Numerical Weather Prediction in the Next Decade -Convective Forecasts with a Global Atmospheric Model?

Bill Skamarock
National Center for Atmospheric Research
Mesoscale and Microscale Meteorology
Laboratory

Convective Forecasts with a Global Atmospheric Model?

Why *should* we pursue global convective-scale NWP?

- To better resolve topography.
- To better resolve land use.
- Explicitly simulate deep convection, i.e. remove major uncertainties associated with deep-convection parameterization.

Why *shouldn't* we pursue global convective-scale NWP?

- Newly resolved scale have short predictability timescales.
- Regional models (downscaling) are sufficient for convective-scale forecasts.
- Limited observations at these scales.
- Convective-scale DA approaches are immature.
- Cost-benefit analyses suggest ensembles at mesoscale resolutions are a more efficient use of resources.

Variable-Resolution Global Atmospheric Simulations Bridging the Hydrostatic and Nonhydrostatic Regimes

Bill Skamarock, Joe Klemp, Michael Duda, Laura Fowler, Sang-Hun Park National Center for Atmospheric Research

Based on unstructured centroidal Voronoi (hexagonal) meshes using C-grid staggering and selective grid refinement.

Centroidal Voronoi Meshes

<u>Unstructured spherical centroidal Voronoi meshes</u>

- Mostly *hexagons*, some pentagons and 7-sided cells
- Cell centers are at cell center-of-mass (centroidal).
- Cell edges bisect and are orthogonal to the lines connecting cell centers.
- Uniform resolution traditional icosahedral mesh.

C-grid

- Solve for normal velocities on cell edges.
- Gradient operators in the horizontal momentum equations are 2nd-order accurate.
- Velocity divergence is 2nd-order accurate for edge-centered velocities.

MPAS Nonhydrostatic Atmospheric Solver

Nonhydrostatic formulation

Equations

- Prognostic equations for coupled variables.
- Generalized height coordinate.
- Horizontally vector invariant eqn set.
- Continuity equation for dry air mass.
- Thermodynamic equation for coupled potential temperature.

Time integration

- Split-explicit Runge-Kutta (3rd order), as in Advanced Research WRF.
- Single time-step for the global mesh, CFL limited by highest resolution.

Spatial discretization

• Similar to Advanced Research WRF except for a few critical terms.

Why MPAS? Significant differences between WRF and MPAS

WRF Lat-Lon global grid

- Anisotropic grid cells
- Polar filtering required
- Poor scaling on massively parallel computers

MPAS Unstructured Voronoi (hexagonal) grid

- Good scaling on massively parallel computers
- No pole problems

Why MPAS?

Significant differences between WRF and MPAS

WRF Grid refinement through domain nesting

• Flow distortions at nest boundaries

MPAS Smooth grid refinement on a conformal mesh

- Increased accuracy and flexibility for variable resolution applications
- No abrupt mesh transitions.

Variable Resolution Meshes

Reflections at mesh transitions?

- Short-wavelength modes will be reflected in a fine-coarse mesh transition *unless they are filtered*.
- Abrupt transitions typically produce some reflection due to filter inadequacies.
- Smooth transitions minimize reflection of the short wavelength modes (locally) because only the veryshortest wavelengths are subject to reflection, and filters efficiently remove these modes.

Variable Resolution Meshes

Fine mesh filter response per time step

Variable Resolution Meshes

Fine mesh filter response per time step

Variable Resolution Tests Hydrostatic Scale, TC forecasts

MPAS-Atmosphere

2013-2015 Tropical Cyclone Forecast Experiments 60-15 km variable-resolution meshes

Aug-Oct 2013, 2014, 2015 daily 10-day forecasts, GFS analysis initialization

15-60 km variable resolution mesh

15 km uniform resolution mesh

MPAS Physics:

- WSM6 cloud microphysics
- Tiedtke convection scheme
- Monin-Obukhov surface layer
- YSU PBL
- Noah land-surface
- RRTMG lw and sw.

10-day 500 hPa Relative Vorticity Forecast

Variable Resolution Tests Hydrostatic Scale, TC forecasts

Tropical Storms vs lead time EP, AL, & WP

Variable Resolution Tests Hydrostatic Scale, TC forecasts

False Tropical storms vs lead time Eastern Pacific

Variable Resolution Tests Spanning Hydrostatic to Nonhydrostatic Scales

MPAS mesh:

50 – 3 km variable resolution. Very smooth transition.

MPAS Physics:

- WSM6 cloud microphysics
 - Grell-Freitas convection scheme (scale-aware)
- Monin-Obukhov surface layer
- MYNN boundary layer scheme
- Noah land-surface
- RRTMG lw and sw.

MPAS mesh mean cell spacing (km)

3-50 km mesh, Δx contours 4, 8, 12, 20, 30 40 km approximately 6.85 million cells 68% have < 4 km spacing (158 pentagons, 146 septagons)

Grell-Freitas Convection Scheme in MPAS

Scale-aware/aerosol-aware (Grell and Freitas, 2014, ACP)

- Stochastic scheme (Grell and Devenyi, 2002).
- Scale aware by adapting the Arakawa et al approach (2011).
 - \circ Relates vertical convective eddy transport to convective updraft/downdraft fraction σ :

$$\rho \overline{w\psi} = (1 - \sigma)^2 M_c (\psi_c - \overline{\psi})_{adi} \quad \text{with} \quad M_c = \rho \sigma w_c$$

o GF: σ is the fractional area covered by active updraft and downdraft plume.

$$\sigma = \frac{\pi R^2}{A_{grid cell}}, R_{conv} = \frac{0.2}{\varepsilon}, \varepsilon = 7 \times 10^{-5}$$

$$\sigma_{max} = 0.7$$
entrainment rate (fixed)

- At convection-permitting resolution, parameterized convection becomes much shallower – cloud tops near 800 mb (down from 200-300 mb).
- Temperature & moisture tendencies decrease as resolution increases.

MPAS 50-3 km mesh,
Grell-Freitas convection scheme
3 day forecast valid at
2014-01-13_00:00
Explicit precipitation

1 2 4 8 10 25 50 100 200 400

Accumulated precipitation (mm)

MPAS 50-3 km mesh,
Grell-Freitas convection scheme
3 day forecast valid at
2014-01-13_00:00
Convective precipitation

——— Mesh spacing (4, 8, 12, 20, 30 40 km)

Variable Resolution Tests with the Grell-Freitas Convection Scheme

MPAS 50-3 km mesh, Grell-Freitas convection scheme 10-13 January 2014 forecasts, 3-day average heating rates

no parameterization
GF, no scale-awareness
scale-aware GF

Variable Resolution Tests with the Grell-Freitas Convection Scheme

0 UTC 10 January 2014 - 0 UTC 13 January 2014 270 - 310 E, -40 - 0 N (South America)

Variable Resolution Tests Spanning Hydrostatic to Nonhydrostatic Scales

MPAS mesh:

50 – 3 km variable resolution. CONUS is the 3 km region. Very smooth transition.

MPAS Physics:

- WSM6 cloud microphysics
- Grell-Freitas convection scheme (scale-aware)
- Monin-Obukhov surface layer
- MYNN PBL.
- Noah land-surface
- RRTMG lw and sw.

MPAS mesh mean cell spacing (km)

3-50 km mesh, Δx contours 4, 8, 12, 20, 30 40 km approximately 6.85 million cells 68% have < 4 km spacing (158 pentagons, 146 septagons)

Variable Resolution Tests Forecast 0 UTC 18 May – 12 UTC 21 May 2013

- 3.5 day forecast
- Significant convective activity in the late afternoon/early evening in the central plains. Tornadoes reported on all three days.
- Moore OK tornado on the third day (19 UTC 20 May; 24 fatalities, \$2B damages).

Variable Resolution Tests Forecast 0 UTC 18 May – 12 UTC 21 May 2013 Central plains convection in MPAS, day 1

column max dBZ, 2013-05-19_00:00:00

20130519/0000 RADAR

MPAS, 24 h forecast

NWS radar composite

Variable Resolution Tests Forecast 0 UTC 18 May – 12 UTC 21 May 2013 Central plains convection in MPAS, day 2

column max dBZ, 2013-05-20_00:00:00

20130520/0000 RADAR

MPAS, 48 h forecast

NWS radar composite

Variable Resolution Tests Forecast 0 UTC 18 May – 12 UTC 21 May 2013 Central plains convection in MPAS, day 3

column max dBZ, 2013-05-21_00:00:00

20130521/0000 RADAR

MPAS, 72 h forecast

NWS radar composite

Variable Resolution Tests Forecast 0 UTC 18 May – 12 UTC 21 May 2013

Animation (next slide): What to observe

- Spin-up of small scales is relatively short, 6 to 12 hours.
- Relative vorticity: Smoothly evolving, most importantly in the mesh transition region. Evolving jet structure in central US, associated with tornadic storms, is evident.
- OLR and radar reflectivity: 3 convective episodes, severe storms in the warm sector ahead of the cold front. Upper-level low develops to the N-NW. Some hint of dry-line in the OLR.

Variable Resolution Tests Forecast 0 UTC 18 May – 12 UTC 21 May 2013

Application Test

NOAA SPC/NSSL HWT May 2015

Convective Forecast Experiment
Daily 5-day MPAS forecasts
00 UTC GFS analysis initialization

Application question:

Can a global variable-resolution convection permitting model provide extended range severe weather guidance?

Modeling question:

Will the MPAS parameterizations (convection, microphysics) result in appropriate behavior of the modeled precipitation processes in the mesh transition region?

MPAS mesh mean cell spacing (km)

3-50 km mesh, Δx contours 4, 8, 12, 20, 30 40 km approximately 6.85 million cells 68% have < 4 km spacing (158 pentagons, 146 septagons)

Reflectivity, NOAA SPC archive

MPAS 50-3km 36h fcst Init: 2015-05-06_00:00:00 UTC Valid: 2015-05-07_12:00:00 UTC

Hazardous Weather Testbed Spring Experiment 2015 Forecasts Results from MPAS

Forecasts valid 2015-05-7 00 UTC

Reflectivity, NOAA SPC archive valid 2015-05-17 06 UTC

Forecasts Results from MPAS

MPAS 50-3km 30h fcst Init: 2015-05-16_00:00:00 UTC Valid: 2015-05-17_06:00:00 UTC 1km AGL reflectivity [dBZ]

NCAR

Reflectivity, NOAA SPC archive valid 2015-05-17 06 UTC

Verification against ST4 precipitation analyses

Verification against ST4 precipitation analyses

- Timing of diurnal precipitation maxima and minima is very good.
- Significant over-estimation of diurnal precipitation maxima.
- Significant underestimation of diurnal precipitation minima.
- Over (under) estimation does not improve over time.
- Daily average precipitation (dashed lines) shows a small positive bias early, decreasing over time.

Verification against ST4 precipitation analyses

24 h accumulations

HWT Spring Experiment 5-day forecasts, 50 – 3 km mesh 1-31 May 2015

3-50 km mesh, Δx contours 4, 8, 12, 20, 30, 40 approximately 6.85 million cells 68% have < 4 km spacing

PECAN field campaign 3-day forecasts, 15 – 3 km mesh 7 June – 15 July 2015

approximately 6.5 million cells 50% have < 4 km spacing

15 May test forecasts comparing the response on the two meshes

2015-05-15 00 UTC Initialization

120 hour forecasts accumulated precipitation

Mesh spacing contours 4, 10, 20, 30, 40 km

Variable Resolution Tests Forecast 0 UTC 15 May – 0 UTC 20 May 2015

500 hPa vorticity at 2015-05-15_01:00:00

Variable Resolution Tests Forecast 0 UTC 15 May – 0 UTC 20 May 2015

500 hPa vorticity at 2015-05-15_01:00:00

500 hPa vorticity at 2015-05-15_01:00:00

Variable Resolution Tests Forecast 0 UTC 15 May – 0 UTC 20 May 2015

Convective Forecasts with a Global Atmospheric Model

Summary

Variable-resolution, nonhydrostatic-scale atmospheric simulations are viable

- Fidelity of convection similar to that in ARW.
- MPAS variable-resolution forecasts may contain some extended-range convective guidance.
- Simulation rates >100 days/day are attainable.
- GF convection scheme appears to be viable for hydrostatic-nonhydrostatic scale-aware applications.

Challenges

Scale-aware physics:

- Convection
- Microphysics
- Boundary layer

Data assimilation on variable meshes

3-15 km mesh, Δx contours approximately 6.5 million cells 50% have < 4 km spacing

Forecasts available at http://wrf-model.org/plots/realtime_main.php

