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ABSTRACT

Two time-splitting methods for integrating the elastic equations are presented. The methods are based on a
third-order Runge–Kutta time scheme and the Crowley advection schemes. The schemes are combined with a
forward–backward scheme for integrating high-frequency acoustic and gravity modes to create stable split-
explicit schemes for integrating the compressible Navier–Stokes equations. The time-split methods facilitate the
use of both centered and upwind-biased discretizations for the advection terms, allow for larger time steps, and
produce more accurate solutions than existing approaches. The time-split Crowley scheme illustrates a meth-
odology for combining any pure forward-in-time advection schemes with an explicit time-splitting method.
Based on both linear and nonlinear tests, the third-order Runge–Kutta-based time-splitting scheme appears to
offer the best combination of efficiency and simplicity for integrating compressible nonhydrostatic atmospheric
models.

1. Introduction

In atmospheric models integrating the hydrostatic or
nonhydrostatic equations, physical modes of meteoro-
logical importance, such as Rossby waves, gravity
waves, or simple advection, are often of much lower
frequency than the highest-frequency modes admitted
by the equations, such as Lamb waves and acoustic
modes. The time step needed to stably integrate the
high-frequency modes are often significantly smaller
than the time step needed for stable and accurate inte-
gration of the low-frequency modes. A common strategy
for improving computational efficiency is to employ ex-
plicit numerical schemes that integrate the high-fre-
quency modes using a small time step while integrating
the lower-frequency modes using a larger, more eco-
nomical, time step. These methods are often called split-
ting methods (Marchuk 1974), and several different
splitting methodologies based on explicit integration
schemes exist.

One of the most commonly used splitting methods
for the compressible nonhydrostatic equations was in-
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troduced by Klemp and Wilhelmson (1978, hereafter
KW78), and it employs a leapfrog time discretization
for the terms associated with advection and a forward–
backward scheme (Mesinger 1977) for the terms re-
sponsible for the propagation of the high-frequency
acoustic modes. Skamarock and Klemp (1992) analyzed
the stability of the KW78 scheme as well as other split-
explicit schemes and concluded that the KW78 scheme
had the best combination of simplicity, stability, and
accuracy of the schemes they considered. Skamarock
and Klemp also showed that the combination of pure
forward-in-time methods for the advection terms, for
example, the Crowley schemes (Tremback et al. 1987),
and the forward–backward scheme for the fast modes
had significant instabilities, even with filtering. Yet these
and other forward-in-time schemes are attractive if a
stable time-split methodology can be found. Wicker and
Skamarock (1998, hereafter WS98) demonstrated that
a second-order Runge–Kutta time scheme for the ad-
vection terms could be combined stably with the KW78
splitting technique for integrating the elastic equations.
This method uses a two-step Runge–Kutta method
(hereafter, RK2). The first step computes the advection
tendencies and advances the solution to the midpoint of
the time step using the traditional small step splitting
method, the advection tendencies are then recomputed
at the midpoint of the time step, and the solution is
restarted at time t and advanced to t 1 Dt using the
KW78 small step method. WS98 showed that this meth-
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od was stable, computationally efficient, and at least as
accurate as the leapfrog KW78 method.

WS98 showed that upwind-biased third-order spatial
differencing can be a good choice for the spatial dis-
cretizations combined with the RK2 scheme. However,
centered (neutral) spatial discretizations are unstable for
use with RK2, and the third-order upwind discretization
introduces fourth-order computational damping (Hunds-
dorfer et al. 1995). Furthermore, high-order spatial dis-
cretizations such as fifth- or seventh-order differencing
require the use of very small advective time steps for
stability. For example, RK2 with fifth-order spatial dif-
ferencing requires a time step that is about one-third the
maximum stable time step for the RK2 third-order spa-
tial scheme. These limitations in the RK2 scheme lead
us to search for other time-split schemes that allow high-
er-order centered and upwind-biased spatial discretiza-
tions with reasonably large stable time steps for the
advection terms.

In this paper, we describe two time-splitting schemes
that represent an improvement over the RK2 and leap-
frog schemes. The schemes are based on the third-order
Runge–Kutta time integration scheme (hereafter, RK3)
and Crowley schemes (Tremback et al. 1987). They per-
mit the use of even- and odd-ordered spatial discreti-
zations for the advection terms as well as allowing time
steps with Courant numbers equal to or greater than
one, even with high-order spatial differencing. We be-
lieve that the RK3 scheme provides the best combination
of simplicity, accuracy, and stability, and we examine
this algorithm in section 2. We consider the Crowley
splitting methodology in section 3; it is also an im-
provement over the RK2 scheme, but it can be somewhat
more expensive than the RK3 scheme. A summary of
results and discussion of other relevant modeling issues
follows in section 4.

2. The RK3 advection scheme

a. Formulation

The formulation and stability of the schemes can be
considered using the flux form of the scalar advection
equation in one dimension,

]q ](uq)
5 2 . (1)

]t ]x

A vast number of papers are devoted to finding accurate
discretizations of (1), and experience has shown that
this can be difficult, even for fairly simple flows. A
forward-in-time finite difference representation of (1) is
usually written as

n11 n n n(q 2 q ) (F 2 F )i i i11/2 i21/25 2 , (2)
Dt Dx

where is the flux through the edge of the grid zonenF i11/2

at time step ‘‘n.’’ The flux can be specified using a
variety of methods.

Runge–Kutta time integration schemes of second or
higher order can be constructed from basic Taylor series.
Gear (1971, 34–35) shows that second-order RK
schemes have one free parameter and third-order
schemes have two free parameters. Hundsdorfer et al.
(1995) discusses the relative merits of different RK
schemes of the same formal order in time. To facilitate
the incorporation of the splitting, the following third-
order RK time integration algorithm using the flux dif-
ferencing (2) is used as the basis for our time-split meth-
od.

Dt
n n nq* 5 q 2 (F 2 F ) (3a)i i i11/2 i21/23Dx

Dt
nq** 5 q 2 (F* 2 F* ) (3b)i i i11/2 i21/22Dx

Dt
n11 nq 5 q 2 (F** 2 F** ). (3c)i i i11/2 i21/2Dx

The RK3 scheme is stable for kDt , 1.73 for the os-
cillation equation (Durran 1999, 68–69) where k is the
frequency and Dt the time step. The increased region
of stability comes at a cost of evaluating the advection
or other low-frequency terms three times for a single
forward time step.

Both even- and odd-ordered approximations to the
derivatives on the right-hand side of (1) can be com-
bined with the RK3 to form a stable advection scheme.
For the RK3 results presented here, specifications equiv-
alent to O(Dxn) Taylor series expansions of the flux
divergence are used. The third-, fourth-, fifth-, and sixth-
order flux-form spatial approximations can be written
on the staggered C-grid as

|u |i21/23rd 4thF 5 F 2 [3(q 2 q ) 2 (q 2 q )],i21/2 i21/2 i i21 i11 i2212
(4a)

ui21/24thF 5 [7(q 1 q ) 2 (q 1 q )], (4b)i21/2 i i21 i11 i2212
|u |i21/25th 6thF 5 F 2 [10(q 2 q ) 2 5(q 2 q )i21/2 i21/2 i i21 i11 i2260

1 (q 2 q )], (4c)i12 i23

ui21/26thF 5 [37(q 1 q ) 2 8(q 1 q )i21/2 i i21 i11 i2260

1 (q 1 q )] (4d)i12 i23

Assuming a constant flow, one can show that the spatial
terms in the third-order scheme are a linear combination
of the fourth-order Taylor series approximation for ]q/
]x and ]4q/]x4. Likewise the fifth-order scheme com-
bines the sixth-order approximation for ]q/]x with the
approximation for ] 6 q/]x 6 . Thus the odd-ordered
schemes are dissipative and possess a dissipation term
with a coefficient proportional to the Courant number.
Further details regarding the relationship between even-
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TABLE 1. Maximum stable Courant number for one-dimensional
linear advection. Here, U indicates the scheme is unstable.

Time scheme

Spatial order

3rd 4th 5th 6th

Leapfrog
RK2
RK3

U
0.88
1.61

0.72
U

1.26

U
0.30
1.42

0.62
U

1.08

FIG. 1. One-dimensional advection tests for RK3 and leapfrog integration schemes using (a) 4th, (b) 5th, and (c) 6th order spatial
discretization schemes. TRER errors for each solution are listed at the top of each box. Unless otherwise noted, the Courant number equals
0.4.

and odd-ordered spatial schemes can be found in Hunds-
dorfer et al. (1995).

The extension of the flux operator to two or more
space dimensions is straightforward. Fluxes for each
step are computed along each coordinate axis in the
same manner employed by the leapfrog algorithm.

b. Stability

Stability limits of the RK3 scheme applied to the
linear one-dimensional advection equation using the
spatial approximations in (4) are shown in Table 1. Also
shown in Table 1 are the stability limits for the leapfrog
schemes that use identical spatial differencing for the
fourth- and sixth-order advection operators, for exam-
ple, (4b) and (4d), respectively. As indicated previously,
the RK3 scheme has a very large stability region, per-
mitting a time step 1.73 times larger than the leapfrog
scheme for the oscillation equation (Durran 1999, 68–
69). Table 1 shows that the ratio between stable time
steps for the RK3 scheme and the leapfrog scheme are
similar for the advection equation; the RK3 advection
schemes remain stable using a time step that is 1.73
times that of the stable leapfrog scheme. Also, odd-
ordered spatial approximations are stable for even larger
time steps, while odd-ordered spatial approximations are
unstable for the leapfrog scheme.

The stability limits of the RK3 scheme for multidi-

mensional flows are derived in a similar manner to that
of the leapfrog scheme. The time step in the RK3
scheme is most restricted when the flow is directed along
the grid diagonal, and the derivation shows that the one-
dimensional stability limits can be extended to two and
three dimensions by reducing the time step by a factor
of and , respectively. With sixth-order spatialÏ2 Ï3
differencing the RK3 scheme can use a time step for
three-dimensional flows that is as large as that permitted
in a one-dimensional leapfrog sixth-order scheme.

c. Advection tests

The accuracy of the RK3 schemes relative to the leap-
frog schemes can be tested in a variety of settings; here
we show one- and two-dimensional tests often used in
the literature to characterize the accuracy of advection
schemes. To test one-dimensional advection, a smooth
square pulse is advected 250 time steps in a 50 gridpoint
periodic domain using a cr 5 0.4. This transports the
pulse two revolutions around the domain. The initial
smooth square pulse function is specified as,

1
q(x) 5 z 5 |x 2 0.5|,

[80(z20.15)]{1 1 e }
x ∈ {0, 1}.

Figure 1 shows the solutions to the fourth- and sixth-
order leapfrog and RK3 schemes, as well as a fifth-order
RK3 scheme run using Courant numbers of 0.4 and 1.2.
Hereafter, the numerical schemes will be referred to as
RK3-4, RK3-5, RK3-6, LF4, and LF6, with the last
number indicating the truncation error of the spatial dis-
cretization. The leapfrog schemes use an Asselin filter
with a nondimensional coefficient of 0.025. Both RK3
and leapfrog fourth- and sixth-order solutions are dom-
inated by dispersive errors, seen in the solutions as
short-wavelength oscillations. Figure 1 displays the er-
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TABLE 2. TRER errors and convergence rates for the rotating Gaussian cone problem using the RK3 and leapfrog integration schemes.
Results are shown for fourth-, fifth-, and sixth-order spatial differencing. TRER errors are shown at the top of the cell, while convergence
rates are listed in italics at the bottom of each cell.

Resolution

Scheme

LF-4 RK3-4 RK3-5 RK3-6 LF-6

050 3 050 0.541 3 1021 0.598 3 1021 0.247 3 1021 0.152 3 1021 0.116 3 1021

100 3 100 0.366 3 1022

(3.89)
0.530 3 1022

(3.49)
0.158 3 1022

(3.96)
0.412 3 1023

(5.20)
0.207 3 1022

(2.48)
200 3 200 0.339 3 1023

(3.43)
0.344 3 1023

(3.95)
0.749 3 1024

(4.40)
0.324 3 1024

(3.67)
0.565 3 1023

(1.88)
400 3 400 0.125 3 1023

(1.45)
0.219 3 1024

(3.97)
0.527 3 1025

(3.83)
0.402 3 1025

(3.01)
0.142 3 1023

(1.99)
800 3 800 0.344 3 1024

(1.86)
0.144 3 1024

(3.93)
0.503 3 1026

(3.39)
0.503 3 1026

(3.00)
0.355 3 1024

(2.00)

ror for each solution that were computed using the
TRER measure given by Smolarkiewicz (1982) and
Smolarkiewicz and Grabowski (1990) as

1/2Npts Ana Num 2(q 2 q )l lTRER 5 , (5)O[ ]Nptsl51

where is the analytical solution at each grid pointAnaqi,j

and is the numerical solution. Overall the smallestNumqi,j

errors are associated with the RK3-5 and RK3-6 solu-
tions. The LF4 solution has smaller TRER errors than
the RK3-4 counterpart, however, the LF6 solution is
actually less accurate than the LF4 solution. Holding
the Courant number fixed while increasing the order of
the spatial approximation increases the leapfrog phase
errors and generates a less accurate solution. In contrast,
TRER decreases in the RK3 schemes as the spatial ap-
proximation increases. The RK3-6 solution has a TRER
one-half as large as the LF6 scheme. The smallest errors
for any solution are associated with the RK3-5 scheme.
The RK3-5 solution computed using cr 5 1.2 has a
smaller TRER error than the LF6 solution computed
using cr 5 0.4. The RK3-5 scheme’s leading truncation
error term is dissipative (Takacs 1985; Tremback et al.
1987; Hundsdorfer et al. 1995). The RK3-5 scheme
therefore has a built-in sixth-order filter with a coeffi-
cient proportional to the Courant number [see (5c)]. This
implicit filter damps small-scale oscillations in the so-
lution. Accordingly, as the time step for the KR3-5
scheme is increased by a factor of 3 (Fig. 1b), the so-
lution has slightly increased damping. Even so, the so-
lution is still very accurate with respect to the other five
solutions shown.

Further tests of the relative merits of the RK3 schemes
are done using a simple two-dimensional scalar advec-
tion problem. The accuracy and convergence rates for
the numerical schemes are found by advecting a Gauss-
ian cone in a square domain where the prescribed flow
is solid body rotation. The domain is 100 by 100 non-
dimensional units on each side and the flow is specified
as u(x, y) 5 2v(y 2 50) and y (x, y) 5 v(x 2 50)
where v 5 2p/628. One rotation around the domain

requires a nondimensional time of 628. The initial scalar
distribution is given as

2r
q(x, y) 5 4 exp 2 ,1 2[ ]ro

where ro 5 6 and r 5 . This2 2Ï(x 2 50) 1 (y 2 75)
problem is very similar to the advection test discussed
in Smolarkiewicz and Grabowski (1990). For Dx 5 Dy
5 1, the scalar value falls to 6% of its center peak value
within 10 Dx of the center. The TRER measure (5) can
be used to determine the numerical convergence rate of
the scheme by a sequence of numerical experiments
where the time step and grid spacing are halved. The
convergence rate (CR) can then be computed from this
series using CR 5 log2(TRERDx/TRERDx/2) (Smolar-
kiewicz and Grabowski 1990). Table 2 shows the results
from the numerical experiments where the grid reso-
lution was increased by a factor of 16 via four successive
grid and time step halvings. The two-dimensional Cour-
ant number is chosen to be 0.707. This is a stable time
step for the RK3 schemes but unstable for the leapfrog
scheme, so the leapfrog solutions are generated with a
time step that is one-half that of the RK3 solutions.

At the low resolution, the RK3-6 and LF6 solutions
have the smallest errors, with the RK3-5 scheme slightly
larger. Both RK3 and LF fourth-order solution errors
are at least three times larger. As the resolution increases
to 2002, the RK3 solutions have the smaller errors, with
the RK3-6 scheme the most accurate. The 8002 RK3-5
and RK3-6 solutions have errors almost 70 times smaller
than the leapfrog solutions. This rapid decrease in error
at the higher resolutions indicates a faster convergence
rate. Both leapfrog schemes converge at or near second
order once the solution is well resolved (this happens
at 4002 for the LF4, and by 2002 for the LF6). This is
consistent with Taylor series analysis of the leapfrog
scheme, as second-order errors are present in the time
truncation error term regardless of the spatial differ-
encing used. The RK3 schemes converge at least at third
order in the numerical experiments. Taylor series anal-
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ysis (not shown) reveals that the leading order truncation
error is third order and is limited by the time truncation
error. The leapfrog and RK3 schemes do not suffer from
spatial splitting errors common to many multidimen-
sional advection schemes. While the absence of the
splitting error in the leapfrog scheme is a result of the
leapfrog time-centered differencing, the absence of
splitting errors in the RK3 scheme is a result of the
multistep procedure in the RK3 time step.

Results from the simple numerical tests indicate that
the RK3 schemes are in most circumstances more ac-
curate than the leapfrog schemes for any given spatial
discretization and that the RK3 schemes have third-or-
der convergence. The RK3 scheme also permits the use
of a time step that is twice as large as the leapfrog
scheme.

d. RK3 time-splitting method

A one-dimensional set of equations for the evolution
of x-momentum and pressure, used to illustrate the time-
splitting method as in WS98, are

]u ]p ]u
1 5 2u (6a)

]t ]x ]x

]p ]u ]p
21 c 5 u . (6b)s]t ]x ]x

Equations (6a) and (6b) are the horizontal momentum
and pressure equations, respectively, where u is the fluid
velocity, p is the perturbation Exner pressure, and 2cs

the sound speed. A linear version of (6) is equivalent
to the system used by Skamarock and Klemp (1992) to
analyze the basic properties of various time-splitting
schemes. Terms on the left-hand side are associated with
the sound-wave propagation, terms on the right-hand
side are associated with the low-frequency modes, for
example, advection of u and p. We will concern our-
selves with discretizations on the C grid. Although the
computation of the advection terms is more expensive
on the C grid than on a nonstaggered grid, the C grid
has the advantage of accurately resolving the gravity
wave modes (Haltiner and Williams 1980, 227). A stable
time-splitting method for the RK3 time differencing of
(6) is similar to that presented in WS98. We combine
the forward–backward scheme for the pressure gradient
and divergence (i.e., the fast modes) with the RK3
scheme used on the advection terms (i.e., the slow
modes).

To begin the Runge–Kutta time-stepping procedure,
the slow-mode tendencies are computing by differenc-
ing the fluxes for the transport of u and p at time t,

t l t t l t tf 5 d F (u ) f 5 d F (u , p ), (7)u x p x

where dxf 5 (fi11/2 2 fi21/2)/Dx and Fl is a flux-form
advection operator such as those defined in (4). Aver-
aging of the horizontal velocity to the appropriate point
for the flux in (7) is implied. The forward–backward

scheme of Mesinger (1977) is then combined with the
slow-mode tendencies from (7) in small time step equa-
tions similar to those presented in KW78 and WS98,

t1Dt t t tu 5 u 2 Dtd p 1 Dt f (8a)x u

t1Dt t t1Dt tp 5 p 2 Dtd u 1 Dt f . (8b)x p

Here the small time step is Dt 5 Dt/ns, and ns/3 small
time steps are used to advance to the time t 1 Dt/3. As
in (3a) we donate the values at this time as u* and p *.

Next, the large time step tendencies are recomputed
using the values u* and p *,

l lf * 5 d F (u*), f * 5 d F (u*, p*),u x p x

and (8) is used to integrate from time t to t 1 Dt/2 using
ns/2 small time steps with and replacing andtf * f * fu p u

. As in (3b) the values at this time are donated astf p

u** and p**. The final piece of the time-split RK3 time
step requires recomputing the large time step tendencies
again,

l lf ** 5 d F (u**), f ** 5 d F (u**, p**),u x p x

and using (8) to integrate from time t to t 1 Dt using
ns small time steps with and replacing andf ** f ** f *u p u

. The results are the values at the new time level ut1Dtf *p
and p t1Dt.

A stability analysis of the linear system was per-
formed on the RK3 splitting scheme. The amplification
factors are very similar to those for the RK2 splitting
scheme (WS98) with the exception that the advective
Courant numbers can significantly exceed 1.0. As in
WS98 and Skamarock and Klemp (1992), a small
amount of divergence damping added to the equations
stabilizes the scheme over a wide range of fast- and
slow-mode Courant numbers. We have also found that
a single small time step of Dt 5 Dt/3 can be taken in
the first major step (8), with no significant loss of ac-
curacy and stability. Thus, the number of small time
steps per large time step need only be even as opposed
to being a multiple of 6.

e. 2D simulations

The RK3 splitting scheme is tested using the two-
dimensional dry compressible Navier–Stokes equations.
The problem chosen is patterned after the cold-bubble
downburst problem described by Straka et al. (1993).
An elliptical cold bubble is placed several kilometers
above the ground in a neutrally stratified atmosphere.
The negatively buoyant bubble descends to the ground
and creates a strong surface outflow having horizontal
velocities greater than 30 m s21. The vertical shear along
the top of the outflow is strong enough to generate sev-
eral Kelvin–Helmholtz waves. By T 5 900 s the flow
is highly nonlinear with several large eddies present.
This problem is modified from its original form by in-
cluding a constant mean horizontal wind of 20 m s21

as well as specifying a periodic boundary condition in
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FIG. 2. Perturbation potential temperature reference solution for the translating downburst
problem using a 4th-order leapfrog integration method with a grid resolution of 50 m. The max,
min, and contour interval are displayed in the upper left.

the horizontal. The mean wind serves only to translate
the bubble, and the bubble and resulting outflow should
remain perfectly symmetric because the lower boundary
condition is free slip on the tangential velocity and
therefore translation does not change the solution. The
translation is included for two reasons. First, experience
indicates that inclusion of a mean wind is a more strin-
gent test of splitting methods. Second, the translation
magnifies numerical phase errors associated with the
advection scheme. This problem has a fixed diffusion
coefficient of 75 m2 s21, thus a converged (reference)
solution can be computed. The reference solution is gen-
erated in manner similar to that in Straka et al. (1993),
and we find that our solution is essentially converged
on a 50-m grid using a leapfrog scheme with fourth-
order advection operators. Figure 2 shows the converged
perturbation solution for T 5 0, 450, and 900 s of in-
tegration. The initial bubble was placed in the center of
a 36-km-wide by 6.4-km-tall domain. After 450 s of
integration, the bubble is descending toward the ground

as it translates to the left in the domain. At 900 s, the
outflow has traveled one-half revolution around the do-
main, and therefore the opposite sides of the outflow
approach the center of the domain. The solution is es-
sentially symmetric and each side of the outflow has
developed Kelvin–Helmholtz eddies with a third eddy
beginning to develop along the leading edge of the out-
flow. Comparison of the structure in the translating out-
flow results with the stationary outflow results shown
in Straka et al. (1993) reveal only minor differences.

Figure 3 shows the RK3-4, RK3-5, and LF-4 solutions
at 900 s for a grid spacing of 200 m. Both integration
schemes use fourth-order spatial differencing, and the
time step used in the RK3 simulation is twice that of
the leapfrog simulation. The mean Courant numbers for
the RK3 and leapfrog solutions computed using the
mean wind U 5 20 m s21 are 0.2 and 0.1, respectively,
with maximum Courant numbers associated with the
flow within Kelvin–Helmholtz rolls being approximate-
ly 0.8 and 0.4, respectively.
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FIG. 3. Perturbation potential temperature solutions at 900 s for the translating downburst
problem for the RK3 and leapfrog schemes using a grid resolution of 200 m. The max, min,
and contour interval are displayed in the upper left. (a) 4th-order leapfrog solution, (b) 4th-
order RK3 solution, and (c) 5th-order RK3 solution.

Straka et al. (1993) showed that many numerical
schemes could adequately represent the salient features
in the flow at this grid spacing, and the RK3 solutions
have many of the features seen in the reference solution.
Each side of the outflow has several eddies present, and
the solution is reasonably symmetric. The leapfrog so-
lution at this resolution shows substantial differences
from the reference solution, particularly on the devel-
oping eddy structure. Increasing the spatial approxi-
mation to sixth order for both integration schemes gen-
erates two solutions that are very similar in nature to
the fourth-order results (not shown). Also, we found
that the RK3 scheme is stable using a time step that is
three times that of the leapfrog scheme for this problem,
but the solution is somewhat damped.

Figure 3c shows the RK3-5 solution. As previously
discussed, fifth-order differencing contains a sixth-order
spatial filter whose coefficient is proportional to the

Courant number. The solution has few small-scale os-
cillations and looks very similar to the reference solu-
tion even though the grid resolution is four times coars-
er. In general, solutions generated using the odd-order
spatial differencing, particularly the fifth-order scheme,
are superior to next higher even-ordered spatial scheme.
The superior performance of the RK3 time scheme
makes it a viable and attractive alternative to the leap-
frog scheme or the RK2 scheme, especially given that
the RK3 time step can be two or three times larger due
to the scheme’s increased stability properties.

3. Crowley time-split scheme

Another class of schemes for integrating (1) is rep-
resented by the Crowley methods (Crowley 1968; Trem-
back et al. 1987). The formulation and performance of
these methods will only briefly be discussed here as
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TABLE 3. TRER errors and convergence rates for the rotating Gaussian cone problem using the RK3 and Crowley integration schemes.
Results are shown for fourth- and fifth-order spatial differencing. TRER errors are shown at the top of the cell, while convergence rates are
listed in italics at the bottom of each cell.

Resolution

Scheme

Crowley-4 RK3-4 RK3-5 Crowley-5

050 3 050 0.522 3 1021 0.598 3 1021 0.247 3 1021 0.217 3 1021

100 3 100 0.490 3 1022

(3.41)
0.530 3 1022

(3.49)
0.158 3 1022

(3.96)
0.123 3 1022

(4.14)
200 3 200 0.306 3 1023

(4.00)
0.344 3 1023

(3.95)
0.749 3 1024

(4.40)
0.523 3 1024

(4.55)
400 3 400 0.173 3 1024

(4.15)
0.219 3 1024

(3.97)
0.527 3 1025

(3.83)
0.830 3 1025

(2.65)
800 3 800 0.173 3 1025

(3.32)
0.144 3 1025

(3.93)
0.503 3 1026

(3.39)
0.205 3 1025

(2.02)

they have been extensively documented (Tremback et
al. 1987; Bott 1989; Costa and Sampaio 1997). Table
3 compares the TRER errors for solutions to the cone
advection problem described in section 2c. Multidi-
mensional advection for the Crowley scheme is done
using directional splitting along each coordinate axis.
Generally, both the Crowley and RK3 schemes yield
highly accurate solutions. The fifth-order Crowley
scheme is more accurate than either of the RK3 methods
at low resolutions; this is primarily due to lower phase
errors. However, the increased accuracy comes at a high-
er cost. The number of floating point operations needed
to compute the fifth-order Crowley flux is approximately
80 operations, while the RK3 fifth-order scheme re-
quires approximately 60 operations to compute (20 flops
per flux calculation on each substep). As the resolution
increases, dimensional splitting of the Crowley schemes
limit the convergence rate to near second-order, while
the RK3 schemes converge at third order. At the 8002

resolution, the RK3 solutions have smaller errors than
the Crowley solutions.

a. Crowley time-splitting method

Since the Crowley advection schemes do not use a
multistep methodology as do the Runge–Kutta schemes,
it is not immediately obvious how to create a stable
time-splitting scheme. We have found that a stable split-
ting method can be constructed using a two-step ap-
proach similar to the RK2 scheme (WS98). In the first
step of the scheme, the large time step tendencies for
(6) are computed using (7) with and replaced byt tf fu p

the chosen Crowley scheme tendencies. The small time
step equations (8) are then integrated ns/2 small time
steps to t 1 Dt/2 and the results are denoted as u* and
p *. For the second step, the intermediate values of u*
and p * are first modified by removing the original ad-
vective tendencies

Dt Dt
t tu** 5 u* 2 f , p** 5 p* 2 f .u p2 2

New advective tendencies are computed using u** and

p ** in the chosen Crowley scheme, and (8) is integrated
from time t to t 1 Dt using ns small time steps. The
results are the values at the new time level ut1Dt and
p t1Dt.

The novel aspect of this time-splitting scheme is that,
after the first small time step integration, the advective
tendencies are removed from the intermediate values of
u and p. The removal of the advective tendencies en-
ables the Crowley operator to be applied again, where
now the pressure and velocity fields contain information
about the propagation of sound waves from the first part
of the integration. A linear stability analysis of this
scheme (Skamarock and Klemp 1992) shows that the
method is indeed stable. The splitting scheme, however,
requires two applications of the Crowley advection op-
erators. This makes the scheme more expensive per time
step, by a factor of 2, compared with the RK3 splitting
scheme. Experimentation has shown that a low-order
Crowley scheme (such as the second-order scheme) can
be used for the first iteration with a high-order scheme
applied during the second step to increase the compu-
tational efficiency of the scheme while maintaining the
higher-order accuracy.

b. 2D Crowley time-splitting simulations

The Crowley splitting scheme is applied to the trans-
lating downburst problem previously described. Figure
4 shows the solutions at 900 s for fourth- and fifth-order
Crowley schemes. The solutions are very similar to the
fifth-order RK3 scheme (Fig. 3c). Since both even- and
odd-ordered Crowley schemes contain some dissipation,
the fourth-order solution lacks the small-scale oscilla-
tions seen in the fourth-order RK3 scheme (Fig. 3a).
Phase errors are also slightly smaller in the Crowley
scheme, leading to a slightly more accurate solution. In
general, differences between even- and odd-ordered
Crowley solutions are much smaller than differences
between even- and odd-ordered RK3 solutions, and the
solutions produced by the odd-ordered Crowley
schemes are very similar to that produced by odd-or-
dered RK3 schemes.
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FIG. 4. Perturbation potential temperature solutions at 900 s for the translating downburst
problem using the Crowley splitting scheme and a grid resolution of 200 m. The max, min, and
contour interval are displayed in the upper left, and (a) 4th-order Crowley solution, and (b) 5th-
order Crowley solution.

4. Summary

Two new methodologies are presented for time-split-
ting the compressible equations using forward-in-time
integration schemes. The schemes are similar to the
original splitting methods presented by Klemp and Wil-
helmson (1978) and WS98. A third-order Runge–Kutta
scheme and the Crowley schemes are combined with
the traditional forward–backward scheme to create sta-
ble split-explicit time integration schemes. Both
schemes permit the use of high-ordered spatial discret-
izations that can be either centered or upwind-biased
and both allow the use of large time steps with maximum
stable Courant numbers close to 1.0 even for three-
dimensional flows and high-order spatial discretizations.
Both require the use of multiple iterations to complete
a single time step. The multistep approach arises nat-
urally from the RK3 scheme, and a multistep method
is created for the Crowley schemes.

Linear stability analyses indicate that the splitting
schemes are stable when some divergence damping is
included. These results and those from WS98 strongly
suggest that stable splitting schemes arise when the pres-
sure gradient and divergence terms in the compressible
equations are estimated at the midpoint of the time step
prior to a final forward step that traverses the entire time
step. This ‘‘centering’’ of the slow-mode terms appears
to stabilize the splitting. Thus, we suspect that any pure
forward-in-time (FIT) scheme can be stably time-split

using the procedure we have described for the Crowley
schemes. For example, we have been able to stably time-
split the third-order Adams–Bashforth–Moulton (ABM)
scheme (see Durran 1999). This scheme requires two
time levels of data (similar to leapfrog) and two steps;
a preliminary integration over the full Dt producing a
predictor at time t 1 Dt, followed by a recalculation of
the advective fluxes and a second small step integration
over the full time step Dt. Since the ABM split scheme
requires more storage, the same number of advection
evaluations, and has a slightly more restrictive stability
condition, it is less attractive than the RK3 split inte-
gration scheme.

Although not explicitly demonstrated here, both split-
ting schemes can easily be combined with standard ver-
tically semi-implicit techniques to improve computa-
tional efficiency when the grid aspect ratio becomes
large. Inclusion of other terms, such as Coriolis or sub-
grid-scale mixing effects, can be easily incorporated into
the split schemes. If the RK3 time differencing is ap-
plied to the Coriolis terms, a stable scheme is produced.
Including Coriolis accelerations into the purely forward
Crowley splitting scheme is somewhat more problem-
atic, because a pure forward method will be weakly
unstable. This instability may not an issue for short-
term integrations, and alternatively, the Coriolis terms
can be integrated using the forward–backward integra-
tion method (Pielke 1984, 291). As in WS98, the sub-
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grid-scale mixing parameterizations are included using
a pure forward time scheme. This is an improvement
over traditional methods of including mixing in the leap-
frog integration scheme by back-lagging the mixing
terms. Here the mixing is computed over a single Dt
rather than 2Dt as in the leapfrog scheme.

From our experience we believe that the RK3 splitting
scheme represents the best combination of accuracy and
algorithmic simplicity, as well as permitting the largest
time step of all three schemes. Linear advection tests
and qualitative evaluation of the translating downburst
problem indicate that the Crowley split schemes are
slightly more accurate than the RK3 schemes. The time-
split Crowley schemes, however, are more expensive
per time step and require directional splitting of the
advection operator in two or three dimensions. While
splitting errors can be corrected (Clappier 1998), the
algorithm is more complex than the RK3 algorithm and
experience indicates the increased accuracy does not
warrant the increased costs in code complexity and com-
putational cost. Tests of the RK3 scheme in three-di-
mensional cloud and mesoscale models indicate that the
scheme is accurate, robust, and permits a time step up
to twice as large as that needed to stably integrate leap-
frog-based time-split models. Use of the RK3 scheme
in cloud research models indicates that it is at least 20%
faster than the RK2 scheme presented in WS98. For
example, a typical supercell simulation having a 1-km
horizontal and 500-m vertical grid mesh can be gen-
erated using a 10-s time step with the RK3 scheme, as
opposed to a 6-s time step for the RK2 scheme or the
leapfrog scheme. The total time spent computing the
advection terms is actually less in the RK3 scheme (even
though three evaluations per time step are needed) than
in the RK2 scheme due to 40% fewer time steps in the
RK3 simulation. Parameterizations such as ice micro-
physics are also computed 40% less often in the RK3
model, thereby, increasing its efficiency. Other physical
parameterizations that need to be computed each time
step would further increase the efficiency of the RK3
scheme relative to schemes that require a smaller time
step. Therefore we believe that the third-order Runge–
Kutta method is an excellent scheme for integrating the
compressible equations and is an ideal candidate for
numerical weather prediction (NWP) applications where
accuracy, stability, and efficiency are most important.
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