Global Nonhydrostatic Atmospheric Simulation with MPAS

Bill Skamarock, Joe Klemp, Michael Duda, Laura Fowler, Sang-Hun Park National Center for Atmospheric Research

Based on unstructured centroidal Voronoi (hexagonal) meshes using C-grid staggering and selective grid refinement.

Collaboratively developed, primarily by NCAR and LANL/DOE

MPAS infrastructure - NCAR, LANL, others.

MPAS - Atmosphere (NCAR)

MPAS - Ocean (LANL)

MPAS - Ice, etc. (LANL and others)

Global Nonhydrostatic Atmospheric Simulation with MPAS

- (1) What is it and why build it?
- (2) Critical numerics
- (3) Does it work?
- (4) Early science: Atmospheric KE spectra
- (5) Where are we, and where are we going?

What is MPAS?

MPAS consists of geophysical fluid-flow solvers based on unstructured centroidal Voronoi (hexagonal) meshes using C-grid staggering and selective grid refinement.

MPAS Version 2.1:

MPAS infrastructure - NCAR, LANL, others.

Infrastructure for the Voronoi mesh and solvers (data structures; mesh generation, manipulation; operators on the mesh).

MPAS - Atmosphere (NCAR)

Nonhydrostatic atmospheric solver; pre- and post-processors

MPAS - Ocean (LANL)

Hydrostatic ocean solver, pre- and post-processors

MPAS - Ice, etc. (LANL and others)

Land-ice model, pre- and post-processors

These are all stand-alone models – there is no coupler in MPAS

What is MPAS?

Centroidal Voronoi Meshes

<u>Unstructured spherical centroidal Voronoi meshes</u>

- Mostly *hexagons*, some pentagons and 7-sided cells
- Cell centers are at cell center-of-mass (centroidal).
- Cell edges bisect and are orthogonal to the lines connecting cell centers.
- Uniform resolution traditional icosahedral mesh.

C-grid

- Solve for normal velocities on cell edges.
- Gradient operators in the horizontal momentum equations are 2nd-order accurate.
- Velocity divergence is 2nd-order accurate for edge-centered velocities.
- Reconstruction of full velocity requires care.

Centroidal Voronoi Meshes: Mesh Generation

We use Lloyd's method to generate the MPAS spherical Voronoi meshes

An example of mesh generation beginning from an icosahedral mesh.

No points are fixed.

Why MPAS?

Uniform resolution applications:

Convection-permitting ($\Delta x \sim$ few km) global simulations of weeks to months are now feasible on present-day computers.

Global operational NWP models are now mesoscale models.

Examples: ECMWF, UKMO, even the GFS ~15 km mesh spacing.

Nonhydrostatic (5 km) – factor of 30: 7+ years

Convection permitting (3 km) – factor of 125: 10+ years

Traditional (nested) regional NWP applications are limited by boundary-induced errors to short time integrations. Variableresolution global MPAS removes this limitation.

Traditional (nested) regional climate applications have issues with its the downscaling philosophy and the nested BCs. Variable-resolution MPAS allows for upscaling, and has no lateral boundaries.

Why MPAS? Significant differences between WRF and MPAS

WRF Lat-Lon global grid

- Anisotropic grid cells
- Polar filtering required
- Poor scaling on massively parallel computers

MPAS Unstructured Voronoi (hexagonal) grid

- Good scaling on massively parallel computers
- No pole problems

Why MPAS?

Significant differences between WRF and MPAS

WRF Grid refinement through domain nesting

• Flow distortions at nest boundaries

MPAS Smooth grid refinement on a conformal mesh

- Increased accuracy and flexibility for variable resolution applications
- No abrupt mesh transitions.

MPAS Nonhydrostatic Atmospheric Solver

Nonhydrostatic formulation

Equations

- Prognostic equations for coupled variables.
- Generalized height coordinate.
- Horizontally vector invariant eqn set.
- Continuity equation for dry air mass.
- Thermodynamic equation for coupled potential temperature.

Time integration

Split-explicit Runge-Kutta (3rd order), as in Advanced Research WRF

Spatial discretization

Similar to Advanced Research WRF except for a few critical terms.

$$(U,V,\Omega,\Theta,Q_j) = \tilde{
ho}_d \cdot (u,v,\dot{\eta},\theta,q_j)$$

Vertical coordinate:

$$z = \zeta + A(\zeta) h_s(x, y, \zeta)$$

Prognostic equations:

$$\frac{\partial \mathbf{V}_{H}}{\partial t} = -\frac{\rho_{d}}{\rho_{m}} \left[\nabla_{\zeta} \left(\frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \eta \, \mathbf{k} \times \mathbf{V}_{H} \right]
- \nu_{H} \nabla_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \nu_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K - eW \cos \alpha_{r} - \frac{uW}{r_{e}} + \mathbf{F}_{V_{H}},
\frac{\partial W}{\partial t} = -\frac{\rho_{d}}{\rho_{m}} \left[\frac{\partial p}{\partial \zeta} + g \tilde{\rho}_{m} \right] - \left((\nabla \cdot \mathbf{v} W)_{\zeta} \right)$$

$$+\frac{uU+vV}{r_e}+e\left(U\cos\alpha_r-V\sin\alpha_r\right)+F_W,$$

$$\frac{\partial\Theta_m}{\partial x}=\left((\nabla\cdot V\theta_m)\right)+F_{\Theta_m},$$

$$\frac{\partial \tilde{\rho}_d}{\partial t} = -\left(\nabla \cdot \boldsymbol{V}\right)_{\zeta},$$

$$\frac{\partial Q_j}{\partial t} = -(\nabla \cdot \mathbf{V} \, q_j)_{\mathcal{L}} + \rho_d S_j + F_{Q_j}$$

Diagnostics and definitions:

$$\theta_m = \theta [1 + (R_v/R_d)q_v] \qquad p = p_0 \left(\frac{R_d \zeta_z \Theta_m}{p_0}\right)^{\gamma}$$

$$\frac{\rho_m}{\rho_d} = 1 + q_v + q_c + q_r + \dots$$

Operators on the Voronoi Mesh 'Nonlinear' Coriolis force

$$\frac{\partial \mathbf{V}_{H}}{\partial t} = -\frac{\rho_{d}}{\rho_{m}} \left[\nabla_{\zeta} \left(\frac{p}{\zeta_{z}} \right) - \frac{\partial \mathbf{z}_{H} p}{\partial \zeta} \right] - \left(\eta \mathbf{k} \times \mathbf{V}_{H} \right) \\
- \nu_{H} \nabla_{\zeta} \cdot \mathbf{V} - \frac{\partial \Omega \nu_{H}}{\partial \zeta} - \rho_{d} \nabla_{\zeta} K - eW \cos \alpha_{r} - \frac{uW}{r_{e}} + \mathbf{F}_{V_{H}},$$

Linear piece $f k x V_H$, consider u_{13}

We need to reconstruct the tangential velocity

Simplest approach: Construct tangential velocities from weighted sum of the four nearest neighbors.

Result: Physically stationary geostrophic modes (geostrophically-balanced flow) will not be stationary in the discrete system; the solver is unusable.

(Nickovic et al, MWR 2002)

Operators on the Voronoi Mesh 'Nonlinear' Coriolis force

Linear piece: $f k x V_H$

We construct tangential velocities from a weighted sum of normal velocities on edges of the adjacent cells.

$$d_e u_e^{\perp} = \sum_j w_e^j l_j u_j$$

We choose the weights such that the divergence in the triangle is the area-weighted sum of the divergence in the Voronoi cells sharing the vertex.

Result: geostrophic modes are stationary; local and global mass and PV conservation is satisfied on the dual (triangular) mesh (for the SW equations).

The general tangential velocity reconstruction also allows for PV, enstrophy and energy* conservation in the nonlinear SW solver.

Thuburn et al (2009 JCP) Ringler et at (2010, JCP)

Operators on the Voronoi Mesh 'Nonlinear' Coriolis force

Linear piece: $f k x V_H$

We construct tangential velocities from a weighted sum of normal velocities on edges of adjacent hexagons.

$$d_e u_e^{\perp} = \sum_j w_e^j l_j u_j$$

We choose the weights such that the divergence in the triangle is the area-weighted sum of the divergence in the hexagons.

Why does this work?
Consider the linearized SW equations

$$h_t = H \nabla \cdot \mathbf{V}$$
$$\zeta_t = -f \nabla \cdot \mathbf{V}$$

Divergences on primary and dual meshes must be consistent to maintain stationarity

Thuburn et al (2009 JCP) Ringler et at (2010, JCP)

Uniform mesh MPAS-A simulations on Yellowstone

Global, uniform resolution.

6 simulations using average cell-center spacings:

60, 30, 15, 7.5 (2 - with and without convective param) and 3 km.

Cells in a horizontal plane: 163,842 (60 km), 655,362 (30 km),

2,621,442 (15 km), 10,485,762 (7.5 km) and 65,536,002 (3 km).

41 vertical levels, WRF-NRCM physics, prescribed SSTs.

Hindcast periods: 23 October – 2 November 2010

27 August – 1 September 2010, active TC period

15 January – 4 February 2009, MJO event

MPAS Physics: WSM6 cloud microphysics

Tiedtke convection

Monin-Obukhov surface layer YSU pbl, Noah land-surface

RRTMG lw and sw.

3 km global MPAS-A simulation 2010-10-23 init

GOES East, 2010-10-27 0 UTC IR - vapor channel

MPAS 3 km global simulations

Outgoing Longwave Radiation and Column-Maximum Reflectivity 3 km global MPAS 4-day forecast, valid 0 UTC 31 August 2010

MPAS 3km global simulations 27 Aug- 2 Sept 2010

Outgoing longwave radiation and column maximum reflectivity

Global nonhydrostatic simulations using MPAS 0 UTC 15 January – 0 UTC 4 February 2009

Global nonhydrostatic simulations using MPAS 0 UTC 15 January – 0 UTC 4 February 2009

29 January 2009, Vertical Cross Section, (3S, 99.5:101.5E), 3 km MPAS

Variable Resolution Meshes

Reflections at mesh transitions?

- Short-wavelength modes will be reflected in a fine-coarse mesh transition *unless they are filtered*.
- Abrupt transitions typically produce some reflection due to filter inadequacies.
- Smooth transitions minimize reflection of the short wavelength modes (locally) because only the veryshortest wavelengths are subject to reflection, and filters efficiently remove these modes.

Variable Resolution Meshes

Fine mesh filter response per time step

Variable Resolution Meshes

Fine mesh filter response per time step

MPAS-Atmosphere Testing

Variable resolution tests

- 120 km 25 km, 1 year simulations, regional climate configuration.
- 60 15 km 10 day forecasts during the 2013 and 2014 tropical cyclone seasons (Aug-Oct).
- 50 3 km 3 day forecasts of selected cases (US convective outbreaks, tropical and extratropical cyclones, MJO events, etc).

MPAS-Atmosphere 2013-2014 Tropical Cyclone Forecast Experiments

Aug-Oct 2013 & 2014 daily 10-day forecasts (1) uniform 15 km mesh (2) var-res 60-15 km meshes

15-60 km variable resolution mesh

15 km uniform resolution mesh

MPAS Physics:

- WSM6 cloud microphysics
- Tiedtke convection scheme
- Monin-Obukhov surface layer
- YSU PBL
- Noah land-surface
- RRTMG lw and sw.

10-day 500 hPa Relative Vorticity Forecast

Kinetic Energy (KE) Spectra

Observations

Canonical spectrum

- Questions concerning: (1) Observational analyses
 - (2) KE spectra from simulations
 - (3) Dynamics

3 km global MPAS simulation 2009-01-15 init, 20 day simulation KE spectra averaged over 2009-01-20 to 01-30

3 km global MPAS simulation 2009-01-15 init, 20 day simulation KE spectra averaged over 2009-01-20 to 01-30

Kinetic Energy (KE) Spectra

What are the dynamics responsible for the $k^{-5/3}$ mesoscale portion of the KE spectrum?

Current theories include aspects of

- rotating, stratified turbulence
- inertia gravity waves
- quasi-2D balanced dynamics

Question: What are the roles played by external/internal forcings?

- Topography
- Diabatic heating (moist processes).

Kinetic Energy (KE) Spectra Topography Spectrum

Held & Suarez (1994)

$$\frac{\partial \vec{V}}{\partial t} = \dots - k_v(\sigma) \vec{V}$$

$$\frac{\partial T}{\partial t} = \dots - k_T(\phi, \sigma) [T - T_{eq}(\phi, p)]$$

$$T_{eq} = \max \left\{ 200K, \left[315 - (\Delta T)_y \sin^2 \phi - (\Delta \theta)_z \log \left(\frac{p}{p_0} \right) \cos^2 \phi \right] \left(\frac{p}{p_0} \right)^{\kappa} \right\}$$

$$k_T = k_a + (k_s - k_a) \max \left(0, \frac{\sigma - \sigma_b}{1 - \sigma_b} \right) \cos^4 \phi$$

$$k_v = k_f \max \left(0, \frac{\sigma - \sigma_b}{1 - \sigma_b} \right)$$

$$k_f = 1 \quad day^{-1} \qquad \sigma_b = 0.7$$

$$k_a = 1/40 \quad day^{-1} \qquad (\Delta T)_y = 60K$$

$$k_s = 1/4 \quad day^{-1} \qquad (\Delta \theta)_z = 10K$$

$$\kappa = \frac{R}{C_p} = \frac{2}{7}$$

MPAS is run as a dynamical core in CESM/CAM (SangHun Park, Peter Lauritzen, Chris Snyder)

1500 days run, 120km resolution, L30 model top ~ 40km

850hPa temperature (K)

1500 days run, 120km resolution, L30 model top ~ 40km

zonal velocity (zonal average; m/s)

15 km 60 level MPAS, no topography, Held-Suarez test 1500 day spinup, day 5-15 average, 8.5-10.5 km

15 km 60 level MPAS, earth topography, Held-Suarez test 1500 day spinup, day 5-15 average, 8.5-10.5 km

15 km 60 level MPAS, no topography, Held-Suarez test 1500 day spinup, day 5-15 average, 16-18 km

15 km 60 level MPAS, earth topography, Held-Suarez test 1500 day spinup, day 5-15 average, 16-18 km

Two simulations:

- (1) 30 km topography, 30 km mesh
- (2) 120 km mesh topography interpolated to the 30 km mesh

Where are we?

- MPAS-Atmosphere has the flexibility to run globally on uniform and variable-resolution meshes.
- MPAS-Atmosphere produces forecast similar to the Advanced Research WRF (ARW) at large scales and at cloud scales.
- Preliminary tests on variable-resolution meshes show promise. *Scale-aware* physics are needed.
- Data assimilation systems are being tested using MPAS, including variational (GSI), hybrid (hybrid GSI) and EnKF (DART) approaches.
- MPAS-A is a stand-alone model. Applications requiring coupling are being pursued in CESM where MPAS is a CAM core.

Where are we going?

A future high-resolution CONUS/global model?

Challenges:

Scale-aware physics. Data assimilation on variable meshes. Efficiency on evolving computer architectures.

3-15 km mesh, Δx contours 4 - 14 by 2 km. approximately 5.9 million cells 60% in the 3 km region; 40% in the 15 km region

Further information and to access MPAS Version 2.0: http://mpas-dev.github.io/

GOES East, 2010-10-27 0 UTC IR - vapor channel