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ABSTRACT

In numerically integrating the equations of motion in terrain-following coordinates, care must be taken in
treating the metric terms that arise due to the sloping coordinate surfaces. In particular, metric terms that appear
in the advection and pressure-gradient operators should be represented in a manner such that they exactly cancel
when transformed back to Cartesian coordinates. Noncancellation of these terms can lead to spurious forcing
at small scales on the numerical grid. This effect is demonstrated for a mountain wave flow problem through
analytic solutions to the linear finite-difference equations. Further confirmation is provided through numerical
simulations with a two-dimensional prototype version of the Weather Research and Forecasting (WRF) model,
and with the Canadian Mesoscale Compressible Community (MC2) model.

1. Introduction

Terrain-following coordinates have a long history of
use in atmospheric simulation models, being first intro-
duced in pressure coordinate models by Phillips (1957).
Over the years, researchers have recognized that in-
creased truncation errors may arise in computing the
horizontal pressure-gradient force in terrain-following
coordinates, particularly in the presence of steep terrain
(cf. Janjic 1977; Mahrer 1984; Dempsey and Davis
1998).

Recently Schär et al. (2002) have proposed a gen-
eralization of the traditional terrain transformation in
height coordinates (Gal-Chen and Sommerville 1975)
that gradually smoothes out small-scale structure in the
terrain-following coordinate surfaces with increasing
height above the surface. This nonlocal transformation
appears to have good potential for reducing the adverse
influence of steep and small-scale terrain features in
numerical solutions with terrain-following coordinates.
In evaluating this nonlocal transformation, Schär et al.
conducted nonhydrostatic mountain wave simulations
for flow over a mountain profile containing significant
small-scale structure. Using the traditional local terrain
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transform in the Canadian semi-Lagrangian Mesoscale
Compressible Community (MC2) model, they encoun-
tered significant distortion of the steady mountain-wave
structure (cf. their Fig. 15a), which was effectively re-
moved in simulations with their generalized coordinate
transform. This distortion can also arise in Eulerian
models; using the publicly available version of the
Weather Research and Forecasting (WRF) prototype
model (available online at wrf-model.org) we found that
this distortion would either appear or not appear, de-
pending on the order of accuracy used in computing the
advection terms. In further analysis of these results, we
have found that for both the semi-Lagrangian and Eu-
lerian codes, the distortion arises when the metric terms
in the coordinate transformation are computed using nu-
merics that are not consistent with the numerical
schemes used for other terms in the equations, and that
the problem can be remedied by suitably altering these
numerics.

To understand this behavior, we investigate the nature
of truncation errors in simulating flow over terrain at
nonhydrostatic scales, and find that these errors may be
significant unless the horizontal derivatives are com-
puted in a consistent manner in terrain-following co-
ordinates, such that the portions of mean fields that vary
only in z cancel numerically in the finite-difference
equations. The metric terms contained in the horizontal
derivatives are present in the linear system of equations
in terrain-following coordinates and thus may introduce
errors even for small-amplitude terrain and weakly
sloped coordinate surfaces. Analysis of the linear
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steady-state finite-difference equations for mountain
wave flow reveals that inconsistent differencing of the
metric terms produces inhomogeneous terms in the lin-
ear wave equation. The particular solutions resulting
from these terms produce artificial contributions to the
wave solution that may be particularly significant for
terrain features that have horizontal length scales similar
to the Scorer parameter (i.e., 2pU/N).

To document this behavior, we derive the steady-state
solution for the linear finite-difference equations in sec-
tion 2, and present in section 3 examples that illustrate
the truncation errors that can arise when the appropriate
metric terms do not cancel numerically. In section 4,
we show corresponding solutions using a nonlinear non-
hydrostatic Eulerian model to verify that the linear an-
alytic results are confirmed in the full numerical model
simulations. In section 5, we discuss how the magnitude
and appearance of distortions produced by an imbalance
in the metric terms depend on the horizontal scale of
the terrain. As mentioned above, these truncation errors
can also arise in a semi-Lagrangian model; in section
6 we analyze how they occur and discuss how they can
be avoided. Summary remarks follow in section 7.

2. Linear analytic mountain-wave solution

The need for consistency in the differencing of the
metric terms in terrain-following coordinates can be
demonstrated in the context of the linear system of equa-
tions. To this end, we will consider solutions to the linear
steady-state Boussinesq equations expressed in the Gal-
Chen and Sommerville (1975) terrain-following coor-
dinate:

z 2 h
z 5 z , (1)tz 2 ht

where h(x) represents the terrain contour and zt is the
height of the top of the domain.

For this analysis, we will include the capability to
reduce the errors in the horizontal pressure-gradient
term by removing a reference pressure profile pref(z)
from the total pressure [defined in terms of a normalized
Exner function p 5 cpu0(p/p0) ] before transforming(R/c )p

the horizontal derivative to terrain-following coordi-
nates. For this purpose, we define

p 5 p 1 p 1 p9,ref 1 (2)

where 5 pref(z) 1 p1(z) represents the actual meanp
pressure and p9 the perturbation from the mean. Ideally,
one would like to choose pref to represent the actual
mean pressure such that p1 5 0. However, in many
applications the mean atmosphere is not a function of
z only and may change over time (as in real atmospheric
environments). Also, if there is strong variation in the
vertical structure of the mean atmosphere, pref is typi-
cally chosen to represent a smoother reference sounding.

In the Boussinesq equations, the pressure-gradient

and buoyancy terms in the vertical momentum equation
are typically written as (cf. Ogura and Phillips 1962)

](p 2 p )0 2 (b 2 g), (3)
]z

where b 5 gu/u0 is the buoyancy variable and p0 is the
pressure that is in hydrostatic balance for an atmosphere
of constant potential temperature u0. To recast (3) in
terms of a specified reference state, we represent the
buoyancy variable in the same form as the pressure in
(2):

b 5 b 1 b 1 b9,ref 1 (4)

where 5 bref(z) 1 b1(z) is the true mean state and b9b
is the perturbation. In the absence of perturbations, the
mean state must be in hydrostatic balance such that

]
(p 1 p 2 p ) 5 b 1 b 2 g. (5)ref 1 0 ref 1]z

By using the definitions (2) and (4) together with (5),
it can be readily verified that, to the order of the Bous-
sinesq approximation, the pressure-gradient and buoy-
ancy terms in (3) can be alternatively written as

](p 2 p ) ](p 2 p )0 ref2 (b 2 g) 5 2 (b 2 b )ref]z ]z

]p9
5 2 b9. (6)

]z

Representing the pressure and buoyancy as described
above, the 2D inviscid nonhydrostatic Boussinesq equa-
tions can be written

]u ]u ](p 2 p ) ](p 2 p )ref refu 1 v 1 1 z 5 0, (7)x]x ]z ]x ]z

]w ]w ](p 2 p )refu 1 v 1 z 2 (b 2 b ) 5 0, (8)z ref]x ]z ]z

]b ]b
u 1 v 5 0, (9)

]x ]z

]u ]u ]w
1 z 1 z 5 0, and (10)x z]x ]z ]z

dz
v [ 5 uz 1 wz 5 z (w 2 uz ). (11)x z z xdt

In linearizing these equations about a small terrain
height h, the metric terms arising from the terrain-fol-
lowing coordinate transformation become

]z z htz [ 5 . 1 1 and (12)z ]z z 2 h zt t

]z z 2 z ztz [ 5 2 h . 2 1 2 h . (13)x x x1 2]x z 2 h zt t

Thus, zx and v are perturbation quantities. In addition,
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the buoyancy gradient along constant z surfaces may be
written

]b ] ]b9
25 (b 1 b9) 5 1 N z , (14)x) ) )[ ]]x ]x ]x

z z z

where N 2 5 d /dz, and zx | z 5 2zx/zz. Similarly,b

] ]
(p 2 p ) 5 (p 1 p9)ref 1) )]x ]x

z z

]p9
5 1 p z . (15)1z x )[ ]]x

z

Thus, the metric term in (15) is present even in linear
systems unless the pref chosen is the actual mean pres-
sure.

Retaining only first-order perturbation terms in (7)–
(11), the linear equations in terrain-following coordi-
nates for an atmosphere having constant mean wind U
and Brunt–Väisälä frequency N become

]u9 ]p9
U 1 1 p z 2 p z 5 0, (16)1z x 1z x[ ]]x ]x

]w ]p9
U 1 2 b9 5 0, (17)

]x ]z

]b9
2 2U 1 N z 1 N (2Uz 1 w) 5 0, and (18)x x[ ]]x

]u9 ]w
1 5 0. (19)

]x ]z

Here, the pressure-gradient and buoyancy terms in (17)
have been represented using the second equality in (6).

At this point, the issue of consistency in the numerical
treatment of terms in (16)–(19) is readily apparent. In
(16), the metric terms 6p1zzx should cancel such that
the linear horizontal momentum equation has the same
form as in the Cartesian framework, and, similarly, the
6UN 2zx terms should cancel in (18). However, for this
to occur in the numerical model, in (16) the differencing
of pressure along constant z surfaces (term in brackets)
must have the same representation as the differencing
of the metric zx in the last term, and in (18) the differ-
encing of the horizontal advection term (term in brack-
ets) must be the same as the differencing of the metric
zx used in the definition of v (last term). If this consis-
tency in finite differencing is not enforced, nonhomo-
geneous terms arise in the linear wave equation that
may produce distortions in wave solutions.

To clarify the nature and significance of these nu-
merical distortions, we derive analytic solutions to the
finite-difference form of the Eulerian equations (16)–
(19). For this purpose, we Fourier transform (16)–(19)
in x and represent the horizontal wavenumbers k taking
into account the particular finite differencing of each x
derivative term in the equations. For example, with sec-

ond- and fourth-order centered differencing on an un-
staggered grid, transforming the finite-difference stencil
yields

1
k 5 sinkDx and (20)2 Dx

1
k 5 (8 sinkDx 2 sin2kDx), (21)4 6Dx

respectively. Similarly, on a staggered grid, the second-
and fourth-order finite differencing centered at the mid-
point between grid points yields

2 1
k 5 sin kDx (22)2s Dx 2

1 1 3
k 5 27 sin kDx 2 sin kDx , (23)4s 1 212Dx 2 2

respectively. In this manner, the transform of (16)–(19)
can be written

ik Uû 1 ik p̂ 1 i(k 2 k )p ẑ 5 0, (24)a p p z 1z

]p̂
ik Uŵ 1 2 b̂ 5 0, (25)a ]z

2 2ik Ub̂ 1 N ŵ 1 i(k 2 k )N Uẑ 5 0, and (26)a a v

]ŵ
ik û 1 5 0, (27)d ]z

where  denotes Fourier transformed variables and ka,
kp, kz, kv, and kd represent the finite-difference approx-
imations for k arising from the various x derivative terms
in (16)–(19). For simplicity, in this analysis we assume
that the coefficients of the transformed perturbation var-
iables are constants. This requires that U and N are
constant as mentioned previously, and that p1z is a con-
stant. This latter assumption is appropriate to the order
of the Boussinesq approximation in which the z depen-
dence of the potential temperature multiplying the hor-
izontal pressure gradient is ignored. Combining (24)–
(27), we obtain the steady-state wave equation:

2] ŵ
21 b ŵ 5 P 1 P , (28)1 22]z

where

2k k Nd p2 2b 5 2 k , (29)a2 21 2k Ua

and P1 and P2 are inhomogeneous terms associated with
the ẑ terms, which are expressed in terms of ĥ using the
Fourier transforms of the metric expressions (12) and
(13):
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k pd 1zP 5 2i(k 2 k ) ĥ and (30)1 p z k Uza t

2k k N zd pP 5 2i(k 2 k ) 1 2 ĥ. (31)2 a v 2 1 2k U za t

Solving (28)–(31) subject to the boundary conditions
ŵ(k, 0) 5 ikvUĥ and a radiation condition as z → `
yields

ŵ 5 2i(K 1 K )UĥP P1 2

 N
exp[i sgn(k)bz] k ,a U

1 iK Uĥ (32)H
N

2exp(2Ï2b z) k . ,a U

where

k k 2 k pa p z 1zK (k, z) 5 , (33)P1 2 2 2k N 2 k U zp a t

k 2 k za v 2K (k, z) 5 1 2 N , and (34)P2 2 2 21 2N 2 k U za t

K (k) 5 k 1 K (k, 0) 1 K (k, 0). (35)H v P P1 2

In (32), we are assuming that there are no errors due to
finite differencing in the vertical.

Taking the inverse Fourier transform of ŵ(k, z) re-
covers the solution

k*U
w(x, z) 5 2 ĥK sin(bz 1 kx) dkE Hp 0

p /DxU
22 ĥK exp(2Ï2b z) sinkx dkE Hp k*

p /DxU
1 ĥ(K 1 K ) sinkx dk, (36)E P P1 2p 0

where k* is the value of k for which ka 5 N/U. Notice
that the particular solutions [third term in Eq. (36)] cor-
responding to the spurious inhomogeneous terms P1 and
P2 contain a singularity in the integrand (in the ex-
pressions for and ) at ka 5 N/U. Although theK KP P1 2

integral converges in principal value, this behavior sug-
gests that errors produced by inconsistent differencing
of the metric terms will be most noticeable when the
terrain forcing has significant amplitude at horizontal
wavenumbers in the vicinity of N/U. These particular
solutions have a large vertical scale; the amplitude of
the solution is constant with height in this analysis,KP1

while the solution decreases linearly with heightKP2

across the model domain.

3. Example linear solutions

To illustrate the nature of these finite-difference er-
rors, we consider a terrain profile that Schär et al. (2002)

used for testing alternative terrain-following coordinate
transformations. This profile is given by

2x px
2h(x) 5 H exp 2 cos (37)

21 2a l

and has the Fourier transform

Ïp 1
2 2ĥ(k) 5 Ha 2 exp 2 a k5 1 24 4

1
2 21 exp 2 a (k 2 k)[ ]4

1
2 21 exp 2 a (k 1 k) (38)6[ ]4

with k 5 2p/l, which provides the expression for ĥ(k)
used in the numerical evaluation of (36). Following
Schär et al., we define H 5 250 m, l 5 4000 m, and
a 5 5000 m, and specify a constant mean state with N
5 0.01 s21 and U 5 10 m s21. For the terrain trans-
formation (1), we set zt 5 21 km for consistency with
the numerical simulations that will be presented in sec-
tion 4. Solutions will be considered for Dx 5 500 m,
implying a primary ridge spacing of 8Dx. For these
conditions, 2pU/N 5 6.28 km, which is about 50%
larger than the major ridge spacing in (37). Thus, these
conditions should be favorable, though not optimal, for
exciting the spurious inhomogeneous portion of the so-
lution in (36).

In evaluating the influence of the horizontal finite
differencing on the steady linear wave solution, we as-
sume the variables are situated on a C grid such that
the horizontal velocity is staggered in x at the midpoint
between the location of the other variables. We initially
assume that h(x) is defined in the same x location as w,
b, and p, although we shall later consider the effect of
shifting h to the location of u. For simplicity, we will
examine only the effects of second- and fourth-order
horizontal differencing, which will be either staggered
or unstaggered depending on the position of the differ-
enced variable relative to the location of the term being
evaluated. Thus, each of the finite-difference approxi-
mations to k in the solution given by (33)–(36) will be
represented by k2, k4, k2s, or k4s as defined in (20)–(23).

The vertical velocity field displayed in Fig. 1a is com-
puted with fourth-order differencing for the advection
terms (ka 5 k4) and the metric used to compute v (kv

5 k4), together with second-order staggered differenc-
ing for the horizontal pressure gradient (kp 5 k2s), the
metric multiplying the mean vertical pressure gradient
(kz 5 k2s), and the horizontal velocity gradient in the
divergence equation (kd 5 k2s). In this case, the metric
terms contributing to the artificial inhomogeneous so-
lution in (36) vanish identically (KP1 5 KP2 5 0), and
the displayed field is indistinguishable from the exact
solution obtained by using k instead of the various finite-
difference approximations to k in (33)–(36).
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FIG. 1. Vertical velocity from the analytic solution for the linear
finite-difference equations with kp 5 kz 5 kd 5 k2s, and (a) ka 5 kv

5 k4, (b) ka 5 kv 5 k2, and (c) ka 5 k4, kv 5 k2. Contour interval
is 0.05 m s21.

FIG. 2. As in Fig. 1a except kp 5 k4s, and (a) p1z 5 2g and (b)
p1z 5 20.1g.

A point of clarification is in order regarding the dis-
play of these linear solutions. The fields shown in Fig.
1 represent the linear solution for w(x, z) for flow over
terrain of height H. The plotted fields have been trans-
formed from the (x, z) coordinate to (x, z) such that w
satisfies the correct lower boundary condition at the
terrain surface z 5 h. They differ slightly in appearance
from the fields one would obtain if w(x, z) were plotted
assuming z . z, in which case the lower boundary con-
dition is satisfied at z 5 0. Both solutions are equivalent
to first order. However, satisfying the lower boundary

condition at z 5 h leads to exact nonlinear solutions to
the linear Long’s equation, and is also consistent with
the way fields are displayed in the full simulation model
discussed in the next section.

The vertical velocity shown in Fig. 1b is obtained in
the same manner as the solution in Fig. 1a except that
all x derivatives are computed with second-order dif-
ferencing (ka 5 kv 5 k2, kp 5 kz 5 k2s). The artificial
metric terms again cancel identically and the solution
differs only slightly from that in Fig. 1a. Now suppose
we recompute the solution for the same conditions as
in Fig. 1b except we use fourth-order differencing for
the advection terms (ka 5 k4). Instead of improving the
solution, there is a significant distortion of the vertically
propagating wave aloft (Fig. 1c). This distortion is
caused by the differing numerical treatment of the metric
terms (6N 2Uzx) in (18) that excites the inhomogeneous
solution represented by KP2.

To examine the influence of the metric terms asso-
ciated with the horizontal pressure gradient in (16), we
examine the linear solution obtained with the same dif-
ferencing as used for Fig. 1a, except we increase the
numerical accuracy of the horizontal pressure gradient
term to fourth order (kp 5 k4s). In this case, the 6p1zzx

terms in (16) do not cancel numerically and the inho-
mogeneous solution represented by KP1 can distort the
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FIG. 3. As in Fig. 1c except kv 5 k2s and kz 5 k2.

solution. The significance of this imbalance depends on
the magnitude of the mean vertical pressure gradient p1z

that remains after a reference pressure profile pref has
been removed from the pressure field. To illustrate the
effect of subtracting a reference pressure profile from
the full pressure, we display first in Fig. 2a the solution
that results when no reference pressure is utilized (pref

5 0), which exhibits significant distortion of the flow.
On the other hand, choosing a reference pressure that
equals the actual mean pressure would eliminate p1z and
the solution in Fig. 2a would become identical to that
in Fig. 1a. As mentioned above, in practice it is usually
not possible to remove all of the mean pressure with a
reference profile. Figure 2b shows the solution arising
when 90% of the mean pressure has been removed by
the reference profile. This field exhibits only weak dis-
tortion due to the imbalance in differencing the metric
terms associated with the horizontal pressure gradient.
The imbalance is partly mitigated by the fact that the
second- and fourth-order differencing of the metric
terms are computed on a staggered grid, which increases
the accuracy over unstaggered differencing (cf. Durran
1999, p. 115). However, either decreasing the resolution
or increasing the magnitude of p1z will further increase
these errors.

In the examples discussed above, the differencing was
based on the terrain height being defined in the same
horizontal location as the thermodynamic variables. If
instead, h is collocated horizontally with the horizontal
velocity, consistent differencing of the metric terms in
(16) and (18) will not be possible under any circum-
stances. In (16), kp and kz will be differenced on stag-
gered and unstaggered grids, respectively, and a similar
situation arises in (18) for kv and ka. Figure 3 displays
the solution for fourth-order advection, comparable to
Fig. 1c, except that the staggering of the metric terms
kv and kz are now reversed such that kv 5 k2s and kz 5
k2. In this solution, 90% of the mean pressure is removed
by the reference pressure as in Fig. 2b. In Fig. 3 virtually
all of the distortion is caused by the metric imbalance

in the pressure terms in (16), which is larger than in
Fig. 2b due to the decreased accuracy in differencing
kz 5 k2.

4. Nonlinear numerical model simulations

We confirm the results obtained from the linear analytic
model by simulating mountain wave development under
similar conditions using a 2D time-dependent nonlinear
nonhydrostatic numerical model. For this purpose, we use
an early version of the WRF prototype model in terrain-
following height coordinates (Klemp et al. 2000, unpub-
lished manuscript; available online at www.mmm.ucar.
edu/individual/skamarock/wrfpequationspeulerian.pdf).
This Eulerian solver uses a leapfrog time-splitting tech-
nique for integrating the compressible nonhydrostatic
equations on a C grid. The terrain height h is defined
beneath columns containing the thermodynamic variables,
and horizontal differences can be specified using either
second- or fourth-order differences. The domain is 50 km
3 21 km with horizontal and vertical grid spacings of 500
and 300 m, respectively. The domain top is set at zt 5 21
km, with an absorbing layer in the upper half of the domain
to minimize reflection of upward-propagating gravity
waves, and open boundary conditions are specified at the
lateral boundaries. Terrain-following coordinates are em-
ployed as defined by (1), and the terrain height is specified
according to (37). The atmosphere is characterized by the
same constant mean wind U 5 10 m s21 and stability N
5 0.01 s21 as in the linear solutions in the previous section.

The vertical velocity fields for the same combinations
of second- and fourth-order differencing used in Fig. 1
are displayed in Fig. 4 for the model simulations at t
5 5 h, when the fields are essentially at steady state.
With fourth-order differencing for advection and the
horizontal metric term in v together with second-order
staggered differencing for both pieces of the horizontal
pressure gradient term, the appropriate metric terms can-
cel numerically and the solution (Fig. 4a) is similar to
the linear analytic solution. The primary difference be-
tween the vertical velocity in Fig. 4a and Fig. 1a arises
because the numerical model describes the compressible
atmosphere in which the wave amplitudes increase with
height in proportion to the inverse square root of density,
while in the Boussinesq analytic solution the wave am-
plitude is constant with height. The model solution using
second-order differencing for horizontal advection (Fig.
4b) together with second-order calculation of the hor-
izontal metric term in v produces nearly the same result
as expected, since the metric terms are treated consis-
tently. However, with fourth-order horizontal advection
and a second-order horizontal metric term in v (Fig.
4c), the same distortion arises as in Fig. 1c due to non-
cancellation of metric terms in the buoyancy equation.

In these simulations, the reference pressure removed
from the pressure gradient terms corresponds to a con-
stant potential temperature atmosphere. Thus, the per-
turbation pressure includes a portion of the pressure
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FIG. 4. Numerical simulation of vertical velocity with horizontal
finite differencing as in Fig. 1.

FIG. 5. As in Fig. 4a except kp 5 k4s.

corresponding to the difference between the actual mean
pressure and the reference pressure for a neutral at-
mosphere. Repeating the simulation shown in Fig. 4a
but increasing the accuracy of the horizontal pressure
gradient term to a fourth-order staggered difference [as
in (23)], the solution (Fig. 5) is actually degraded some-
what since the metric terms associated with the hori-
zontal pressure gradient no longer cancel (similar to Fig.
2b). Again, with coarser resolution or greater deviation
of the reference pressure from the full pressure, this
distortion will increase.

5. Dependence on horizontal scale

As mentioned previously, inconsistent differencing of
metric terms appears to have its most pronounced in-
fluence at horizontal scales in the vicinity of N/U, where
the artificial particular solutions (32)–(34) to the inho-
mogeneous wave equation (28) become singular. To il-
lustrate this dependence, we consider linear analytic so-
lutions for the same terrain profile (37), but for different
horizontal length scales.

Recall that for the solutions shown in Fig. 1, the major
ridge spacing is about 4 km, which is somewhat smaller
than the length scale (6.28 km) at which k 5 N/U. Thus,
waves at the scale of the ridge spacing are evanescent
and the longer wavelength vertically propagating modes
aloft exhibit a structure that is nearly hydrostatic in ap-
pearance. Figure 6a displays the exact linear analytic
solution for vertical velocity for the case with twice the
horizontal scale in the terrain profile (l 5 8 km, a 5
10 km) as shown in Fig. 1. (The small irregularities in
the displayed contours are due to calculation of this
solution on the same grid as used in the numerical sim-
ulations.) In this situation, waves at the scale of the
primary ridge spacing are slightly longer than the ev-
anescent cutoff and can propagate vertically. The so-
lution has the characteristic appearance of vertically
propagating nonhydrostatic waves extending above and
downstream of the ridges. With fourth-order finite dif-
ferencing for advection (ka 5 k4) and second-order eval-
uation of the metric term in v (kv 5 k2) with Dx 5 1
km, significant numerical truncation errors are apparent
in the steady-state vertical velocity field (Fig. 6b). This
is the same finite differencing as used in the case shown
in Fig. 1c. The scale of the artificial inhomogeneous
solution is similar to that of the vertically propagating
mode, which gives a stronger distortion than in Fig. 1c
and with a differing overall appearance.

Increasing the width of the terrain substantially, the
mountain wave structure becomes essentially hydro-
static. At these scales, the dominant wavenumbers in
the artificial inhomogeneous portion of the solution in
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FIG. 6. Vertical velocity from the linear analytic solution for the
case shown in Fig. 1 except with twice the horizontal length scale
in the terrain profile (l 5 8 km, a 5 10 km). (a) Solution with exact
numerics; (b) solution with the same horizontal finite differencing as
in Fig. 1c. Contour interval is 0.2 m s21.

FIG. 7. As in Fig. 6 except with 10 times the horizontal length
scale in the terrain profile as in Fig. 1 (l 5 40 km, a 5 50 km).
Contour interval is 0.05 m s21.

FIG. 8. Numerical simulation of vertical velocity using the semi-
Lagrangian MC2 model for comparison with Eulerian analytic (Fig.
1) and numerical (Fig. 4) solutions. Contour interval is 0.05 m s21.
[After Schär et al. (2002).]

(32) are far from the singularity at k 5 N/U. Figure 7a
shows the linear analytic vertical velocity over terrain
defined by (37) with l 5 40 km and a 5 50 km. For
comparison, the vertical velocity computed on a 5-km
horizontal grid with the same finite differencing as used
for Fig. 6b is shown in Fig. 7b. Although the inconsis-
tent numerical treatment of the metric terms in (18)
contributes to an artificial component to the wave so-
lution, the amplitude of this distortion is small.

6. Consistent metrics in a semi-Lagrangian model

In the preceding analytic analysis and model simu-
lations, we have focused on the treatment of the metric
terms associated with the terrain-following coordinate
transformation in an Eulerian finite-difference model.
However, as mentioned in the introduction, truncation
errors having the character of those evident in Fig. 1c
were originally encountered in the Canadian MC2 semi-
Lagrangian model (Schär et al. 2002). This result is
displayed in Fig. 8 for the same model configuration as
described in section 4 for the Eulerian model. This C-
grid model uses a second-order finite difference over
one grid interval for both the horizontal pressure dif-

ference and the metric adjustment to that pressure dif-
ference, which provides a consistent treatment of the
horizontal pressure gradient terms. Advection is accom-
modated using a semi-Lagrangian time step, with a
third-order interpolation of variables to the departure
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FIG. 9. As in Fig. 8 except with second-order interpolation to the
semi-Lagrangian departure points in (a) computational space using
(u, v) with an 8-s time step, (b) computational space using (u, v)
with a 1-s time step, and (c) physical space using (u, w) with an 8-
s time step.

point that is calculated in computational space [i.e., us-
ing (u, v) to locate the departure point, and interpolating
variables to the departure point in the (x, z) coordinate].
The relationship between v and w [Eq. (11)] uses a
second-order difference over 2Dx for the zx metric.

It appears that the third-order semi-Lagrangian inter-
polation together with the second-order metric in the v
equation is responsible for the distortion of the steady
mountain wave solution evident in Fig. 8. However,

these errors cannot be removed by simply matching the
order of the semi-Lagrangian interpolation to the order
of the metric in the v equation. This is illustrated in
Fig. 9a, where the interpolation has been changed to
second order. Although the error has been reduced, it
is still significant.

To explain the nature of the metric imbalance for this
situation, we return to the linear analysis of Eqs. (7)–
(11) and derive the numerical form of the steady-state
linear buoyancy equation (9) using second-order inter-
polation for the semi-Lagrangian advection. Letting (i,
k) denote the horizontal and vertical grid indices of the
arrival point for the semi-Lagrangian trajectory, the ver-
tical portion of the interpolation becomes

2]b 1 ] b
2b* 5 b 2 l 1 ln n,k z z 2) )]z 2 ]zn n

25 b9 1 N (z 2 l ). (39)n,k n,k z

Here, lz 5 v i,kDt and n represents the particular column
in which the interpolation is required (i.e., i, i 1 1, i 2
1). Recall that b 5 1 b9 5 N 2z 1 b9, and we assumeb
N is constant with height.

The second-order horizontal interpolation of buoy-
ancy to the departure point (bd) is similarly given by

2]b* 1 ] b*
2b 5 b* 2 l 1 l , (40)d i x x 2]x 2 ]x

where lx 5 UDt. For steady-state flow,

t1Dt t t tdb b 2 b b 2 bi,k d i,k d5 5 5 0. (41)
dt Dt Dt

Using (39) and (40), Eq. (41) becomes

2]b9 1 ] b9
2 2 2U 1 UN z 1 N v 2 U Dtx 2]x 2 ]x

1
2 22 U N Dtz 5 0, (42)xx2

where the x derivatives are evaluated with second-order
finite differences. Notice that in addition to the terms
in (18), Eq. (42) contains O(Dt) terms for the horizontal
diffusion of b9 plus an additional zxx metric. Although
a second-order zx metric in the omega equation (11) will
cancel with the second term in (42), the last term in
(42) will contribute an inhomogeneous term to the
steady linear wave equation that artificially distorts the
solution. Since this is an O(Dt) term, decreasing the
time step will diminish its influence. This is demon-
strated in Fig. 9b, in which the second-order semi-La-
grangian interpolation provides a good solution with the
time step reduced to 1 s.

Conducting the interpolation in physical space pro-
duces important changes with respect to the appearance
of metric terms in the advection terms. We illustrate
these differences again with a second-order interpola-
tion, applied first in the vertical:
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]b
b* 5 b 2 (z 2 z 1 l )n n,k n,k i,k z )]z n

21 ] b
21 (z 2 z 2 l )n,k i,k z 2)2 ]z n

25 b9 1 N (z 2 l ), (43)n,k i,k z

where lz 5 wi,kDt. Using (43) in (40), the buoyancy at
the departure point is given by

2]b9 1 ] b9
2 2b 5 b 2 l N 2 l 1 l (44)d i,k z x x 2]x 2 ]x

and upon substitution into (41) yields
2]b9 1 ] b9

2 2U 1 N w 2 U Dt 5 0. (45)
2]x 2 ]x

By interpolating using (u, w) in physical (x, z) space,
no metric terms appear in (45) and the cancellation of
metric terms is no longer an issue. Also, since v does
not appear in (45), it no longer matters if the order of
the semi-Lagrangian interpolation differs from that used
in computing the metric term in the v equation. Figure
9c illustrates how the the artificial distortion disappears
in the MC2 simulation with a second-order interpolation
computed in physical space.

The MC2 model actually solves a prognostic equation
for the perturbation of temperature from a constant ref-
erence temperature. Analysis of the semi-Lagrangian
interpolation for the linear temperature equation leads
to a similar behavior of the metric terms as discussed
above for the buoyancy equation. One difference is that
the stability N 2 is replaced by the mean temperature
gradient gd /dz. Thus, if the mean temperature for theT
atmosphere is isothermal, the metric terms [similar to
the N 2zx terms in Eq. (42)] will vanish in the linear
temperature equation. Thus, MC2 exhibits no distortion
in this test problem when the mean atmosphere is iso-
thermal (confirmed in simulations not shown). However,
for nonisothermal conditions (such as our test problem
with N 5 0.01 s21), the perturbation temperature will
contain a portion of the mean state and will produce all
of the same terms as in (42). An analogous situation
arises in semi-Lagrangian models that express the La-
grangian integration of the thermodynamic equation in
terms of a perturbation from a specified reference state
[i.e., using the notation of (4), db/dt is integrated in the
form d(b1 1 b9)/dt 1 V · =bref]. For these formulations,
the consistency in the semi-Lagrangian trajectory cal-
culation remains an issue to the extent that the specified
reference state bref differs from the actual mean state

. Furthermore, if V · =bref is evaluated in computa-b
tional space, the consistency requirements for the nu-
merics used in these terms will be the same as for the
Eulerian system.

We have recently become aware of an alternative
modification to the semi-Lagrangian procedures in MC2
that appears to remove the truncation errors evident in

Fig. 8 (Benoit et al. 2002, unpublished manuscript;
available online at www.cmc.ec.gc.ca/rpn/modcom/
publipconf/Posterp211porography/p211pfinal.pdf). In
evaluating v from (11), Benoit et al. proposed com-
puting the ‘‘horizontal’’ advection of z in a semi-La-
grangian fashion, representing zx | z as the difference in
height between the arrival and departure points of the
trajectory, computed along a constant z surface. In the
context of our linear analysis, and using the notation
from (39) and (40),

z* 5 z 2 l and (46)n n,k z

1
2z 5 z* 2 l z* 1 l z* (47)d i x x x xx2

and the linear form of (11), v 5 w 2 Uzx | z, becomes

z* 2 z 1i d 2v 5 w 2 U 5 w 2 Uz 1 U Dtz . (48)i,k i,k i,k x xxl 2x

Using (48) to represent v in the third term of (42), Eq.
(42) now is equivalent to (45), in which the spurious
zxx metric term is not present.

7. Summary

Using both linear analytic and numerical model so-
lutions, we have demonstrated that significant truncation
errors may arise in nonhydrostatic simulations in terrain-
following coordinates if the metric terms are not treated
in a consistent manner. This consistency requires that
the influence of mean fields (functions of z only) dif-
ferenced along sloping coordinate surfaces cancel nu-
merically from the finite-difference equations. If these
metric terms are not numerically balanced, spurious
contributions to the gravity wave dynamics arise that
may significantly distort the evolving flow. This dis-
tortion increases in magnitude as the horizontal reso-
lution of significant scales forced by the terrain decreas-
es. These artificial components of the numerical solution
are proportional to the terrain height and, thus, remain
present even in linear applications where the terrain
height and slope are small.

In evaluating the linear analytic finite-difference so-
lutions, it is apparent that the spurious effects of nu-
merical imbalance in the metric terms are most dramatic
when the terrain has significant forcing at scales near
the wavenumber N/U, where inhomogeneous terms in
the linear wave equation (32)–(35) become singular. At
hydrostatic scales, although the inhomogeneous terms
(33)–(34) may still be present, their influence is sub-
stantially reduced (Fig. 7).

This analysis suggests that the terrain height should
be defined beneath columns in which the thermodynam-
ic variable and w are defined. This allows consistent
differencing of the metric term in v with whatever order
numerics are used in the advection of scalar variables,
and consistent treatment of the metric in the horizontal
pressure gradient formulation. A consistency issue will
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arise, however, in computing the advection term for the
horizontal velocity in cases where there is strong mean
shear. We have found this potential imbalance to be of
significantly less importance than those arising in the
scalar advection and pressure gradient terms. Epifanio
and Durran (2001) have defined the terrain height on a
grid having double the horizontal resolution of the nom-
inal grid such that horizontal metric terms can be com-
puted over a single nominal grid interval for terms eval-
uated at either thermodynamic or horizontal velocity
grid points. This reduces the effect of metric term im-
balance by increasing the accuracy of the numerics for
the metric terms. However, artificial effects may still
arise if the resolution becomes sufficiently coarse.

The consistent differencing of the metric terms in
computing horizontal gradients is somewhat different
from the traditional issue of errors in horizontal pressure
gradient terms in regions of steeply sloped coordinate
surfaces. The latter problem is related to difficulties in
evaluating the vertical pressure gradient to accurately
adjust the pressure gradient along the coordinate surface
to one taken at constant height. This problem is accen-
tuated when there is strong curvature in the vertical
pressure profile, as occurs in the vicinity of sharp chang-
es in stability. These errors associated with steeply
sloped coordinate surfaces may be significant at all
scales of motion, including fully hydrostatic scales. The
issue of consistent treatment of metric terms that we
have addressed here appears to be most significant for
the buoyancy advection (through its influence on gravity
waves), and may arise even with perfect resolution of
the vertical gradients. Its regime of concern includes
small terrain slopes, but appears to be restricted to non-
hydrostatic scales near k 5 N/U when these scales are
not numerically well resolved.

An alternative approach for achieving accurate rep-
resentation of horizontal derivatives in terrain-following
coordinates is to avoid using the metrics by computing
the derivatives in physical space (Mahrer 1984; Demp-
sey and Davis 1998). The horizontal derivative at grid
point (i, k) is then calculated in a two-step process in
which 1) the variable is interpolated vertically in col-
umns on either side of column i to the same height as
the point (i, k) and then 2) the interpolated values are
finite differenced to form the horizontal derivative at
constant height. With this approach, the metrics are not
used in computing the horizontal derivative, and higher-
order interpolation can be used to more accurately rep-
resent vertical variation of the mean field. This latter
aspect is of primary concern in the traditional problem
of computing the horizontal pressure gradient in terrain-
following coordinates at hydrostatic scales. However,
this two-step technique may require significantly in-

creased computations or array storage (particularly for
higher-order horizontal finite differences), and would
compromise the conservation properties achieved in fi-
nite-volume approaches (particularly for the advection
terms).

For semi-Lagrangian models, the consistent evalua-
tion of metric terms is dependent upon the manner in
which the interpolation of variables to the departure
point is carried out. By interpolating based on (u, v) in
the transformed vertical coordinate, spurious metric
terms (that should cancel in the linear system) may arise.
These terms cannot be completely removed unless v is
also computed through a Lagrangian integration of (11)
(as recently proposed by the MC2 developers). How-
ever, by conducting the interpolation using (u, w) in
physical space, these metric terms do not arise and thus
their consistency in computing advective processes is
not an issue. Removing a reference profile from the
Lagrangian integration of the thermodynamic variable
may reduce the distortion caused by metric inconsis-
tency in the trajectory calculation if the reference profile
is close to the actual mean state; however, in many
nonlinear or real weather applications, deviations from
any specified reference state will be significant.
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