed in the previous subsections, the

variable mesh (x4) outperforms the uniform mesh (x1)

at all three thresholds throughout 5-day forecasts.

5. Summary and discussion

This paper introduces a global ensemble data assimi-

lation system that uses the MPAS forecast model and the

DART EnKF analysis system. The MPAS–DART sys-

tem uses the horizontal and vertical mesh of the MPAS

model and as such it is immediately applicable for

variable-resolution or various grid resolution meshes to

facilitate multiscale global ensemble analysis and fore-

casting. Assimilating the same conventional observa-

tions, satellite winds, and GPS radio occultation data, a

96-member global ensemble system usingMPAS–DART

is cycled over 2 different MPAS meshes, a 120-km

quasi-uniform mesh and a 120–30km variable-resolution

mesh, for a 1-month period.

During the month of cycling, the assimilation system

remains robust and reliable on both the quasi-uniform

and variable-resolution meshes, but the quality of the

short-range forecasts (as measured by the observation–

forecast differences in the assimilation cycle) are not

statistically distinguishable between the two meshes. The

benefits of variable-resolution analyses are manifested in

5-day forecasts for a one-month period. In cold-start

simulations initialized from the FNL analysis, the vari-

able mesh produces better forecasts and slower error

growth than the coarse uniform mesh over the CONUS

domain, showing the advantage of locally enhanced res-

olution in the forecast model. The improvements are

evenmore evident in thewarm-start simulations fromour

own EnKF analyses, where the use of the variable mesh

leads to substantially better forecasts than those using the

coarse uniform mesh. The improvement in day-5 fore-

casts from the EnKF analyses is nearly twice as large as

that realized for the cold-start simulations. This demon-

strates that the variable-mesh assimilation system pro-

vides higher-quality analyses in addition to the benefits of

the higher-resolution forecasts. Meanwhile, forecast er-

rors are statistically indistinguishable between the two

meshes over the Southern Hemisphere, where both

meshes have the same 120-km resolution. This implies

that the variable-mesh assimilation system takes advan-

tage of the localmesh refinements while not deteriorating

forecasts elsewhere.

We have examined how the variable mesh alters the

scales usefully resolved in the analyses and forecasts.

FIG. 14. (a) FSS of MPAS extended forecasts from the EnKF mean analyses as a function of spatial scale at 12-h

forecast and (b) the spatial scale at which forecasts become useful (FSS. 0.5) as a function of forecast leads for the

85th, 90th, and 95th percentile.
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Spectra from surface pressure analysis increments in-

dicate that the EnKF analyses over the variable mesh

can resolve shorter scales than those from the coarse

uniform mesh, having substantially more energy in the

mesoscale range. The spatial scale for sufficiently skillful

precipitation forecasts is also examined in the local re-

finement area over the variable mesh. Computing FSS

directly from the unstructured grids, 6-h ensemble

forecasts during the EnKF cycling exhibit a smallest

skillful scale around 150 km (;5 grid length) for the 95th

percentile [which corresponds to 3mm (6h)21 on aver-

age], increasing to 420 km (;14 grid length) for the 99th

percentile [;13mm (6 h)21]. The evolution with fore-

cast time is also investigated in the deterministic

forecasts from the EnKF ensemble mean analyses.

Generally, forecast skill is lost more rapidly at smaller

scales and for more localized heavy rainfall events.

Comparing to the uniform mesh (regridded from the

original 120-km to the same 30-km resolutions over

the CONUS), the variablemesh configuration consistently

outperforms the coarse uniform mesh configuration in

precipitation forecasts at all thresholds and lead times.

TheseMPAS–DART results are based on the analysis

system that utilizes the native MPAS unstructured

Voronoi C-grid staggered mesh. DART makes use of

barycentric interpolation of MPAS cell-centered scalar

variables, based on the dual (triangular) mesh. Cell-

centered horizontal zonal and meridional velocities are

reconstructed from the MPAS C-grid staggered hori-

zontal velocities, and they are used as the analysis var-

iables in DART. The resulting horizontal velocity

increments are projected back to the cell edges to

complete the analysis. This approach for handling the

horizontal velocity is found to be superior to other

possibilities, and it is consistent with how the model

physics handles them.

We have also implemented incremental analysis up-

dates (IAU) into MPAS–DART, and shown that the

IAU effectively suppresses spurious high-frequency

waves and improves the EnKF analysis, particularly in

the tropics.

With the encouraging results presented here, there are

several areas where development and testing are under

way to further improve the system. First, the current

MPAS global simulations may be limited by the meso-

scale physics suite adopted from the regional WRF

Model. For instance, there are regions with large model

error, such as near the model top. We leave systematic

errors for the future study, and eventually need to im-

prove physics parameterization schemes directly. Ac-

counting for model uncertainty is also important and can

be achieved, in part, through stochastic parameteriza-

tions in ensemble forecasting (Ha et al. 2015). For

FIG. 15. FSS of 5-day MPAS forecasts from the EnKF mean

analyses over 120-km (‘‘x1’’) and 120–30 km (‘‘x4’’) meshes within

the radius of 600 km, computed for the (top) 85th, (middle) 90th,

and (bottom) 95th percentile.
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variable-resolution meshes that reach convection-

permitting resolutions, scale-aware parameterizations

will be necessary. A new convection-permitting physics

suite is now released in MPAS, version 5, along with the

mesoscale_reference suite, and will be tested in the en-

semble cycling context in the near future. From the data

assimilation point of view, the assimilation of satellite ra-

diances is a critical factor for a high-quality global

analysis, especially over the Southern Hemisphere.

There are ongoing efforts on incorporating satellite

radiance observations into the MPAS–DART system

in an efficient way. Finally, more sophisticated strat-

egies for optimized or scale-dependent covariance

localization might be needed for multiscale EnKF

analyses, particularly over the variable mesh with

locally convection-permitting resolution. As of May

2017, the ‘‘Manhattan’’ version of DART is released with

an interface to MPAS-A with full capabilities available

for use by research community, greatly improving the

computational efficiency for large ensemble simula-

tions at high resolutions.
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