Extended-Range Severe Weather Guidance Using a Global Convection-Permitting Model

Bill Skamarock NCAR/MMM

Special Symposium on Seamless
Weather and Climate Prediction—
Expectations and Limits of Multi-scale
Predictability

Extended-Range Severe Weather Guidance Using a Global ConvectionPermitting Model

Bill Skamarock, Joe Klemp, Michael Duda, Laura Fowler, Sang-Hun Park National Center for Atmospheric Research

Based on unstructured centroidal Voronoi (hexagonal) meshes using C-grid staggering and selective grid refinement.

Seamless? — in some ways Multi-scale? — in some sense

Seamless Weather and Climate Prediction — Expectations and Limits of Multi-scale Predictability

Seamless Weather and Climate Prediction — Expectations and Limits of Multi-scale Predictability

Seamless ... Prediction:

Where are the *seams* in our existing research and operational prediction systems, and what can be done about them?

Seamless Weather and Climate Prediction — Expectations and Limits of Multi-scale Predictability

Seamless ... Prediction:

Where are the *seams* in our existing research and operational prediction systems, and what can be done about them?

Multi-scale:

What is multi-scale about the atmosphere, and how well do our prediction systems treat these multi-scale aspects?

Spatial and temporal seams in our forecast model configurations.

- Regional models and nested configurations.
- Coupling among earth-system components.

Seams in and between our sub-grid physics.

Seams between our sub-grid physics and resolved motions.

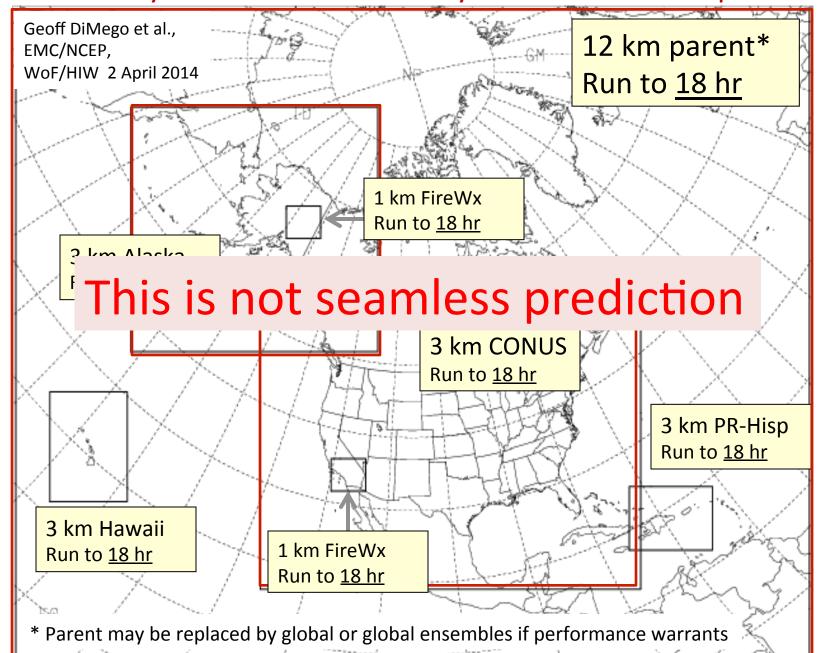
Problems with Grid Nesting Advanced-Research WRF (ARW)

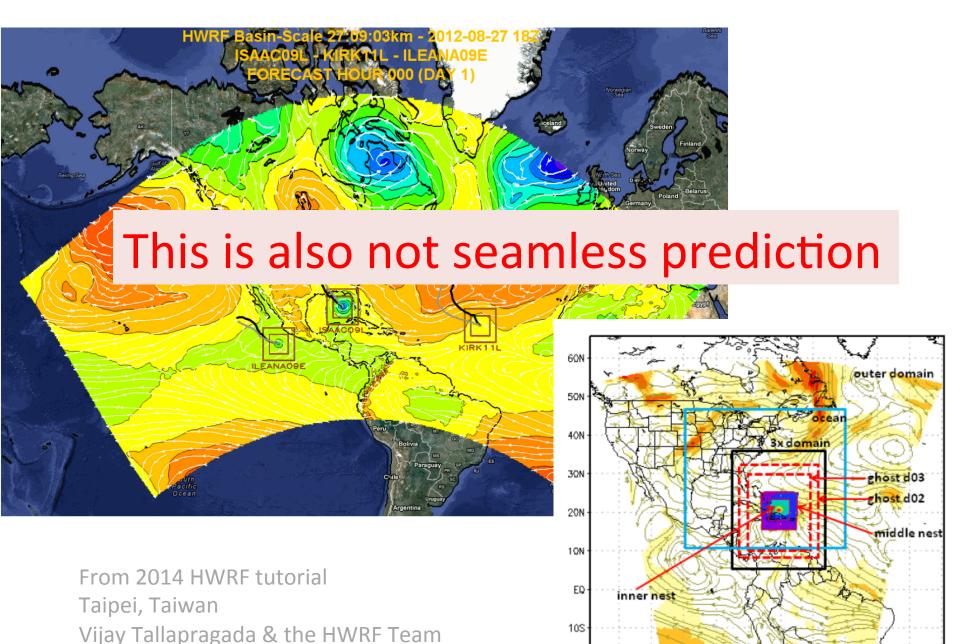
Limited area models (two-way nests)

Problems with Grid Nesting Advanced-Research WRF (ARW)

Limited area models (two-way nests)

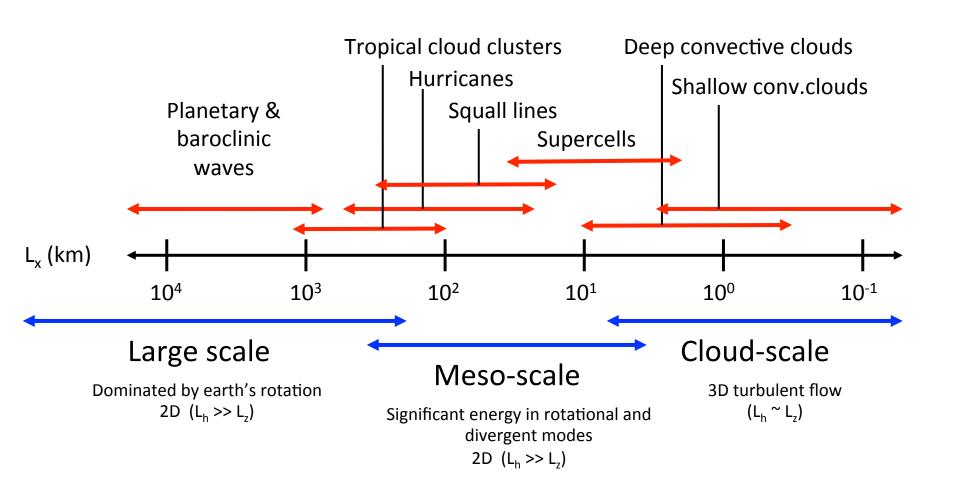
30 hr forecast, accumulated precipitation, valid 6 UTC 20080606


Problems with Grid Nesting Advanced-Research WRF (ARW)


Limited area models (two-way nests)

30 hr forecast, accumulated precipitation, valid 6 UTC 20080606

Every NMMB-based member of the hourly HRRRE will have this makeup Every ARW-based member of the hourly HRRRE will have this makeup


120W 110W 100W

Spatial and temporal seams in our forecast model configurations.

- Regional models and nested configurations.
- Coupling among earth-system components.

Seams in and between our sub-grid physics.

Seams between our sub-grid physics and resolved motions.

What is multi-scale about the atmosphere?

Important questions

How do phenomena on the different scales interact?
What is needed to simulate them for prediction purposes?
(Either parameterized or resolved)

Centroidal Voronoi Meshes and the Atmospheric Solver

Unstructured spherical centroidal Voronoi meshes

- Mostly *hexagons*, some pentagons and 7-sided cells
- Cell centers are at cell center-of-mass (centroidal).
- Cell edges bisect and are orthogonal to the lines connecting cell centers.
- Uniform resolution traditional icosahedral mesh.
- C-grid: Solve for normal velocities on cell edges.
- Horizontal discretization uses the *TRSK* scheme.

Equations

- Prognostic equations for coupled variables.
- Generalized height coordinate.
- Horizontally vector invariant eqn set.
- Continuity equation for dry air mass.
- Thermodynamic equation for coupled potential temperature.

Time integration

- Split-explicit Runge-Kutta (3rd order), as in Advanced Research WRF.
- Single time-step for the global mesh, CFL limited by highest resolution.

Hazardous Weather Testbed Spring Experiment 2015 Forecasts Results from MPAS

Application Test

NOAA SPC/NSSL HWT May 2015

Convective Forecast Experiment
Daily 5-day MPAS forecasts
00 UTC GFS analysis initialization

Questions:

- 1. Are the solutions clean in the variable-resolution portion of the mesh?
- 2. How can we parameterize deep convection?
- 3. Does the Voronoi-mesh-based solver produce good convective realizations and forecasts in the convective permitting region of the mesh?

MPAS mesh mean cell spacing (km)

3-50 km mesh, Δx contours 4, 8, 12, 20, 30 40 km approximately 6.85 million cells 68% have < 4 km spacing (158 pentagons, 146 septagons)

Grell-Freitas Convection Scheme in MPAS

Scale-aware/aerosol-aware (Grell and Freitas, 2014, ACP)

- Stochastic scheme (Grell and Devenyi, 2002).
- Scale aware by adapting the Arakawa et al approach (2011).
 - \circ Relates vertical convective eddy transport to convective updraft/downdraft fraction σ :

$$\rho \overline{w\psi} = (1 - \sigma)^2 M_c (\psi_c - \overline{\psi})_{adj} \quad \text{with} \quad M_c = \rho \sigma w_c$$

o GF: σ is the fractional area covered by active updraft and downdraft plume.

$$\sigma = \frac{\pi R^2}{A_{grid\,cell}}, \ R_{conv} \sim 3 \, km, \ \sigma_{max} = 0.7$$

- At convection-permitting resolution, parameterized convection becomes much shallower – cloud tops near 800 mb (down from 200-300 mb).
- o Temperature & moisture tendencies decrease as resolution increases.

MPAS Precipitation Spring Experiment 2015

Precipitation rate (mm/day), May 2015

Hazardous Weather Testbed Spring Experiment 2015 Forecasts Results from MPAS

Reflectivity, NOAA SPC archive

Hazardous Weather Testbed Spring Experiment 2015 Forecasts Results from MPAS

MPAS 50-3km 36h fcst Init: 2015-05-06_00:00:00 UTC Valid: 2015-05-07_12:00:00 UTC

Hazardous Weather Testbed Spring Experiment 2015 Forecasts Results from MPAS

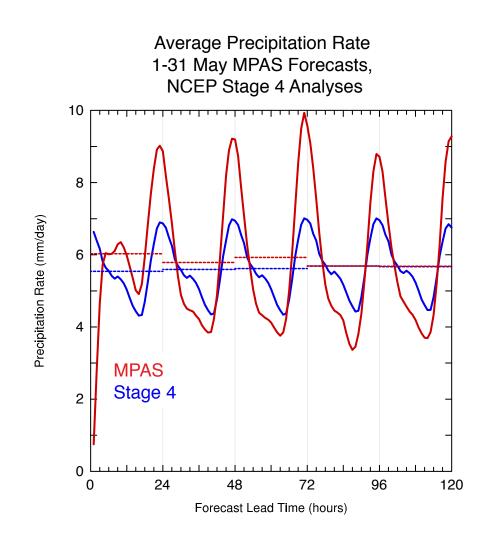
Hazardous Weather Testbed Spring Experiment 2015 Forecasts Results from MPAS

Reflectivity, NOAA SPC archive valid 2015-05-17 06 UTC

Hazardous Weather Testbed Spring Experiment 2015 Forecasts Results from MPAS

Hazardous Weather Testbed Spring Experiment 2015

Verification against ST4 precipitation analyses



Hazardous Weather Testbed Spring Experiment 2015

Verification against ST4 precipitation analyses

- Timing of diurnal precipitation maxima and minima is very good.
- Significant over-estimation of diurnal precipitation maxima.
- Significant underestimation of diurnal precipitation minima.
- Over (under) estimation does not improve over time.
- Daily average precipitation (dashed lines) shows a small positive bias early, decreasing over time.

Hazardous Weather Testbed Spring Experiment 2015

Verification against ST4 precipitation analyses

24 h accumulations

Seamless Modeling Across the Hydrostatic-Nonhydrostatic Scales

PECAN field campaign 3-day forecasts, 15 – 3 km mesh 7 June – 15 July 2015

3-15 km mesh, ∆x contours approximately 6.5 million cells 50% have < 4 km spacing

Average hourly precipitation rate (mm/day) over verification region Average of 37 forecasts: 08 Jun - 14 Jul 2015

Summary

Seamless? Multi-scale? Scale-aware?

Variable-resolution, nonhydrostatic-scale global atmospheric simulations are viable

- MPAS-A addresses one seam in NWP models.
- Another *seam:* GF convection scheme appears to be viable for scale-aware applications. Further work needed.
- Fidelity of convection similar to that of WRF.
- MPAS variable-resolution forecasts *may* contain some extended-range convective guidance.

Challenges

Scale-aware physics – addressing another *seam*:

- Convection
- Microphysics
- Boundary layer

Data assimilation on variable meshes

3-15 km mesh, ∆x contours approximately 6.5 million cells 50% have < 4 km spacing

Forecasts available at http://wrf-model.org/plots/realtime_main.php

