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ABSTRACT

Although the equations of motion for a compressible atmosphere accommodate acoustic waves, these

modes typically play an insignificant role in atmospheric processes of physical interest. In numerically in-

tegrating the compressible equations, it is often beneficial to filter these acoustic modes to control acoustic

noise and prevent its artificial growth. Here, a new technique is proposed for filtering the 3D divergence

that may damp acoustic modes more effectively than filters previously implemented in numerical modes

using horizontally explicit vertically implicit (HEVI) and split-explicit time integration schemes. With this

approach, a divergence damping term is added as a final adjustment to the horizontal velocity at the new time

level after completing the vertically implicit portion of the time step. In this manner, the divergence used in

the filter term has exactly the same numerical form as that used in the discrete pressure equation. Analysis of

the dispersion equation for this form of the filter documents its stability characteristics and confirms that it

effectively damps acoustic modes with little artificial influence on the amplitude or propagation of the gravity

wavemodes that are of physical interest. Some specific aspects of the implementation of the filter in theModel

for Prediction Across Scales (MPAS) are discussed, and results are presented to illustrate some of the ben-

eficial aspects of suppressing acoustic noise.

1. Introduction

While acoustic modes are present in the compressible

atmosphere, they typically play an insignificant role in

atmospheric processes of physical interest. This recog-

nition has led to several different approaches in de-

signing the numerics for nonhydrostatic simulation

models. One technique is to remove acoustic modes

from the governing equations by solving a modified

anelastic set of equations, which requires the solution

of a 3D Poisson equation using an implicit solver at each

time step (e.g., Ogura and Phillips 1962;Wilhelmson and

Ogura 1972; Lipps and Hemler 1982; Kurowski et al.

2014). A second approach is to solve the compressible

equations using a semi-implicit scheme, resulting in a

3D Helmholtz equation for pressure that also must be

solved using implicit numerics at each time step (e.g.,

Tapp and White 1976; Tanguay et al. 1990; Staniforth

and Côté 1991). This approach stabilizes the acoustic

modes by essentially retarding their frequencies. A

third alternative numerical procedure treats the com-

pressible equations by solving the terms responsible

for vertical acoustic propagation using semi-implicit

numerics, while solving for the terms accommodating

horizontal acoustic propagation using split-explicit or

horizontally explicit vertically implicit (HEVI) schemes

(e.g., Klemp and Wilhelmson 1978; Klemp et al. 2007;

Lock et al. 2014). This approach avoids the need for

computationally expensive 3D implicit solvers and does

not intermingle higher-frequency acoustic modes with

lower-frequency modes of physical interest. However,

care must be taken with this approach to ensure that

energy does not artificially accumulate in these acous-

tic modes due to initialization or physics imbalances,

nonlinear interactions, or model numerics. In this pa-

per, we focus on techniques to filter acoustic modes

through 3D divergence damping for this latter category

of schemes, in which horizontally propagating acoustic

modes are treated with explicit numerics. HEVI/

split-explicit schemes are widely used in research and

operational atmospheric models, and most of these

models employ 3D divergence damping to control

acoustic noise [e.g., MM5 (Dudhia 1993), COAMPS

(Hodur 1997), ARPS (Xue et al. 2000), WRF (Klemp

et al. 2007), Nonhydrostatic Icosahedral Atmospheric

Model (NICAM; Satoh et al. 2008), LM/COSMOCorresponding author: Dr. Joseph B. Klemp, klemp@ucar.edu
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(Doms and Baldauf 2015), Model for Prediction across

Scales (MPAS; Skamarock et al. 2012), and Icosahedral

Nonhydrostatic GCM (ICON; Zängl et al. 2015)]. We

are particularly interested in the design of acoustic fil-

tering for the split-explicit numerics in MPAS, which

employs a variable-resolution global mesh based on

centroidal Voronoi tessellations.

In an early implementation of split-explicit numerics

for integrating the compressible equations of motion,

Klemp and Wilhelmson (1978) solved the vertically

implicit terms using a centered Crank–Nicolson scheme

that does not create numerical diffusion. Recognizing

the need to filter acoustic modes, Durran and Klemp

(1983) introduced a small forward centering of the ver-

tically implicit numerics and verified that the damping

achieved on the small acoustic time steps had little effect

on the gravity wave modes of interest. This means of

acoustic filtering is not entirely effective, however, as it

does not affect acoustic modes that have little vertical

structure. To more effectively damp acoustic modes

in split-explicit solvers, Skamarock and Klemp (1992,

hereafter SK92) proposed an explicit filter on the full 3D

divergence to augment the filtering of vertical acoustic

modes provided by off-centering the vertically implicit

numerics. Analyzing the linear compressible Boussinesq

equations [see Durran (2010), p. 409], they demon-

strated that the explicit damping of 3D divergence can

provide effective attenuation of acoustic modes with

negligible effect on the gravity wave modes. Acoustic fil-

ters based on the SK92 approach have been implemented

in the horizontal momentum equations in the WRF

Model (Skamarock et al. 2008) and MPAS (Skamarock

et al. 2012) and have proven effective in controlling

acoustic noise.

Gassmann and Herzog (2007, hereafter GH07) eval-

uated the compressible linear 2D acoustic/gravity wave

equations in analyzing the divergence-damping charac-

teristics for the numerics implemented in the split-

explicit German Weather Service Lokal–Modell (LM)

model (see also Gassmann 2005). Their analysis sug-

gested that divergence damping for the compressible

equations should be applied in both the horizontal and

vertical momentum equations to avoid undesirable effects

on the gravity wave modes (i.e., phase errors in the grav-

ity wave frequencies). Therefore, we begin in section 2

by documenting the suitability of employing diver-

gence damping for the fully compressible system only in

the horizontal momentum equations, provided the di-

vergence to be filtered is suitably defined. In recent work

with MPAS, some issues have arisen with regard to

the divergence damping, particularly in applications

on variable-resolution meshes, that have prompted a

redesign of our techniques for horizontal acoustic-mode

filtering. In section 3, we propose a new approach for

horizontal damping of the full divergence in a numeri-

cally consistent manner and document its impact on

both the acoustic and gravity wavemodes in conjunction

with the off-centering employed in the vertically implicit

portion of the solver. For simplicity, the analysis of these

numerical filters will be conducted for HEVI schemes to

avoid the added complication of the split-explicit nu-

merics. In section 4, we discuss how this acoustic filter is

implemented in MPAS and present results from MPAS

simulations in section 5 to illustrate its behavior.

2. Filtering horizontally propagating acoustic
modes

In analyzing divergence damping terms included in

the fully compressible linear equations, GH07 obtained

a dispersion equation that differed from that obtained

by SK92 and suggested that the divergence damping

must be applied in both the horizontal and vertical to

avoid adversely impacting the gravity wavemodes. They

concluded that the discrepancy from SK92 arose be-

cause SK92 analyzed the compressible Boussinesq

equation instead of the fully compressible equations. In

their equations, GH07 applied the divergence damping

terms using a divergence defined asD5= � v. However,

the adiabatic compressible pressure equation (ignoring

horizontal advection), written in the form

›p

›t
1
c2

u
= � ruv5 0, (1)

suggests that D5= � ruv is a more appropriate expres-

sion for the divergence that should be damped in fil-

tering acoustic modes. [Here, c2 5 (cp/cy)RT is the

square of the sound speed.] This is also consistent with

Durran’s (1989) finding that the adiabatic pseudo-

incompressible equation = � r uv5 0 provides a more

accurate representation of gravity waves than other

conventional forms of the anelastic continuity equation.

Here, the overbars refer to vertically varying mean state

profiles.

To confirm the benefit of damping = � ruv to suppress

the acoustic modes, we rederive the linear dispersion

equation for a compressible atmosphere that includes

damping using this representation of the divergence.

Here, we cast the linear equations in terms of flux-form

variables, as described in the appendix of Klemp et al.

(2007), which are comparable to the flux-form prog-

nostic variables used in the WRF Model and in MPAS.

We emphasize, however, that the resulting linear dis-

persion equation is independent of the choice of prog-

nostic variables. In terms of the flux-form variables
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r,U5 ru,W5 rw, andQ5 ru, the 2D linear adiabatic

equations (without advection or rotation), includ-

ing divergence damping terms as proposed by SK92

with the more general expression for divergence, are

given by

U 0
t 1

c2

u
Q0

x 5
g
h

u
D0

x , (2)

W 0
t 1

c2

u

�
Q0

z 2
N2

g
Q0
�
1 gr0 5

g
y

u
D0

z , (3)

r0t 1U 0
x 1W 0

z 5 0, (4)

Q0
t 1D0 5 0, (5)

where

D0 5= � uV0 5 u

�
U 0

x 1W 0
z 1

N2

g
W 0
�
. (6)

We then scale the prognostic variables using

(U 0,W 0,Q0,D0)5
�
r

r
0

�1/2

(U,W, uQ, uD)

to remove their dependence on vertical gradients in the

mean atmosphere. The resulting linear equations for the

scaled variables are

U
t
1 c2Q

x
5 g

h
D

x
, (7)

W
t
1 c2Q

z
2

c2

2H
Q1 gr5 g

y
(D

z
2hD) , (8)

r
t
1U

x
1W

z
2

1

2H
W5 0, (9)

Q
t
1D5 0, (10)

with

D5U
x
1W

z
2hW and h5

1

2H
2

N2

g
. (11)

Here, gh and gy are the dimensional horizontal and

vertical divergence damping coefficients, H5RT/g is

the density scale height, and N is the Brunt–Väisälä
frequency. For an atmosphere with an isothermal mean

state, all of the terms in (7)–(11) have constant

coefficients.

To analyze the behavior of individual Fourier modes,

the variables f5 (U, W, r, Q) are represented as

f(x, z, t)5 f̂ei(kx1lz2vt) , (12)

where (k, l) are the wavenumbers in the (x, z) di-

rections, and v is the frequency. Substituting this

Fourier representation (12) into (7)–(10) yields a

system of four linear homogeneous equations for

which nontrivial solutions require that the 4 3 4 de-

terminant of coefficients vanishes. Multiplying out

this determinant equation produces a quartic equa-

tion for the frequency. Writing this equation in terms

of dimensionless variables, the dispersion equation is

thus given by

V4 1 i(d2L
h
1 z2L

y
)V3 2V2 2 iL

h
«2V1 «2 5 0, (13)

where

V5
v

v
S

, v
S
5 kc, v

G
5

kN

k
, «5

v
G

v
S

, d5
k

k
,

z5
l1 ih

k
, L

h
5

kg
h

c
, L

y
5
kg

y

c
, and

k2 5 k2 1 l2 1
1

4H2
. (14)

We have also derived (13) from the equation sets using

either (p, u) or (p, T) as prognostic variables. In as-

sessing the acoustic and gravity wave frequencies in-

herent in (13), we follow GH07 in evaluating the

coefficient of the V3 term, making the a posteriori ap-

proximation that k2 ’ k2 1 l2 and il; ›/›z. 1/2H, such

that z2 ’ 12 d2. Recognizing « as a small parameter,

solutions to (13) for the acoustic mode frequency vs and

the gravity wave frequency vg accurate to O(«) can be

readily obtained:

v
s

v
S

56

�
12

1

4
[d2L

h
1 (12 d2)L

y
]2
�1/2

2
i

2
[d2L

h
1 (12 d2)L

y
]1O(«2) , (15)

v
g

v
G

5612
i

2
(12 d2)(L

h
2L

y
)«1O(«2) . (16)

At this order of approximation, (15) and (16) confirm

that for gh 5gy, v g is unaffected by the divergence

damping, while the acoustic modes are damped by the

imaginary part of the frequency vsi 52k2gh/2.

The frequency equation (13) is essentially the same as

that derived by SK92 [their Eq. (34)] for a compressible

Boussinesq atmosphere. GH07 derived a frequency

equation for an acoustic mode filter based on divergence

damping following the approach outlined by SK92,

but for the linear compressible equations without mak-

ing the compressible Boussinesq approximation. Ap-

plying the divergence damping using D5= � v, they
obtained the frequency equation [using the same
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notation as in (13) and (14) and the same approxima-

tion in the V3 term]:

V4 1 i[d2L
h
1 (12 d2)L

y
]V3

2V2 1
gl

N2
(L

h
2L

y
)«2V1 «2 5 0: (17)

Although GH07 indicated that the frequency equation

derived by SK92 differed from theirs due to SK92’s

compressible Boussinesq approximation, in comparing

(13) and (17), it is clear that the difference results from

their damping of D5= � v for the compressible atmo-

sphere instead of D5= � r uv. Approximating solutions

to (17) as a series expansion in the small parameter

« yields

v
g

v
G

5611
1

2

�
gl

N2
(L

h
2L

y
)1 i[d2L

h
1 (12 d2)L

y
]

�
«

1O(«2) , (18)

while the solution for v s is the same as (15). This ex-

pression for v g differs somewhat from GH07, as it in-

cludes the O(«) contribution from the V3 term in (17),

and suggests that damping D5= � v may result in a

weak instability of the gravity wave modes.

While applying divergence damping with gh 5 gy

provides robust damping of the acoustic modes, in split-

explicit or HEVI numerical integration schemes, it re-

quires implicit treatment of the divergence damping

term in the vertical momentum equation, which adds

complexity to the numerical finite-difference equations.

Implementing divergence damping onD5= � ruv in the
horizontal only (gy 5 0) has only O(«) effect on the

gravity wave frequencies (16) and provides damping of

the acoustic modes (15) given by vsi 52k2gh/2, which is

independent of the vertical wavenumber and is in-

creasingly effective at higher wavenumbers on the hor-

izontal mesh. As demonstrated by SK92, employing an

acoustic filter as in (7) is equivalent to forming a hori-

zontal diffusion equation for the divergence, with the

amount of damping per time regulated by the di-

mensionless parameter ah 5ghDt/Dx
2.

3. Acoustic filtering in the numerical finite-
difference equations

In constructing a divergence damping term in the

horizontal momentum equation, it is beneficial to have a

consistent numerical representation of the divergence,

such that the divergence in the damping term in (7) has

the same numerical form as the divergence in the Q
equation (10). In HEVI or split-explicit numerical

schemes, the horizontal derivatives are typically evalu-

ated using forward–backward differencing, such that the

pressure gradient terms in the horizontal momentum

equations are evaluated at the beginning of each time

step, while the horizontal gradients in the equations for

the thermodynamic variables are evaluated at the new

time level, after the horizontal velocities have been ad-

vanced in time. The vertical derivatives are then aver-

aged over the time step and computed using implicit

numerics. The vertical derivative in the divergenceD in

(10) thus contains implicit numerics, which complicates

specifying a numerical representation of D in the

divergence-damping term in (7) that is consistent with

the numerical form of D in (10).

Implementation of an acoustic filter in the WRF

Model and initially in MPAS is based on (7), but in a

modified form to achieve consistency and avoid addi-

tional computation of the divergence term. Recognizing

that the full divergence is essentially proportional to the

negative time tendency ofQ as indicated in (10), (7) can

be rewritten as

U
t
1 c2[Qt 1a

Q
(Qt 2Qt2Dt)]

x
5 0 (19)

(Klemp et al. 2007; Skamarock et al. 2008, 2012). In this

form, it is apparent that the divergence damping is

achieved by centering the horizontal pressure gradient

slightly forward from time t in the forward differencing

for the horizontal gradient terms. In comparing (19)

with the form of the divergence damping expressed

in (7),

a
Q
5

g
h

c2Dt
5

a
h

l2
x

, (20)

where lx 5 cDt/Dx is the horizontal acoustic Courant

number. In the time-split numerics, the horizontal

pressure gradient terms are evaluated on the small

acoustic time steps, and thus the acoustic filter in (19) is

not applied in the first small time step since Qt2Dt is not

yet available for that set of small steps. With WRF and

MPAS typically running 4–6 small time steps per large

step, this technique has worked well in a wide variety of

applications.

More recent adaptations of MPAS, however, have

exposed deficiencies in employing divergence damping

as expressed in (19). The current version of MPAS has

the capability to run a time step for the dynamics that is

smaller than that for the rest of the model system (scalar

transport, physics, etc.). In this configuration, there

might typically be two acoustic steps per dynamic time

step and three dynamics steps per scalar/physics step.

Using third-order Runge–Kutta for the dynamics time
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step, a total of four small time steps are then computed

per dynamics time step, but only one of them (the sec-

ond time step in the third Runge–Kutta stage) has Qt2Dt

conveniently available for use in the filter, as repre-

sented in (19). The acoustic damping using (19) in

MPAS also becomes more problematic in variable mesh

applications. Since the time step is limited by the grid

spacing in the fine-mesh region, the acoustic Courant

number can be significantly smaller in the coarse-mesh

region, which would require significantly greater for-

ward centering of the horizontal pressure gradient in

(19) [i.e. a larger value of aQ in (20)] to achieve the same

damping for a given ah.

To achieve consistency between the numerical form of

the divergence in the acoustic filter and in the Q equa-

tion, we include the divergence damping term as a final

adjustment step in the numerical integration, such that

the time integrations of the linear equations (7)–(11) are

given by

U*t1Dt 5Ut 2 c2DtQt
x , (21)

Wt1Dt 5Wt 2 c2Dt

�
Q

t

z 2
1

2H
Q

t
1

g

c2
rt
�
, (22)

rt1Dt 5 rt 2Dt

�
U*t1Dt

x 1W
t

z 2
1

2H
W

t
�
, (23)

Qt1Dt 5Qt 2Dt(U*t1Dt
x 1W

t

z 2hW
t
) , (24)

Ut1Dt 5U*t1Dt 1 g
h
Dt(U*t1Dt

x 1W
t

z 2hW
t
)
x
. (25)

Here, the time averaging is off-centered according to

f
t
5

11s

2
ft1Dt 1

12s

2
ft , (26)

where f represents any of the prognostic variables in

(21)–(25).

Notice that combining (21) and (25) recovers the same

equation as (7), and now the divergence term has the

same numerical form as the divergence in (24). Thus,

one can also think of this adjustment as being the first

step in the next acoustic time step, applied in a manner

that maintains a consistent finite difference form for the

divergence. We will refer to this form of the divergence

damping as the time-adjusted acoustic filter. Adding the

divergence damping as an adjustment at the end of the

time step also has the computational advantage that, rather

than constructing the full divergence for use in (25), it can

be readily recovered using D52Qt from (24) after solv-

ing the vertically implicit equations (22)–(24).

To assess the damping characteristics of individual

Fourier modes for this time-adjusted acoustic filter in

the above equations (21)–(25), the prognostic variables

f5 (U, U*, r, W, Q) are represented as

f(x, z)5A(k, l)mf̂ ei(kx1lz) , (27)

where A(k, l) is the amplification coefficient, and m is

the number of time steps. In this manner, 12 jA(k, l)j
represents the fractional reduction in the amplitude of

each Fourier mode per time step. Substituting (27)

into (21)–(25) now produces a system of five linear

homogeneous equations. Assuming C-grid staggering

and representing spatial derivatives with second-

order centered finite differences, solving the 5 3 5

determinant of coefficients set equal to zero yields

an amplitude equation expressed as a fourth-order

polynomial for A:

[a
h
(A2 1)1 l2

xA][4(A2 1)2 1b2(s1A1s2)2]S2

1(A2 1)4 1

�
l2
z 1 j

b2

4

�
(A2 1)2(s1A1s2)2 5 0,

(28)

where

l
x
5

cDt

Dx
, S5 sin

kDx

2
, l

z
5

cDt

Dz
sin

lDz

2
,

b5NDt cos
lDz

2
, and s6 5 16s . (29)

Here, the coefficient j represents the influence of the

particular compressibility assumption. For the full linear

compressible equations as represented by (21)–(25),

j5 c2p/(4Rcy) ’ 1:2 for an isothermal atmosphere. Deriving

the corresponding amplitude equation for the compressible

Boussinesq equations, as defined by Durran (2010) and

as analyzed by SK92, yields the same equation as (28),

except that j5 1.

We consider first the behavior of pure acoustic modes

without the presence of gravity waves (b5 0) and

without off-centering of the vertically implicit time av-

eraging (s5 0). For this situation, (28) becomes a qua-

dratic equation for A representing the two acoustic

modes. The amplification factors jAj for the larger of the
two acoustic roots are plotted in Fig. 1 as a function of

the horizontal Courant number lx for lz 5 1, 3, and 10.

Here, we have also set S5 1 (corresponding to the 2Dx
mode) because the highest horizontal wavenumbers

exert the strongest constraint on the stability limits for a

given lx. Notice that for a fixed lz, there is a range of lx

for which the jAj is independent of lx (and is the same

for both roots). Within this range, the solution to (28)

has the simple form

jAj2 5 12 4
a
h
S2

11 l2
z

. (30)
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The thin dashed lines in Fig. 1 mark the boundary of the

regions in which (30) applies and both roots have the

same absolute value.

Further analysis of (28) reveals that for s5 0, this

filter is stable (i.e., jAj, 1) for ah , (12 l2
x)/2, and this

result is independent of the vertical Courant number lz.

[For 3D domains, the stability limit for this divergence

damping would be ah , (12 l2
x 2l2

y)/2.] Furthermore,

for lz . 0, the damping rate for a given horizontal mode

S is independent of the horizontal Courant number lx

over most of the range for which a given value of ah is

stable. As lz increases, the damping provided by this

filter decreases; for lz as large as 10 (Fig. 1c), the filter

provides essentially no damping of the acoustic modes.

This behavior results from the vertically implicit nu-

merics in the HEVI scheme and differs from that ob-

tained for the analytic frequency equation, where the

acoustic damping rate (15) was found to be independent

of the vertical wavenumber. This is not problematic,

however, since off-centering in the vertically implicit

time step is expected to effectively filter acoustic modes

for large lz.

As suggested by the amplification factor (30), for

s5 0, the dependence of the damping rate on the hor-

izontal scale for this divergence filter is approximately

proportional to S2, which is to be expected for a second-

order diffusion filter. This behavior is illustrated in Fig. 2

for lz 5 1 as in Fig. 1a, except now displaying jAj as a
function of the horizontal wavenumber for lx 5 0:5. For

this value of lx, jAj. 1 at the higher wavenumbers for

ah 5 0:4 and 0.5, which is consistent with the above-

mentioned stability limit of ah , (12 l2
x)/25 0:375.

The damping characteristics of the full acoustic/

gravity wave amplification equation (28) are illustrated

in Fig. 3 for lx 5 0:5, S5 1, and b5 0:25, including off-

centering in the vertically implicit numerics and the

time-adjusted divergence damping term, applied both

individually and together. In all three of these cases,

damping of the gravity wave modes is very weak.

With increasing b, the gravity wave damping increases

FIG. 2. Amplification factor jAj for acoustic modes for N5 0 for

the time-adjusted acoustic filter in the HEVI scheme as repre-

sented in (21)–(25) as a function of horizontal wavenumber for

lz 5 1, lx 5 0:5, and ah 5 0:12 0:5.

FIG. 1. Amplification factors jAj for acoustic modes forN5 0 for

the time-adjusted acoustic filter in the HEVI scheme as repre-

sented in (21)–(25) as a function of lx for S5 1 and ah 5 0:12 0:5

for (a) lz 5 1, (b) lz 5 3, and (c) lz 5 10.
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somewhat at small values of lz. However, for HEVI and

split-explicit numerics, increasing b significantly implies

larger values of Dt (appropriate for coarser horizontal

resolution), which also implies larger values of lz.

For the acoustic modes, the damping effects produced

by the implicit vertical off-centering and the explicit

horizontal divergence damping are quite different. With

only the vertical off-centering, there is little acoustic

damping as the vertical wavenumber approaches zero

(lz / 0), but the damping increases rapidly with increas-

ing lz. With only the horizontal divergence damping

term, the acoustic damping behavior is reversed: the

damping is a maximum at small lz and decreases with

increasing lz, as indicated by (30). With combined

use of the vertical off-centering and the horizontal

divergence damping, the damping effects are essen-

tially additive and can provide significant acoustic

damping for all lz. Since these acoustic modes are

only weakly influenced by the atmospheric stability,

the solution to (28) for b5 0, but including the ver-

tical off-centering,

jAj2 5 12
4(a

h
S2 1sl2

z)

11 (11s)2l2
z

(31)

provides an accurate representation of the acoustic

mode damping profiles shown in Fig. 3.

We note that vertically off-centering the implicit

representation of the vertical pressure gradient in (22)

can also be expressed in terms of the divergence as

Q
t

z 5

"
1

2
(Qt1Dt 1Qt)1

sDt

2

 
Qt1Dt 2Qt

Dt

!#
z

’ 1

2
(Qt1Dt 1Qt)

z
2
sDt

2
D

z
. (32)

Thus, this vertical off-centering is essentially equivalent

to explicitly including a vertical divergence damping

term in the vertical momentum equation, as in (3) or (8),

with gy 5 c2Dts/2.
The real part of the gravity wave frequency vgr is

physically important and therefore must not be signifi-

cantly altered by an acoustic-mode filter. Applying the

acoustic filter as an adjustment at the end of the time step

as represented in (21)–(25) satisfies this requirement, as

illustrated in Fig. 4, which displays the gravity wave fre-

quency vgr extracted from the gravity wave roots of (28)

for lx 5 0:5, S5 1, b5 0:25, and s5 0 over a range

of filter coefficients ah 5 0:1, 0:2, and 0:3. Here, vgr

is computed using the relation vgrDt5 sin21(Ai/jAj),
where Ai is the (positive) imaginary part of the

gravity wave roots in (28) and is normalized in Fig. 4

by the gravity wave frequency v 0 with no filter

(ah 5 0).

FIG. 3. Amplification factors jAj for acoustic and gravity wave

modes from (28) for lx 5 0:5, S5 1, and b5 0:25 for acoustic fil-

tering with only off-centering in the vertically implicit numerics

(ah 5 0, s5 0:2), with only the time-adjusted divergence damping

(ah 5 0:1, s5 0), and with both vertical off-centering and di-

vergence damping (ah 5 0:1, s5 0:2).

FIG. 4. Normalized gravity wave frequencies for the divergence-

damping acoustic mode filter in a HEVI integration scheme with

the damping term applied either at the beginning of the time step or

as an adjustment at the end of the time step for lx 5 0:5, S5 1,

b5 0:25, s5 0, and ah 5 0:1, 0:2, 0:3. Asymptotic values for large

lz from (34) are indicated to the right of the figure.
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In applying the acoustic filter on every small time step,

it is tempting to implement the filter as expressed in (7),

with the divergence constructed using Dt at the begin-

ning of each acoustic time step. However, with this

representation, the divergencewould not be numerically

the same as the finite difference form of the divergence

term in the Q equation (10) and therefore might not be

effective in damping only the acoustic modes. To better

understand the deficiencies of this approach, we also

evaluated the dispersion equation for this filter [i.e.,

adding a term ghD
t
x to the rhs of (21) and removing the

adjustment step (25)]. In this case, the dispersion

equation is as given by (28), except that it includes an

additional term:

24a
h
S2l2

z(A2 1)2s2(s1A1s2) . (33)

The damping characteristics for this form of the filter

appear to be similar to those for the time-adjusted filter

behavior shown in Figs. 1–3; the linear stability con-

straints are essentially the same, and the gravity wave

modes are weakly damped (not shown). However, there

is a significant difference in the influence of the acoustic

filter on the real part of the gravity wave frequency vgr.

This is clearly evident in Fig. 4, which also displays vgr

when the acoustic filter is applied at the beginning of

the time step (using Dt). With increasing ah, the gravity

wave frequency vgr departs increasingly from the cor-

rect value (v0), which corrupts the integrity of these

physically important modes. For large values of lz, the

asymptotic value of vgr is readily obtained from (28) 1 (33).

Recognizing that vgr becomes O(l21
z ) for large lz, let-

ting A5 12 ivgrDt in (28)1 (33) and retaining only the

O(1) terms leads to

v
gr

v
0

5 (12 2a
h
S2)21/2 , (34)

which agrees closely with the limit of the values plotted

in Fig. 4 as lz /‘. Given the desire to damp acoustic

modes with minimal effect on the gravity waves, this

form for the acoustic filter is not recommended. In

practice, implementing the acoustic filter in this manner

in the MPAS model produced inconsistent behavior in

suppressing small-scale noise.

4. Implementation of the acoustic filter in MPAS

In MPAS, the dynamical equations are written in

flux form in a height-based terrain-following verti-

cal coordinate (Skamarock et al. 2012) and solve a

prognostic equation for Qm 5 rdum instead of a pres-

sure equation, where rd is the density of dry air, and

um 5 [11 (Ry/Rd)qy]u, such that p5 p0(RdQm/p0)
g with

g5 cp/cy. The dynamical equations in MPAS are solved

using a split-explicit time integration as described by

Klemp et al. (2007), in which vertically propagating

acoustic/gravity wave modes are treated using implicit

numerics, and horizontally propagating modes are solved

using explicit differencing, as indicated in the simplified

linear equations (21)–(25) analyzed in the previous section.

With this approach, the Qm equation that is advanced in

time on the acoustic time steps becomes

Qt1Dt
m 5Qt

m2Dtf[=
h
� (V*t1Dt

h utm)1 ›
z
(V

t
utm)]2Ft

Qm
g ,

(35)

where the notation corresponds to that used in

Klemp et al. (2007). The divergence as represented by

D5= � rdumv is contained within the square brackets in

(35) and evaluated on the acoustic time steps (Dt), while
Ft
Qm

contains the physics forcing and other terms that

are updated on the large time steps (denoted by t). For

diabatic applications, Durran (1989) proposed a pseudo-

incompressible continuity equation = � r uv5H/(cpp) as

an improvement to the traditional anelastic continuity

equation, whereH is the diabatic heating per unit volume.

This diabatic heating term is embedded within Ft
Qm

, and

thus, applying the divergence damping filter to the terms

within the large curly brackets in (35) may improve the

numerical consistency in divergence damping for diabatic

applications. Applying the acoustic filter as a final ad-

justment for the flux-form horizontal velocity Vh 5 rdvh
as in (25), this is easily accommodated without the need

to calculate the full 3D divergence. Rather, the time

derivative of Qm is used immediately after advancing

(35), such that the divergence damping is added as a final

adjustment step according to

Vt1Dt
h 5V*t1Dt

h 2
a
d

utm
d2=

h
�
 
Qt1Dt

m 2Qt
m

Dt

!
, (36)

where on the MPAS mesh, d represents the distance

between cell centers adjacent to the edge on which the

horizontal velocity is located and ad 5ghDt/d
2. In this

form, the divergence is damped toward the diabatic

heating rate (instead of zero), which is consistent with

pseudoincompressible balance suggested byDurran (1989).

In applying a dimensionless acoustic filter coefficient

ad as in (36), a further adjustment is needed in config-

uring MPAS for variable-resolution meshes. For these

applications, the spatially uniform time steps are

specified to maintain stability in the regions of highest

resolution. Consequently, the time steps in the coarser-

resolution regions will be significantly smaller than

would be specified in a uniform mesh having that same
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coarse resolution. The uniform time step for a variable-

resolution mesh does not necessarily result in a large

computational penalty since the majority of grid cells

are often in the higher-resolution regions. However, it is

desirable to scale the filter coefficients so that in the

coarse-resolution regions of the mesh, they have the

same influence on the flow as they would have in a

uniform coarse-resolution run using a larger time step.

To achieve this scaling, the dimensionless coefficient

ad 5 ghDt/d
2
f is defined based on the mesh spacing in the

fine-mesh region df and is then locally adjusted by the

factor df /d, where d is the local cell size. This is readily

accommodated in (36) by just replacing d2 with ddf .

5. Acoustic filter in MPAS global forecasts

In real-data applications of the global MPAS over a

wide range of scales, acoustic filtering plays a crucial role

not only in the numerical efficiency and stability, but

also in the quality of the analysis and forecast. Fast-

moving, small-scale acoustic modes can interact with

uncertainties in the initial state to accelerate the error

growth and ultimately limit the predictability of the

simulated flow (Hohenegger and Schär 2007). Acoustic

noise can be particularly detrimental in conjunction with

ensemble data assimilation, as high-frequency noise in

the background forecast can be significantly amplified

by sampling error in the cycled ensemble analysis. Un-

less it is effectively suppressed during the model in-

tegration, such spurious noise remaining in the forecast

can lead to a noisy analysis, which in turn can deterio-

rate the quality and the numerical stability of the ensu-

ing forecast. The noise can continuously accumulate

through cycles and speed up the forecast error growth at

each cycle (and may eventually cause the forecast to

crash). As Ha et al. (2017) demonstrated, without the

effective noise filtering, even if the ensemble analysis

was produced in a variable-resolution MPAS mesh,

the forecast error grew quickly to counteract the benefit

of the local refinement (e.g., forecasting in a high-

resolution mesh).

The surface pressure tendency reflects the vertically

integrated mass divergence and is known to be espe-

cially sensitive to the presence of noise (McPherson

et al. 1979). Previous studies of initialization schemes

have evaluated the time evolution of surface pressure

or the mean absolute tendency of surface pressure

to measure the global noise levels (Williamson and

Temperton 1981; Temperton and Williamson 1981;

Lynch andHuang 1992; Huang and Lynch 1993). To test

the behavior of the new acoustic filtering technique in

MPAS as described in the previous section, global

MPAS forecasts are initialized with the 18 3 18 NCEP

Final (FNL) global analyses at 0000:00 UTC 15 June

2012 on three different meshes: 120- and 30-km quasi-

uniform meshes and a 120–30-km variable-resolution

mesh in which a 120-km global resolution is refined to a

30-km mesh spacing over the contiguous United States

(CONUS). All the experiments have 55 vertical levels

with the model top at 30 km, and the model integration

time steps are 720, 180, and 180 s for the simulations on

120-, 120–30-, and 30-km meshes, respectively. For

comparison, simulations were also conducted with the

previous version of the acoustic filter in MPAS, de-

scribed at the beginning of section 3.

To compare the high-frequency noise resulting from a

cold-start model initialization, Fig. 5 shows the area-

weighted global mean absolute tendency of surface

pressure (Pa s21) at every time step for 3-day forecasts

using the two acoustic-filtering methods. In simulations

labeled with ‘‘old’’ in Fig. 5, the divergence damping is

applied by forward extrapolating the pressure gradient

in the horizontal momentum equation as in (19), while

the runs with the new acoustic filter applied as a final

adjustment step as in (36) are simply shown by the

mesh names. Both methods use the same filter coeffi-

cient ad 5aQ 5 0:1, but the old approach does not con-

tain the scaling factor for variable mesh spacing. In all

FIG. 5. Time series of the area-weighted global average of the

absolute value of surface pressure tendency (Pa s21). Each color

represents anMPAS 3-day global forecast on different meshes using

two different acoustic filtering methods, initialized with the same

FNL analyses valid at 0000:00 UTC 15 Jun 2012. The 120–30-km

variable-resolution mesh is configured with the local 30-km re-

finement over the CONUS domain. The divergence damping is

applied using the old method (dotted lines) and the new method

(solid lines) as explained in the text.
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experiments, the initial noise is large due to mass/wind

imbalances in the initialization, but decreases through

dynamical adjustment and damping during the model

integration. The new filtering quickly suppresses noise

over the first few time steps and then maintains a steady

level after about 12 h into the forecast. These residual

amplitudes should represent the tendencies produced by

nonacoustic modes of physical interest. In contrast, with

the old method, the initial noise decreases much more

slowly (especially for the 30-km uniform and 120–30-km

variable meshes) and asymptotes at higher levels. This

suggests that there may be somewhat higher ongoing

levels of acoustic noise in simulations with the old

method. At the 72-h forecast, the asymptotes in the new

filter are around 0.012Pa s21 for all three meshes, while

the residual surface pressure tendency with the old

technique is 50%–100%higher. Notice also that with the

new filtering approach, the overall asymptotic ampli-

tude of the surface pressure tendency is no longer sen-

sitive to the mesh configuration, indicating that the filter

is effective for variable-resolution meshes, regardless of

the mesh resolution.

The new acoustic filter has been further tested on a

much larger number of cases by running 120-km mesh

MPAS forecasts initialized at 0000 and 1200 UTC on

the first day of each month every month for 5 years

(120 cases). For these cases, the average amplitude of

the surface pressure tendency for the 6-h forecasts is

found to be about 0.015Pas21 with little variance across

cases. This asymptotic value for the MPAS forecasts is

comparable to the ones presented in Lynch and Huang

(1992) in their digital filter initialization (DFI) study. By

applying a digital filter in the High-Resolution Limited-

Area Model (HIRLAM) simulations at half-degree

resolution, they obtained asymptotic values of mean

absolute surface pressure tendency of ;0.01Pa s21 in a

6-h forecast. Note that no initialization schemes such as

DFI are applied in our MPAS runs to further reduce the

noise caused by initial dynamical imbalances.

Figure 6 illustrates the horizontal distribution of the

surface pressure tendency at three different forecast

lead times for the 30-km uniform mesh using the old

filtering technique. With the old acoustic filtering, spu-

rious small-scale noise gradually decreases with time,

but a significant amount still remains everywhere in

the 6-h forecast. One interesting aspect of this case is the

ring of large pressure tendencies emanating from the

vicinity of the southern Philippine Sea. This disturbance

is caused by the presence of TyphoonGuchol, which had

category 2 intensity around the initialization time, but

was poorly resolved in the 18 NCEP FNL analysis. The

acoustic character of these high-frequency waves is con-

firmed by the radial expansion of the disturbance ring,

with an estimated velocity greater than 305ms21. A sec-

ond, weaker disturbance ring is also visible in Fig. 6a,

centered off the southwest coast of Mexico. This acoustic

noise is caused by Hurricane Carlotta, which was a cate-

gory 2 storm around this time. These kinds of initial

dynamic imbalances are a natural consequence of initial-

izing a model forecast from a coarse-resolution analysis.

On the other hand, the new acoustic filtering method

efficiently eliminates such high-frequency acoustic modes,

as illustrated by the significantly reduced noise levels

at 2 h shown in Fig. 7. (Comparable plots at 4 and 6 h

are not shown, as the noise levels at 2 h are already so

much lower than those obtained with the old filtering

approach at those later times.) Because mesoscale

analysis/forecast cycling typically runs at the frequency

FIG. 6. Horizontal distribution of surface pressure tendency

(Pa s21) in the old filtering approach for the 30-km uniform mesh

(e.g., ‘‘30 km_old’’) at (a) 2-, (b) 4-, and (c) 6-h forecast times,

starting from the initialization time at 0000:00 UTC 15 Jun 2012.
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of 6h (or shorter), the noise remaining in the 6-h fore-

cast can be closely associated with the forecast reliability

and skill throughout the cycles. Therefore, the efficient

suppression of high-frequency oscillations is particularly

important at such short forecast lead times in mesoscale

applications.

Figure 8 depicts vertical velocity (m s21) at the 6-h

forecast time in a vertical cross section over the

Himalayas along the 308N latitude line, as marked in

Figs. 6 and 7. In comparing the two filtering methods, it

is evident that vertical velocity perturbations are sig-

nificantly smaller with the new approach (Fig. 8b), with

the maximum amplitudes reduced by a factor of 2–3.

Evaluating the time evolution of these perturbations

(not shown), two main features are found: (i) the stronger

upward motions (in orange) are triggered over the high

topography around 5h into the forecast, about the time the

acoustic waves originating from the tropical storm traverse

this high terrain area, and (ii) the waves appear to be quasi

stationary, oscillating slowly over the next 6h with maxi-

mumamplitudes in the range of 1–3ms21. Thus, it appears

that acoustic noise caused by dynamical imbalances in the

model initialization is artificially amplifying atmospheric

waves that would be of physical interest in this real-data

forecast. With the new acoustic filter (Fig. 8b), the excita-

tion of perturbations over the Himalayas is much weaker,

with the maximum vertical velocities remaining below

0.5ms21 over the first 12h.

It should be also mentioned that when the acoustic

filter is turned off altogether, the rapid growth of in-

stabilities from the initial imbalances causes the model

simulation to blow up in just under a 5-h integration

time. Uncontrolled small-amplitude acoustic waves im-

posed on the initial conditions are quickly excited while

propagating throughout the entire atmosphere and

nonlinearly interacting with gravity (and inertia-gravity)

waves to reach amplitudes that exceed the numerical

stability limit.

6. Summary

In filtering acoustic modes by damping the full 3D

divergence, the characteristics of the filter will depend

FIG. 7. As in Fig. 6a, but for the new acoustic filtering method with

the 30-km mesh at 2 h.

FIG. 8. Cross sections of vertical velocity (m s21) at 6 h along the

308N line marked in Figs. 6 and 7 in the 30-km uniform mesh

simulations with (a) old and (b) new acoustic filtering. Minimum

and maximum values are shown within brackets in the upper-right

corner. Contours range from 21.15 to 1.15m s21 at 0.1m s21 in-

terval. Downward motions are contoured in dashed lines.
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on how the divergence is defined. For the adiabatic

compressible atmosphere, based on the form of the

pressure equation as expressed in (1), we have found

that the expression for divergence that is most specific to

the acoustic modes is given by D5= � ru v. This form is

also consistent with the pseudoincompressible approxi-

mation = � r uv5H/(cpp) proposed by Durran (1989)

as an improvement to the traditional anelastic approx-

imation. As we have demonstrated, defining the 3D di-

vergence in this manner, applying divergence damping

only in the horizontal avoids adverse effects on

gravity waves.

In numerically computing the horizontal divergence

damping terms, we find that it is important that the nu-

merical representation of the divergence used in the

damping terms is numerically the same as the numer-

ical form of the divergence contained in the Q5 ru

(or pressure) equation. We achieve this consistency by

employing divergence damping as a final adjustment to

the horizontal momentum equations after the divergence

has been evaluated in the Q equation. Using the time

tendency of Q to represent the divergence in this adjust-

ment step, as indicated in (36), avoids redundant calcu-

lation of the 3D divergence. It also includes the diabatic

effects Ft
Qm

contained in the Q equation (35), which is

consistent with Durran’s (1989) pseudoincompressible

approximation that includes diabatic heating.

As illustrated by the real-data MPAS simulations in

section 5, the model forecasts at early times may be se-

verely contaminated by high-frequency oscillations as a

result of dynamic imbalances in the initial conditions,

which are typically interpolated from coarse-resolution

analyses in cold-start simulations. With the acoustic

filter applied as a final adjustment in the acoustic time

step as indicated in (36), this high-frequency noise is

rapidly attenuated and asymptotes to low residual

values that do not appear to be sensitive to the mesh

configuration. With the old acoustic filter, applied as in

WRF based on (19), this acoustic noise is damped out

much more slowly and asymptotes to higher values that

are more sensitive to the specific mesh configuration.

It is not unexpected that the horizontal divergence

damping technique used in the WRF Model is not suf-

ficient to control acoustic noise inMPAS. As mentioned

above, in the split-explicit numerics, the horizontal filter

(19) is only applied after the first acoustic time step,

which limits its application in the current configuration

of MPAS that employs only two acoustic steps per

dynamic time step. In addition, the WRF Model is less

dependent on a 3D divergence filter since it also con-

tains an external mode filter, as described by Skamarock

et al. (2008), that effectively damps external modes that

have large vertical wavelength. These external modes

can be excited in theWRFModel as a result of its pressure-

based sigma coordinate used in conjunction with a con-

stant pressure boundary condition along the top of the

model domain. The global MPAS uses a terrain-following

height coordinate with a rigid-lid upper boundary, which

does not support external modes, so this additional filter is

not present in the MPAS numerics.
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