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To advance understanding of the influence hill-slope and hill-shape have on neutrally-9
stratified turbulent air flow over isolated forested hills, we interrogate four turbulence-10
resolving simulations. A spectrally friendly fringe-technique enables the use of periodic11
boundary conditions to simulate flow over isolated two-dimensional and three-dimensional12
hills of cosine shape. The simulations target recently-conducted wind-tunnel experiments13
that are configured to fall outside the regimes for which current theory applies. Simulation14
skill for flow over isolated three-dimensional hills is demonstrated through matching the15
canopy and hill configuration with the recently-conducted wind-tunnel experiments and16
inter-comparing results. The response of the mean and turbulent flow components to two-17
dimensional versus three-dimensional hills along hill-centerline are discussed. The phase18
and amplitude of spatially varying flow perturbations over forested hills are evaluated for19
flows outside the regime valid for current theory. Flow over isolated 2D forested hills20
produces larger amplitude vertical motions on a hill’s windward and leeward faces and21
speed-up of the mean wind compared to that over isolated 3D forested hills at hill-centerline.22
3D hills generate surface pressure minima over hill-crest that are only half the magnitude23
of those over 2D hills. The spatial region over which hill-induced negative pressure drag24
acts increases with increasing hill steepness. Assumptions in partitioning the flow into an25
upper layer with an inviscid response to the hill’s pressure field are robust and lead to26
solid predictions of hill-induced perturbations to the mean flow, however applying those27
assumptions to predict the evolution of the turbulent moments only provides approximate28
explanations at best.29
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1. Introduction31

Over 20% of the Earth’s surface can be characterized as hilly or mountainous terrain (e.g.,32
Körner et al. 2005). Although tall mountainous regions of the world garner substantial33
focus in meteorology (e.g., Bougeault et al. 2001; Grubišić et al. 2008; Houze et al. 2017),34
the Earth’s hypsographic curve interestingly shows that most of Earth’s terrain is less than35
1000 m in height (e.g., Lagrula 1968; Cawood et al. 2022). Even in large-scale mountainous36
terrain, terrain height spectra demonstrate substantial variance at small scales (e.g., Young37
& Pielke 1983). While today’s weather, air pollution and climate models can potentially38
resolve the larger-scale terrain features (e.g., mountains), the ability to resolve gentle small-39
scale hills currently remains beyond reach in larger-scale models. Due to the prevalence of40
small-scale hills, understanding their influence on turbulent flow is also essential for proper41
measurement interpretation, and for describing pollutant, aerosol, and seed transport, and42
for predicting wind throw and wind energy availability (e.g., Finnigan et al. 2020).43

Under neutrally-stratified conditions, inviscid incompressible flow over a low symmetric44
obstacle produces a pressure minima occurring at the obstacle crest but does not generate45
any resistance (drag) because the pressure perturbation remains symmetric relative to the46
obstacle in the absence of any momentum stress (e.g., d’Alembert 1752; Calero 2018).47
In laminar incompressible flow, the addition of finite viscosity ensures a thickening of48
the boundary layer (a greater separation of the streamlines) in a hill-like obstacle’s lee49
due to the spatially-varying action of viscous drag which produces a pressure perturbation50
phase-shifted slightly downstream relative to the obstacle resulting in form drag (typically51
referred to as sheltering, e.g., Prandtl 1904). Turbulent incompressible flows over hills52
also produce form drag through sheltering but the turbulent stresses dominate the smaller53
viscous stresses resulting in even larger pressure asymmetry relative to the hill-shape54
producing even larger drag (e.g., Jackson & Hunt 1975; Britter et al. 1981; Hunt et al.55
1988; Belcher et al. 1993). Characteristics of the hill can alter the flow’s evolution over the56
obstacle, e.g., flow over steeper hills induces larger amplitude pressure perturbations and57
this obstacle-induced pressure perturbation can generate a sufficiently large near-surface58
adverse pressure-gradient on the hill’s lee that downward turbulent transport of momentum59
from aloft becomes insufficient to counter the adverse pressure-gradient producing flow60
separation; whether the flow separates or not dramatically alters the pressure field and61
hence the overall form drag felt by the outer flow (e.g., Taylor et al. 1987; Finnigan et al.62
1990; Wood & Mason 1993; Athanassiadou & Castro 2001). Because surface roughness63
alters the turbulence, variations in surface roughness also modulate flow responses to hills64
and the induced separation(e.g., Britter et al. 1981; Ayotte & Hughes 2004; Tamura et al.65
2007). Flow over two-dimensional (2D) vs. three-dimensional (3D) hills (e.g., ridges vs.66
isolated hills) also differs substantially because of the ability for flow over 3D hills to67
divert around the hill, which produces spanwise shear around the edges of and in the lee68
of the hill altering the turbulence and separation by generating additional instabilities and69
vortices (e.g., Mason & Sykes 1979; Hunt & Snyder 1980; Mason & King 1985; Arya &70
Gadiyaram 1986; Gong & Ibbetson 1989; Ishihara et al. 1999; Liu et al. 2019a,b, 2020).71

Because mountainous and hilly terrain compresses climate zones and creates small-72
scale habitat diversity, these regions support more than one quarter of the Earth’s terrestrial73
biodiversity (e.g., Körner et al. 2005). Hilly terrain is therefore frequently forested. Finnigan74
& Belcher (2004) demonstrated using linearized theory that because forests interact with the75
flow through pressure drag, forests on hills can shift the hill-induced pressure perturbation76
enough to induce separation at notably smaller slopes than expected over hills of similarly77
specified roughness. Finnigan & Belcher’s (2004) theory also predicts that flow separation78
should depend on the distribution and density of the canopy elements, which Patton &79
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Figure 1. A photo of the forested isolated axisymmetric 3D steep (𝑠𝑚 = 0.26) cosine hill surface in the wind
tunnel (Harman & Finnigan 2019).

89
90

Katul (2009) later confirmed. Researchers such as Wilson et al. (1998), Poggi et al. (2007),80
and Ross (2008) discussed that within-canopy turbulence mixing length scales vary with81
position over sinusoidally repeating forested hills. When investigating turbulent flow over82
observed Amazonian terrain, Chen et al. (2020) found separated flow even in the lee of83
small bumps, and Chamecki et al. (2020) and Chen & Chamecki (2023) showed that84
imbalances in above-canopy turbulent kinetic energy budgets can result from upstream85
terrain influences. With the exception of Chamecki et al. (2020), Chen et al. (2020) and86
Chen & Chamecki (2023), much of this literature discussing turbulence over forested hills87
has focused on 2D sinusoidally repeating hills.88

To our knowledge, Finnigan & Brunet (1995) represents the first effort describing within-91
and above-canopy turbulent flow over isolated forested hills, where they documented that92
above-canopy streamlines dip into the canopy at about one-third the way up the windward93
side of a 2D isolated hill which can eliminate (or even reverse) the inflection point in94
the mean velocity profile expected in canopy-flows (e.g., Raupach et al. 1996; Finnigan95
et al. 2009); a phenomenon that has important implications for turbulence production96
at canopy-top. Neff & Meroney (1998) found that canopy-gaps influence hill-induced97
fractional speed-up factors and flow separation. Through two-point correlation analysis,98
Dupont & Brunet (2008) noted that turbulence in the intermittent leeward separation zone99
is not correlated with canopy-top turbulence on the windward side of the hill. Grant et al.100
(2015) found key features predicted by Finnigan & Belcher’s (2004) theory in their field101
measurements over an isolated forested ridge. For a given hill shape, Ma et al. (2020)102
demonstrated that variation in a canopy’s morphology modulates the position, strength103
and depth of the leeward separation bubble. Similar to Wood (2000) who discussed flow104
over hills with unresolved roughness, Tolladay & Chemel (2021) demonstrated resolution105
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influences on key turbulence statistics in large-eddy simulation of flow over the same106
isolated forested ridge as that studied by Ma et al. (2020). These efforts have enhanced the107
general understanding of the role tall vegetation plays in modulating turbulent flow over108
infinitely long isolated ridges; how canopies modulate turbulence over three-dimensional109
hills remains understudied.110

To understand the role that hill shape and slope play in modulating turbulence, we111
analyze four large-eddy simulations of turbulent flow over isolated forested hills. These112
four simulations include two each at two different hill slopes. For each hill slope, the113
simulations conducted include one targeting flow over an infinitely-wide 2D hill and one114
over an axisymmetric 3D hill. In collaboration with the effort reported here, colleagues115
conducted a comprehensive wind tunnel experiment studying neutrally stratified turbulent116
over 3D forested hills (figure 1, Harman & Finnigan 2019). The numerical simulations117
attempt to reproduce the physical wind tunnel simulations over axisymmetric 3D hills118
(Harman & Finnigan 2019) and 2D hills.119

The outline of this manuscript is as follows: Section 2 discusses current theory describing120
turbulent flow over forested hills. Section 3 describes the simulations investigated. Section 4121
outlines the techniques used to analyze the simulation data. Section 5 compares the122
simulation results to Harman & Finnigan’s (2019) wind tunnel measurements. Section 6123
describes the mean flow and turbulence response to variations in hill shape and slope.124
Section 7 interrogates turbulence/mean-flow phase relationships at key heights above the125
surface toward advancing current theory, and section 8 summarizes the findings.126

2. Current theory describing turbulent flow over forested hills127

Current analytic theory of turbulent shear flow over low hills (e.g., Jackson & Hunt 1975;128
Hunt et al. 1988; Belcher et al. 1993, referred to hereafter as HLR88) has provided an129
enduring and consistent framework for analysis and understanding of flow over low hills130
and even over steeper hills upwind of the separation region. The theory divides the flow into131
different layers, where the perturbations to the mean flow caused by the hill are governed132
by distinctly different dynamics. Separate solutions to the flow equations are found for each133
layer and then these are matched asymptotically between the layers. For hills of sufficiently134
low-slope to ignore flow separation, HLR88 defined two main regions: 1) the outer region,135
where the response to the pressure field generated by flow over the hill is inviscid, and 2) the136
inner region, where perturbations to the turbulent Reynolds stresses affect the perturbations137
to the mean flow. Each of these regions was further divided into two layers. The middle138
layer, of depth ℎ𝑚, is the lower part of the outer region through which flow responses139
are inviscid but rotational to accommodate shear in the approach flow. In the upper layer,140
extending from ℎ𝑚 to the top of the boundary layer, flow responses are irrotational and141
can be computed by potential theory. The inner region consists of the shear stress layer of142
depth ℎ𝑖 , and the thin inner surface layer, of depth 𝑙𝑠, which allows formal matching with143
a surface boundary condition.144

Finnigan & Belcher (2004) extended Hunt et al.’s (1988) analytic theory to hills covered145
by tall plant canopies by replacing the thin inner surface layer by a deep plant canopy146
parameterized by linearized flow equations in the upper canopy but where the unavoidably147
non-linear dynamics in the lower canopy were treated heuristically. Harman & Finnigan148
(2009, 2013) further developed Finnigan & Belcher (2004) to accommodate more realistic149
2D hills and then Harman & Finnigan (2021) extended the theory to 3D hills.150

In all of these small perturbation theories, whether over hills covered by a rough surface151
or a tall canopy, identifying the depths of the inner shear stress layer, ℎ𝑖 and the middle152
layer, ℎ𝑚 is critical to applying the theory. To derive the formula for ℎ𝑚, Hunt et al.153
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(1988) assumed that the flow approaching the hill could be described by a logarithmic154
profile in equilibrium with the upstream surface while in the inner shear stress layer ℎ𝑖 , the155
interdependence of the perturbations to the turbulent shear stresses and the perturbations156
to the mean shear are assumed to obey the same mixing length flux-gradient relationship157
as in an equilibrium log law. Finnigan & Belcher (2004) relies on the same formulae for158
ℎ𝑚 and ℎ𝑖 as Hunt et al. (1988).159

The formulae for ℎ𝑚 and ℎ𝑖 assume the flow over the hill remains attached (i.e. no160
flow separation). Over steeper 2D hills and over 3D hills, this assumption breaks down. If161
the flow separates, streamlines that were following the surface contour upwind leave the162
surface and delineate the boundary of a separation bubble. Downwind of the separation163
point the scale of the largest turbulent eddies increases abruptly. In the attached flow the164
largest eddies are limited by the local distance to the surface but after separation the largest165
eddies span the bubble depth, which is typically O(𝐻) with 𝐻 representing the hill height.166
While the streamlines approaching a 3D hill in its plane of lateral symmetry go over167
the hill-centerline, streamlines to either side are deflected forming space curves whose168
principal normals intersect the hill surface at right angles (Finnigan 2024).169

As fluid parcels above the canopy advect over the hill, changes to the Reynolds stresses170
reflect the competing effects of two processes. First, the existing eddies are stretched and171
rotated by the mean flow as they follow the mean streamlines. Second, nonlinear interactions172
between the eddies will tend to equalize turbulent kinetic energy (𝑇𝐾𝐸) between their173
orthogonal components 𝑢′, 𝑣′, and 𝑤′, and to transfer 𝑇𝐾𝐸 to finer scale eddies where it is174
ultimately dissipated to heat through the action of viscosity. These effects are represented175
formally in the conservation equations for the turbulent normal and shear stresses, ⟨𝑢′2⟩,176
⟨𝑣′2⟩, ⟨𝑤′2⟩, ⟨𝑢′𝑤′⟩, ⟨𝑣′𝑤′⟩ and the 𝑇𝐾𝐸 , where 𝑇𝐾𝐸 =

(
⟨𝑢′2⟩ + ⟨𝑣′2⟩ + ⟨𝑤′2⟩

)
/2. In these177

equations, the so-called production terms describe the transfer of kinetic energy from the178
mean flow to the larger energy-containing eddies of the turbulence while the turbulent179
diffusion and pressure-strain terms describe the non-linear interactions between these180
eddies, which break them down and destroy their coherence. These non-linear interactions181
determine 𝜏, the time over which the large eddies remain coherent enough to receive energy182
directly from the mean flow. 𝜏 can be taken as 𝜏 ∼ 𝑇𝐾𝐸/𝜖 , where 𝜖 is the rate of viscous183
dissipation of 𝑇𝐾𝐸 . This definition is strictly only applicable to equilibrium situations,184
where the rate of viscous dissipation is in balance with the transfer of kinetic energy from185
the mean flow to the turbulence, but we will assume that is also indicative of the rate at186
which these large eddies lose their coherence as they interact with each other during their187
passage over the hill.188

In regions where the time scale of hill-induced changes in the mean flow is small189
compared to 𝜏 (i.e. in the so-called rapid distortion regimes), the turbulent stresses will190
reflect their recent history of straining and rotation by the mean flow and HLR88 assumes191
that this will be the case in the outer region in general and in the middle layer in particular.192
In regions where mean flow changes are slow compared to 𝜏, the turbulence will approach193
a state of local equilibrium between the rate of straining by the mean flow and the resulting194
Reynolds stresses so that their relationship can be described by an eddy viscosity. Current195
theory assumes that we should observe this behavior in the inner shear stress layer, 𝑧 < ℎ𝑖 .196

Beneath the inner layer and above the ground surface lies the canopy layer, which197
introduces additional length scales (𝐿𝑐 and ℎ𝑐), through the addition of canopy drag and198
the no-slip condition at the surface. In the canopy, turbulent stresses are complicated by199
wake production,𝑊𝑝, i.e. the production of turbulent eddies at scales defined by the canopy200
elements and associated short-circuiting of the inertial energy cascade (Finnigan 2000;201
Shaw & Patton 2003). In addition, viscous dissipation increases by the work performed by202
the turbulence against the viscous drag of the canopy elements (Ayotte et al. 1999; Shaw203
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& Patton 2003). For dense canopies (ℎ𝑐/𝐿𝑐 > 1), canopy drag eliminates the importance204
for the flow dynamics of shear stress at the underlying surface but at the same time ensures205
strong vertical gradients in turbulent stresses. Finally, behind the hill crest, the strong206
adverse pressure gradient can cause reversed flow and separation, which introduces the hill207
height 𝐻 as an additional length scale affecting the turbulence.208

3. Simulation description and configuration209

Numerical models of turbulent flow over forested hills take many forms that each provide210
value with varying levels of accuracy and cost (see recent review by Finnigan et al. 2020).211
Analytical models provide extremely timely solutions, but typically linearize the non-linear212
equations that describe turbulent flow (e.g., Finnigan & Belcher 2004; Poggi et al. 2008;213
Harman & Finnigan 2009, 2013). Reynolds-Averaged Navier Stokes (RANS) models solve214
the full non-linear equations but averaged over space and time such that the influence of215
turbulence is fully parameterized (e.g., Wilson et al. 1998; Katul & Chang 1999; Ross &216
Vosper 2005, among others). Similar to RANS, large-eddy simulation (LES) also solves the217
full non-linear equations but relies on relatively isotropic grids and only spatially averages218
(or filters) the equations at scales smaller than the grid resolution, such that the largest219
scales of turbulence (i.e. those performing most of the transport) are resolved by the grid220
and only the smallest scales of turbulence (which primarily act to dissipate energy) must be221
parameterized (e.g., Moeng & Sullivan 2015). Although it is computationally expensive,222
LES has become a close counterpart to field and lab experiments over the past 30+ years223
because of its ability to accurately simulate the time- and spatially evolving response of224
turbulence to varying forcing over complex surfaces (e.g., Wood 2000; Patton & Katul225
2009; Sullivan et al. 2014; Chamecki et al. 2020).226

In our LES, the governing equations describe three-dimensional time-dependent tur-227
bulent winds in a dry incompressible Boussinesq atmospheric boundary layer, including:228
a) three transport equations for momentum 𝜌u, b) a transport equation for a conserved229
scalar variable, c) a discrete Poisson equation for a pressure variable 𝑝 to enforce230
incompressibility; and d) closure expressions for subgrid-scale (SGS) variables, e.g., a231
subgrid-scale equation for turbulent kinetic energy 𝑒 (see: Sullivan et al. 2014). The232
physical processes included in the LES boundary-layer equations include, temporal time233
tendencies, advection, pressure gradients, divergence of subgrid-scale fluxes, buoyancy,234
resolved turbulence, and in the case of the SGS 𝑒 equation also diffusion and dissipation.235

Explicit spatial filtering of the momentum equations in the presence of vegetative-canopy236
elements generates terms representing canopy-induced pressure and viscous drag (Finnigan237
& Shaw 2008) which are parameterized using a time-dependent and local velocity-squared238
type drag law, e.g.,:239

𝐹𝑐 = − 𝑐𝑑 𝑎 |u| u (3.1)240

where, 𝑎 is the canopy’s frontal area density and 𝑐𝑑 is a drag coefficient describing the241
canopy’s efficiency at absorbing momentum. Dissipation in the SGS energy equation is242
also augmented by the work SGS motions perform against the canopy-induced form drag.243
See Shaw & Patton (2003), Patton & Katul (2009), and Patton et al. (2016) for further244
details of the canopy representation in the LES.245

By applying a transformation to the physical space coordinates (𝑥, 𝑦, 𝑧) that maps them246
onto flat computational coordinates (𝜉, 𝜂, 𝜁), Sullivan et al. (2014) adapted our flat LES247
(Sullivan & Patton 2011) to a situation with a three-dimensional time-evolving lower248
boundary shape ℎ = ℎ(𝑥, 𝑦, 𝑡). The current simulations use this same framework, but249
impose a time-independent surface, e.g., ℎ = ℎ(𝑥, 𝑦) where the maximum hill slope250
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𝑠𝑚 = max( 𝜕ℎ
𝜕𝑥

). Of importance is that we transform the coordinates, not the flow variables.251
Therefore, horizontal velocity components (𝑢, 𝑣) are defined in a right-handed Cartesian252
coordinate system parallel to the flat surface surrounding each hill (with 𝑢 aligned with253
the imposed pressure gradient force in the +𝑥-direction, and 𝑣 positive to the left of the254
imposed pressure gradient force in the +𝑦-direction), and vertical velocity (𝑤) is defined255
positive upward from the underlying flat surface (the +𝑧-direction) aligned opposite to256
the gravitational force (although the flow under consideration is neutrally stratified, so257
gravitational forces are ignored).258

The simulations discretize a 4096× 2048× 512 m3 domain using 2048× 1024× 256 grid259
points. The computational mesh in physical space is surface following and non-orthogonal.260
Vertical grid lines are held fixed at a particular (𝑥, 𝑦) location but the horizontal grid lines261
undergo vertical translation according to the vertical variation of the underlying surface.262
While the grid resolution in the horizontal directions is fixed for all horizontal locations,263
the vertical grid is refined near the surface to resolve near-surface/canopy processes and is264
then algebraically stretched above the canopy to push the upper boundary far above the hill265
to minimize any influence of the upper boundary on the hill-induced pressure field. Care266
is taken to ensure that every grid volume uses an aspect ratio no larger than 5:1 attempting267
to reasonably satisfy isotropy assumptions used to close the equations in the subgrid-scale268
model.269

Spatial differencing is pseudospectral in the horizontal computational directions (𝜉, 𝜂)277
and is second-order finite difference in 𝜁 . Time stepping uses a low-storage third-order278
Runge-Kutta scheme (RK3), and the time step 𝛿𝑡 is picked dynamically based on a fixed279
Courant-Fredrichs-Lewy (CFL) number.280

An important development for this effort involves implementing a turbulent inflow fringe281
(or precursor) method which is compatible with our pseudospectral spatial differencing282
and RK3 time differencing (Schlatter et al. 2005; Munters et al. 2016) to enable simulation283
of flow over isolated 2D and 3D hills. The strategy involves simulating two interconnected284
periodic domains, where the flow in the upwind domain is periodic and representative of285
flow over an infinitely long horizontally-homogeneous forested surface. The outflow of that286
upwind domain serves as inflow for the downwind domain containing the hill. In the second287
domain at the boundary far downstream from the hill, nudging terms are applied over the288
downwind-most 102 grid points (from grid points 1946 to 2048) to force the exit flow of289
the larger downwind domain to match the flow exiting the upstream region (note that 102290
grid points is 20% of the upwind domain). Hence both domains use periodic boundary291
conditions in the 𝑥-direction, but the flow impinging on the hill is unaware of any upstream292
hills. It is important to note two things: 1) the size of the upstream inflow domain dictates293
the largest scales of motion impinging on the hill located in the downstream domain, and 2)294
the chosen fringe strategy used in these simulations was developed prior to and differs from295
the two-domain strategy discussed in Sullivan et al. (2020, 2021) which ensures decoupling296
of inflow conditions from any slight imperfections in the spectral tapering (e.g., Inoue et al.297
2014) and which enables inclusion of Coriolis and buoyancy forces.1 Figure 2 shows the298
total extent of the horizontal domain for the two steeper hill configurations (𝑠𝑚 = 0.26). The299
blue lines in figure 2 mark the boundaries where periodicity in the 𝑥-direction is enforced.300
The green lines in figure 2 mark the starting point of the region where the nudging301
algorithm operates, with the left side showing the horizontally-homogeneous region used302
to nudge the downstream flow back to horizontally-homogeneous flow that is unaware of303

1For these reasons, we recommend using the technique described by Sullivan et al. (2020, 2021) for future
studies.
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Figure 2. Example of the horizontal domains used and the idealized cosine-shaped 2D and a 3D hills. The
lower panel reflects the axisymmetric case with 𝐿 = 𝐿𝑦 = 𝐿𝑥 . The blue line spanning the domain at 𝑥 = 1024
m depicts the down wind boundary of the horizontally-homogeneous periodic region, while the green line
spanning the domain at 𝑥 ∼ 3892 m depicts the beginning of the fringe region where the solutions begin to be
nudged back to those at the down wind edge of the upwind periodic region starting at the green line located
at 𝑥 ∼ 820 m. Periodic boundary conditions are imposed in the 𝑦-direction. The vertical domain extends up to
512 m.

270
271
272
273
274
275
276

the hill and the right side showing the region that is nudged back to the upwind conditions.304
Periodic boundary conditions are imposed in the lateral (𝑦) direction, the upper boundary305
is a friction-less rigid lid, and the lower boundary beneath the trees uses a rough-wall306
neutrally-stratified drag law with a surface roughness length 𝑧◦ = 1 × 10−3 m.307

To minimize the computational expense, all the simulations are generated by first308
integrating a smaller 512 × 512 × 256 grid point flat-domain simulation out in time309
using periodic horizontal boundary conditions until the initially laminar flow develops310
from divergence free random fluctuations into 3D turbulence that is in equilibrium with311
the imposed pressure gradient. Upon reaching equilibrium, a restart volume is saved. This312
volume is then mirrored one time in the lateral (𝑦) and four times in the downwind (𝑥)313
directions to create a fully turbulent initial condition for the full large-domain simulations.314
The code is then reconfigured to: 1) restart from this larger volume, and 2) run using315
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LH

ℎ𝑐

Figure 3. A zoomed presentation of the 2D (left panel) and 3D-axisymmetric (right panel) cosine hills
interrogated. In the left panel, 𝐿 = 𝐿𝑥 and 𝐿𝑦 is not defined, and in the right panel 𝐿 = 𝐿𝑥 = 𝐿𝑦 . 𝐻 is
the hill height (Eq. 3.2). The green surface depicts canopy top ℎ𝑐 .

322
323
324

the precursor inflow boundary condition in the along-wind (𝑥) direction. Upon restart, a316
hill is gradually grown into the downwind portion of the domain over a period of 400 s.317
Averaging begins after integrating forward in this configuration for approximately one318
large-eddy turnover time to allow the turbulence to evolve into the new configuration.319
Running on 2048 CPUs on an HPE SGI ICE XA system (CISL 2019), the (2D, 3D)-hill320
simulations required approximately (77, 366) wallclock hours, respectively.321

As in the wind tunnel measurements (Harman & Finnigan 2019), the flow is neutrally325
stratified (no buoyancy) and Coriolis forces are ignored. The hills are of cosine shape:326

ℎ(𝑥, 𝑦) = 𝐻 cos2
(
𝜋 𝑥̂

4

)
when: | 𝑥̂ | ≤ 2 (3.2)327

ℎ(𝑥, 𝑦) = 0 when: | 𝑥̂ | > 2 (3.3)328

where, 𝐻 is the hill height. In the 2D-hill case,329

𝑥̂ =
𝑥 − 𝑥◦
𝐿𝑥

(3.4)330

and, in the 3D-hill case,331

𝑥̂ =

[(
𝑥 − 𝑥◦
𝐿𝑥

)2
+

(
𝑦 − 𝑦◦
𝐿𝑦

)2
] 1

2

, (3.5)332

where 𝐿𝑥 and 𝐿𝑦 are the hill lengths at the hill half-height in the 𝑥- and 𝑦-directions,333
respectively, and (𝑥◦, 𝑦◦) represent the physical location of the hill crest. In the axisymmetric334
3D hill simulations, 𝐿𝑥 = 𝐿𝑦 = 𝐿. Variations in hill steepness are generated by keeping335
𝐻 fixed and varying 𝐿. Scaling up the wind tunnel hills by a factor of 256, 𝐻 = 12.8 m336
for all cases; see table 1 for the matching values of 𝐿. Figure 3 shows examples of the337
surfaces investigated with the LES. The 𝑥,𝑦 grid lines follow this surface and algebraically338
relax back to horizontal grid lines parallel to the upwind flat surface at approximately the339
domain half-height (see Eq. 4 in Sullivan et al. 2014, where we use 𝜛 = 3).340
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Case ID Shape 𝑠𝑚 𝐿 𝑢∗ 𝐹𝑝/𝑢2
∗ 𝐹𝑐/𝑢2

∗ 𝐹𝜏/𝑢2
∗ max(𝛥𝑢/𝑢𝑏)ℎ𝑐 max(𝛥𝜎𝑢/𝜎𝑢𝑏 )ℎ𝑐 max(𝛥𝜎𝑤/𝜎𝑤𝑏

)ℎ𝑐 max(𝛥𝑢𝑤/𝑢𝑤𝑏)ℎ𝑐
2D-0.16 2D 0.16 64.0 0.42 0.78 0.22 0.02 0.56 [−0.41] 0.11 [−0.34] 0.35 [0.88] 0.32 [−1.38]
3D-0.16 3D 0.16 64.0 0.40 0.46 0.20 0.12 0.42 [−0.34] 0.10 [−0.22] 0.26 [0.72] 0.75 [ 0.81]
2D-0.26 2D 0.26 38.4 0.42 2.69 0.22 0.01 0.80 [−0.31] 0.09 [−0.31] 0.37 [2.29] 0.68 [−1.30]
3D-0.26 3D 0.26 38.4 0.42 1.26 0.18 0.08 0.64 [−0.31] 0.19 [−0.16] 0.19 [1.30] 0.13 [ 1.09]

Table 1. Bulk parameters from each of the four simulations. 𝑠𝑚 is the maximum hill slope [max( 𝜕ℎ
𝜕𝑥

)], 𝐿 is the
length of the hill (m) in the streamwise direction 𝑥 at half the hill height (so the total hill length is 4𝐿), 𝑢∗ is
the friction velocity (m s−1) evaluated at 𝑥 = −4𝐿 and 𝑧 = ℎ𝑐 (consistent with 𝑢∗ observed in the wind tunnel;
when averaged over the entire upwind periodic domain, 𝑢∗ = 0.42 m s−1 for all cases). 𝐹𝑝 = −

∫ 2𝐿
−2𝐿 ⟨𝑝⟩ℎ𝑥 𝑑𝑥

is the streamwise surface pressure drag integrated over the hill (e.g., the hill-induced pressure force on the air)
normalized by 𝑢2

∗ , where ℎ𝑥 = 𝜕ℎ
𝜕𝑥

is the 𝑥-varying hill slope), 𝐹𝑐 = − 𝑐𝑑 𝑎
∫ 2𝐿
−2𝐿

∫ ℎ𝑐

0 ⟨|𝑢𝑖 |𝑢⟩ 𝑑𝑧 𝑑𝑥 is the hill- and
canopy-integrated drag induced by the canopy in the streamwise direction, and 𝐹𝜏 =

∫ 2𝐿
−2𝐿 ⟨𝑢

′𝑤′⟩ 𝑑𝑥 is the hill-
integrated streamwise surface stress; the total drag felt by the flow over the hill 𝐹𝑇 = 𝐹𝑝+𝐹𝑐+𝐹𝜏 . max(𝛥𝑢/𝑢𝑏)ℎ𝑐 ,
max(𝛥𝜎𝑢/𝜎𝑢𝑏 )ℎ𝑐 ,max(𝛥𝜎𝑤/𝜎𝑤𝑏

)ℎ𝑐 andmax(𝛥𝑢𝑤/𝑢𝑤𝑏)ℎ𝑐 are the maximum hill- and canopy-induced speedup,
standard deviation of streamwise and vertical velocity, and vertical flux of streamwise momentum increase at
canopy top along hill centerline, respectively, where 𝛥𝑢/𝑢𝑏 = [(⟨𝑢⟩ − ⟨𝑢⟩𝑏)/⟨𝑢⟩𝑏], 𝛥𝜎𝑢/𝜎𝑢𝑏 = [(𝜎𝑢 −
𝜎𝑢𝑏 )/𝜎𝑢𝑏 ], 𝛥𝜎𝑤/𝜎𝑤𝑏

= [(𝜎𝑤 − 𝜎𝑤𝑏
)/𝜎𝑤𝑏

], and 𝛥𝑢𝑤/𝑢𝑤𝑏 = [(⟨𝑢′𝑤′⟩ − ⟨𝑢′𝑤′⟩𝑏)/⟨𝑢′𝑤′⟩𝑏] evaluated at a
height of ℎ𝑐 above the local surface ℎ, the notation 𝑏 refers to a reference value upwind of the hill (section A),
and the adjacent values in square brackets reflects the 𝑥/𝐿 location where the maximum canopy-top value is
found.
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The canopy parameters are derived directly from measurements of the rods used in the341
wind tunnel experiments (Harman & Finnigan 2019). In the wind tunnel, the rods are 15342
mm tall, 5 mm in diameter (𝑑𝑟 ), and are spaced at 12.5 mm intervals in the 𝑥-direction and343
25 mm in the 𝑦-direction. Hence, the number of rods per unit area 𝑛𝑟 = 3200 m−2 and the344
rods have a frontal area density 𝑎 = 𝑛𝑟 ×𝑟𝑑 = 16 m2m−3 that is constant with height. Fitting345
the wind-tunnel observed profiles with the rods installed on flat terrain (Harman & Finnigan346
2019, figure 2a) to the Harman & Finnigan (2007) roughness sublayer theory reveals that347
the rods have an effective canopy length scale 𝐿𝑐 = (𝑐𝑑 𝑎)−1 = 110 mm. Therefore, the348
drag coefficient 𝑐𝑑 of the rods is 0.57. In the numerical simulations, these rod parameters349
are applied to a canopy of height ℎ𝑐 = 3.84 m resolved by nine grid points on the flat350
portion of the domain and by ten grid points at the hill crest due to the terrain following351
coordinate system. To mimic the wind tunnel experiments, the canopy is prescribed to be352
horizontally-homogeneous for all four simulations. Figure 1 shows an image of the wind353
tunnel configuration with the steep-sloped (𝑠𝑚 = 0.26) axisymmetric canopy-covered hill354
installed.355

To classify the current simulations within the context of previous work, we first turn to the356
Hunt et al. (1988) and Finnigan & Belcher (2004) theories discussed in section 2. In both357
theories, the middle layer depth (ℎ𝑚) is defined as ℎ𝑚 ∼ 𝐿 [ln(ℎ𝑚/𝑧◦)]1/2, and the inner layer358
depth (ℎ𝑖) is defined as ℎ𝑖 ∼ 2 𝐿 𝜅2/ln(ℎ𝑖/𝑧◦), where 𝜅 is von Kármán’s constant. However,359
calculating ℎ𝑖 and ℎ𝑚 using these formulations can lead to physically implausible values360
over surfaces covered with tall roughness, i.e. ℎ𝑖 can end up being found at heights within361
the canopy of roughness elements (Finnigan et al. 1990). Therefore, section B derives new362
formulas for ℎ𝑖 and ℎ𝑚 incorporating changes to the logarithmic mean velocity profile and363
the accompanying flux-gradient relationship which occur over a tall plant canopy (Harman364

& Finnigan 2007, 2008); labeled ℎ̂𝑚 and ℎ̂𝑖 using similar notation to Harman & Finnigan365

(2007, 2008). For the configurations discussed here, ℎ̂𝑚 ∼ (32.8, 21.7) m and ℎ̂𝑖 ∼ (11.8,366
9.8) m for cases with 𝑠𝑚 = (0.16, 0.26), respectively, where these values represent their367
physical height above the origin of the above-canopy coordinates 𝑧 = 𝑑 + 𝑧◦ in the upwind368
flow (section B). For reference, ℎ𝑖 for the current configuration using this same reference369

height is ∼ (9.3, 7.2) m, respectively, and ℎ𝑚 = ℎ̂𝑚.370
Secondly, figure 4 presents a regime diagram following that proposed by Poggi et al.387

(2008) that characterizes the simulations based upon key length scales determining canopy388
influences on the flow. The length scales of importance are the canopy height ℎ𝑐, canopy389
adjustment length 𝐿𝑐, and the hill half-length at half the hill height 𝐿. Regime 1 marks390
the region where the Finnigan & Belcher (2004, FB04) theory is valid. In Regime 2,391
deviations from the FB04 theory can be attributed to within-canopy vertical velocities392
being of sufficient amplitude to alter the pressure in the inner layer above the canopy;393
i.e. when 𝐿/𝐿𝑐 is large, the canopy flow adjusts to the pressure gradient more rapidly than394
the pressure gradient changes (Belcher et al. 2011). In Regime 3, such deviations can be395
attributed to both pressure and advection. In Regime 4, the canopy is insufficiently deep396
or dense to absorb all the momentum and hence within-canopy turbulence is influenced by397
finite shear stress at the underlying surface. All of these processes are at play for flows in398
Regime 5. Figure 4 shows that the current simulations fall within Regime 4, a regime that399
falls outside the applicability of current theory (e.g., Finnigan & Belcher 2004; Harman &400
Finnigan 2009, 2013) and which has not received much attention in the literature.401

The numerical and physical wind tunnel simulations differ in that a constant external402
pressure gradient (𝛱𝑥 = 1.63×10−4 m s−2, selected to reproduce 𝑢∗ observed in the tunnel)403
drives the flow in the 𝑥-direction in the LES, while the wind tunnel is a zero pressure-404
gradient tunnel. The flow sampled in the wind tunnel therefore represents an internal405
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Figure 4. Length-scale regime diagram following Poggi et al. (2008) mapping the hill geometry and canopy
morphology of the current numerical (labeled: P25) and wind tunnel (Harman & Finnigan 2019, HF19)
simulations relative to previous research on turbulent flow over low forested hills. Here, low hills implies that
𝐻/𝐿 ≪ 1 with 𝐻 the hill height, and 𝐿 the hill half-length at half the hill height. ℎ𝑐 is the canopy height, and
𝐿𝑐 is the canopy adjustment length. Low hills with 𝐿/𝐿𝑐 < 1.1 are deemed ‘narrow’, and with 𝐿/𝐿𝑐 > 1.1
‘long’. Canopies with ℎ𝑐/𝐿𝑐 < 0.18 are deemed ‘shallow’, and ℎ𝑐/𝐿𝑐 > 0.18 ‘deep’, where 0.18 = 2𝛽2 when
𝛽 =

𝑢∗
𝑢
|ℎ𝑐 = 0.3. From Finnigan & Belcher (2004, FB04), the envelope ℎ𝑐/𝐿𝑐 = 2(𝐻/𝐿) (𝐿/𝐿𝑐)2 delineates

the regime in which the mean within-canopy vertical velocity is expected to be sufficiently large to affect the
outer layer pressure. Previous research included: Finnigan & Brunet (1995, FB95), Tamura et al. (2007, T07,
where 𝛽 = 0.3 is assumed), Poggi et al. (2007, P07), Dupont & Brunet (2008, DB08), Ross (2008, R08), Patton
& Katul (2009, PK09), Harman & Finnigan (2013, HF13), Ma et al. (2020, M20), Chen et al. (2020, C20), and
Tolladay & Chemel (2021, TC21). Open symbols reflect work on sinusoidally repeating low forested hills, and
filled symbols reflect work on isolated forested hills. Symbols without a black outline study flow over low 2D
forested hills (ridges), those with a black outline study flow over low 3D forested hills. The thin long-dash black
line marks the canopy height at which one would expect separation 𝑧𝑠 for the current canopy configuration
according to FB04.

371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386

boundary layer driven by downward transport of momentum from the free-stream airflow406
above, while the LES simulations represent a pressure-gradient driven fully-developed407
boundary layer that is turbulent throughout the domain.408

Another aspect of the numerical simulations that differs from the wind tunnel phys-409
ical simulations is that the numerical simulations use periodic boundary conditions in410
the lateral direction, while the wind tunnel has viscous sidewall boundary layers. The411
horizontal dimensions of the numerical simulation domain are selected to ensure that412
the flow interacting with the 3D hills remains independent of the problem design. In the413
configuration with 3D hills (table 1), the hill only occupies a max of ∼ 3% of the lateral414
domain which should ensure that any hill-induced flow perturbations are negligible at the415
lateral boundaries.416
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4. Analysis procedures417

Analysis of the 2D- and 3D-hill simulations differ because the 2D simulations contain a418
homogeneous horizontal direction, i.e. the lateral (𝑦) direction, while the 3D simulations419
do not. In the 2D-hill case, mean flow fields and higher moments are laterally- and420
time-averaged during the simulation and statistics are calculated during post-processing.421
Analysis of the 3D simulations relies solely upon time averages (analogous to single-point422
wind tunnel measurements) based upon first-, second-, and third-order moments calculated423
at every time step during the simulation. For the 2D-hill cases, a turbulent fluctuation is424
defined as a deviation from an instantaneous lateral average and higher moments are425
calculated as laterally-averaged products which are then time-averaged over the duration426
of the simulation. For the 3D-hill cases, a turbulent fluctuation is defined as a deviation427
from a time-average at a single point and higher moments are calculated as time-averaged428
products of those fluctuations. The notation ⟨ ⟩ is used to denote a mean and a ′ for a429
fluctuation from that mean.430

To compare the numerical and wind tunnel simulations, all flow variables are normalized431
by time-averaged friction velocity 𝑢∗ evaluated at canopy top (𝑧/ℎ𝑐 = 1) and at 𝑥/𝐿 = −4432
which is characteristic of the undisturbed flow approaching the hill. The actual 𝑢∗ values433
derived from the simulations can be found in table 1, note that the small 𝑢∗ variations434
shown in table 1 reflect a slight need for additional averaging. The simulations are currently435
averaged over 150,000 time steps [or, if we define a large-eddy turnover time 𝜏ℓ as the436
height of the domain (512 m) divided by the friction velocity 𝑢∗, 150,000 time steps is ∼437
8𝜏ℓ]. Two characteristic length scales are used: 1) the length of the hill at half its height in438
the along-wind direction 𝐿, and 2) the canopy height ℎ𝑐.439

5. Comparison with wind tunnel measurements440

5.1. Flow fields441

For the 3D-hill cases, vertical profiles of mean wind speed from the LES agree quite449
well with the wind-tunnel observed profiles (figure 5). Minor differences can be seen450
at 𝑥/𝐿 = −1 and 𝑥/𝐿 = 0, i.e. half-way up the hill and at hill-crest, where the LES451
produces slightly higher wind speeds in the upper canopy. Vertical profiles of the vertical452
velocity standard deviation (𝜎𝑤 = ⟨𝑤′2⟩1/2) reveal larger differences between simulations453
and observations, but the overall trend of the evolution over the hill match well. The most454
noticeable difference in 𝜎𝑤 occurs inside the canopy. These differences can be attributed455
to the fact that the wind tunnel measurements represent samples at fixed locations within456
the rod canopy, and hence the measurements sample the wakes in the lee of the individual457
physical canopy elements that waver horizontally and vertically in response to turbulent458
motions at scales larger than the canopy element spacing. In contrast, the canopy-resolving459
LES parametrizes the average influence of all canopy elements within a grid cell and hence460
do not resolve any individual physical canopy elements or the turbulence comprising461
their wake. Harman et al. (2016) demonstrated substantial variability of 80 individual462
𝜎𝑤 profiles collected within a single inter-element volume; 𝜎𝑤 profiles averaged over all463
80 profiles largely eliminates the within-canopy 𝜎𝑤 peaks, thereby appearing more like464
those produced by the LES. Harman & Finnigan (2019) conducted similar sampling of 16465
locations surrounding a single peg of the current canopy at 𝑥/𝐿 = −4; figure 18 shows466
that observed 𝜎𝑤/𝑢∗ averaged over these 16 locations still peaks in the upper canopy, but467
the peak is clearly reduced compared to the single-point statistics presented in figure 5468
and is more like that in the LES. Therefore, if the wind tunnel measurements were to have469
collected vertical profiles throughout the entire inter-rod volume, notably better agreement470
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Figure 5. A comparison of wind-tunnel observed (symbols) and numerically simulated (lines) vertical profiles
of average streamwise velocity (𝑢, upper panel) and vertical velocity standard deviation (𝜎𝑤 , lower panel) at
hill centerline over axisymmetric hills normalized by the friction velocity 𝑢∗. Blue colors reflect results for the
case with 𝑠𝑚 = 0.16, and green colors reflect results for the case with a slope 𝑠𝑚 = 0.26; for the LES the data
are from 3D-0.16 and 3D-0.26, respectively. The mean flow direction in these figures is from left to right (in
the +𝑥-direction). In these figures, we are using a coordinate system that is aligned with (and perpendicular to)
the flat terrain surrounding the hill, so positive 𝑢 is in the +𝑥-direction, and positive 𝑤 is upward.

442
443
444
445
446
447
448

would be expected for 𝜎𝑤 between the WT and the LES. Nevertheless, these comparisons471
provide substantial evidence that the LES reasonably reproduces the physical simulations.472

5.2. Pressure473

In the absence of a canopy, the surface pressure perturbation induced by neutral flow474
encountering an isolated obstruction exhibits an initial peak associated with flow stagnation475
on the upwind side of the obstruction, a pressure minimum at the hill crest resulting from476
the flow acceleration over the hill, followed by a second pressure peak on the hill’s leeward477
side as the flow moving over the hill encounters the flat surface again and then recovers478
downwind of the hill to its undisturbed upwind state (e.g., Jackson & Hunt 1975; Hunt479
et al. 1988). Theory suggests that because canopies interact with the flow through pressure,480
that the presence of vegetation on hills can shift the pressure distribution sufficiently to481
make forested hills appear steeper than one would anticipate (e.g., Finnigan & Belcher482
2004). Asymmetries in and phase shifts of the surface pressure perturbations relative483
to the hill define the orographic surface drag felt by the flow and dictate whether flow484
separation will occur on leeward slopes (e.g., Belcher et al. 2011). Therefore, the surface485
pressure distribution reflects the overall hill- and canopy-induced influence on the flow and486
represents a key metric whose accuracy needs to be demonstrated.487

During the wind tunnel experiments, a manifold system sampled the surface pressure492
via tubes inserted into holes drilled into the hill surface (Harman & Finnigan 2019).493
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Figure 6. A comparison streamwise transects of normalized surface pressure variations at hill centerline
normalized by 𝑢2

∗ for 3D forested hills of two slopes [𝑠𝑚 = 0.16 (blue colors) and 0.26 (green colors)]; for the
LES, these results are from cases 3D-0.16 and 3D-0.26, respectively. Solid lines represent LES results, and
symbols reflect the wind tunnel (WT) measurements.

488
489
490
491

Comparing observed and simulated along-wind surface pressure variations normalized by494
𝑢2
∗ at hill centerline (figure 6) reveals broad overall agreement between the WT and the495

LES of the location and phasing of the pressure maxima and minima for both hill slopes.496
On the windward side of the hill, the pressure peak in the steep hill case is of slightly497
higher magnitude in the WT than in the LES, while the pressure minima near hill-center498
or just downwind of the crest is of higher magnitude in the LES than the WT; which, in499
combination implies a slightly larger surface pressure gradient driving the flow in the LES500
producing the slightly higher in-canopy wind speeds shown in figure 5. These features501
likely result from our decision for the LES simulations to target outdoor situations and the502
associated taller LES domain compared to the depth of the boundary layer in the WT, but503
do not negatively influence confidence in the LES solutions.504

The results presented in figure 5 and 6 provide evidence that the LES and its configuration505
accurately simulates turbulent flows over isolated 3D hills. Therefore the LES results can506
now offer insight into aspects of flow over 2D or 3D forested hills that are difficult to507
observe.508

6. Flow over 2D versus 3D forested hills509

Flow over isolated hills differs from flow over repeating 2D cosine hills, because in the510
latter the flow approaching any single hill feels the influence of the hill just upstream and511
all previous hill adjustments (e.g., Belcher et al. 1993). Turbulent flow over isolated 2D512
and 3D hills differ substantially due to the ability for the flow to leak around the sides of513
3D hills (e.g., Mason & King 1985). We now interrogate mean variations in the flow fields514
resulting from interactions with isolated 2D and 3D forested hills.515

6.1. Mean wind524

Figure 7 shows the influence of hill-shape and hill-slope on the vertical variation of mean525
streamwise velocity. It is important to recall that the upper panels of figure 7 present 𝑦- and526
time-averaged two-dimensional 𝑥-𝑧 slices, while the lower panels show time-averages at527
hill centerline (𝑦/𝐿 = 0). It is also important to recall that flow variables (𝑢, 𝑣, 𝑤) represent528
flow in the (𝑥, 𝑦, 𝑧) directions.529

For the steeper hills (𝑠𝑚 = 0.26), a separation bubble forms on the hill’s leeward side530
within the canopy for both hill-shapes (figure 7), where reverse flow spans the region531
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Figure 7. Vertical slices of average streamwise velocity normalized by the friction velocity 𝑢∗. The left column
present results from the shallow-sloped hills (𝑠𝑚 = 0.16), and the right column from the steeper hills (𝑠𝑚 = 0.26).
The first row presents time- and laterally-averaged 2D-hill results, the second row presents time-averaged 3D-
hill results. In all figures, the dashed black line depicts canopy top. All four figures use the same vertical axis
relative to the canopy height (ℎ𝑐), which means that they’re presented up to different heights relative to the
hill half-length (𝐿). The mean wind flow is from left to right (in the +𝑥-direction). The white contour line
marks zero streamwise velocity. The dash-dot line is 𝜁𝑖/ℎ𝑐 , and the dash-dot-dot line is 𝜁𝑚/ℎ𝑐; see section 7
for definition of 𝜁𝑖 and 𝜁𝑚.

516
517
518
519
520
521
522
523

between 0.67 < 𝑥/𝐿 < 2.29 (0.67 < 𝑥/𝐿 < 1.93) and extends vertically through the entire532
(most of the) canopy depth in the 2D (and 3D) cases, respectively. Flow separation also533
occurs intermittently over the shallower-sloped hills (𝑠𝑚 = 0.16), but mean separation534
is only found in 2D-0.16 confined to regions very close to the surface and to 0.56 <535
𝑥/𝐿 < 1.25. All cases reveal a within-canopy speed-up on the windward side of the536
hill occurring between about −1.5 ≤ 𝑥/𝐿 ≤ −0.5. At a fixed height above the trees537
(e.g., 𝑧/ℎ𝑐 = 10), cases with shallower-sloped hills (𝑠𝑚 = 0.16, left column) result in538
higher average streamwise wind speeds for the same imposed pressure gradient compared539
to those with steeper hills (right column). A direct comparison of the 2D vs. 3D flow540
fields at specified locations (figure 8) emphasizes these findings quantitatively. Overall,541
2D-hills induce larger amplitude streamwise ⟨𝑢⟩ and vertical velocity ⟨𝑤⟩ than do 3D hills,542
especially above the canopy; this result should be expected due to the ability for the flow543
impinging on the hill to leak around the sides of the 3D hills. At the foot of the windward544
side of the hill (𝑥/𝐿 = −2), all cases display non-zero ⟨𝑤⟩ suggesting that the flow already545
feels the hill-induced pressure forces. At 𝑥/𝐿 = −1, ⟨𝑤⟩ at canopy top increases by nearly546
11% for 2D- compared to 3D hills for cases with 𝑠𝑚 = 0.16, compared to a 19% increase547
for cases with 𝑠𝑚 = 0.26. At hill-crest, ⟨𝑤⟩ remains upward above and within the upper548
canopy. Canopy-top wind speeds are highest in the region between 𝑥/𝐿 = −1 and 0, but549
the largest vertical gradient in streamwise velocity is found near 𝑥/𝐿 = 0. Reverse flow550
within the canopy is clearly apparent at 𝑥/𝐿 = 1 for the cases with 𝑠𝑚 = 0.26, i.e. negative551
streamwise velocity and positive vertical velocity within the canopy with both changing552
sign at canopy top. The 2D hill case with 𝑠𝑚 = 0.26 clearly requires a longer distance553
down wind for ⟨𝑤⟩/𝑢∗ to relax back to conditions upwind wind of the hill, which has not554
occurred by 𝑥/𝐿 = 4. In combination, the profiles in figure 8 demonstrate the increased role555
of mean vertical advection of streamwise momentum with increasing hill slope whose sign556
varies with position on the hill, and emphasize that care should be taken when comparing557
the current simulation results (where flow variables are presented in a coordinate system558
aligned with the upstream flat surface) and outdoor field measurements that rotate variables559
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Figure 8. Vertical profiles of average streamwise (upper row) and vertical (lower row) velocity normalized by
the friction velocity 𝑢∗ comparing the four cases. Dashed lines depict results for flow over the 2D hills, and solid
lines depict results over 3D hills at hill centerline (𝑦/𝐿 = 0). Flow over the shallow-sloped hills (𝑠𝑚 = 0.16) are
in blue, and flow over the steeper hills (𝑠𝑚 = 0.26) are in green. The mean wind flow is from left to right (in the
+𝑥-direction).

562
563
564
565
566

into a flow-dependent coordinate system forcing local ⟨𝑤⟩ to zero (e.g., Wilczak et al. 2001;560
Finnigan et al. 2003; Finnigan 2004).561

Figure 9 shows terrain-following horizontal surfaces of ⟨𝑢⟩, spanwise ⟨𝑣⟩, and vertical572
⟨𝑤⟩ velocity normalized by 𝑢∗ at canopy-top (𝑧/ℎ𝑐 ∼ 1) for the two 3D-hill cases and573
demonstrates the horizontal variability of mean wind fields induced by variations in hill-574
slope. The left column of panels in figure 9 show that increased hill slope dramatically575
increases the speed-up on the windward side and a slow-down on the leeward side.576
Maximum wind speeds at canopy-top occur on the windward side of the hill at about577
𝑥/𝐿 = −0.3 [see max(𝛥𝑢/𝑢𝑏)ℎ𝑐 , table 1], and extend laterally to about 𝑦/𝐿 = 1, while the578
peak wind-speed reduction at canopy-top on the leeward side occurs at about 𝑥/𝐿 = 1.5579
and only extends laterally to about 𝑦/𝐿 = 1. Note that these results differ from those in580
turbulent flow over unforested hills where the maximum speedup occurs at the hill-crest581
(e.g., Jackson & Hunt 1975; Ayotte & Hughes 2004); Finnigan & Belcher (2004) present a582
nice explanation describing the canopy-imposed mechanisms controlling this shift for flow583
over 2D-hills. With increasing hill steepness, maximum speedup at canopy top and at hill584
centerline increases and shifts up slightly downwind [max(𝛥𝑢/𝑢𝑏)ℎ𝑐 , table 1].585

The middle column of panels within figure 9 demonstrate the horizontal distribution of590
the mean lateral velocity 𝑣 at canopy top induced by the 3D hills. Increased hill-slope also591
increases the magnitude of the hill-induced lateral velocity, with lateral velocities on the592
windward side of the hill (𝑥/𝐿 < 0) generally of lower magnitude than those on the leeward593
side (𝑥/𝐿 > 0). For both hill slopes, the lateral velocities are induced out to lateral regions594
approximately 𝑦/𝐿 = ±3 (as defined by ⟨𝑣⟩/𝑢∗ > ±0.2). In the case with 𝑠𝑚 = 0.16,595
lateral velocities largely disappear by 𝑥/𝐿 = 2, while the flow encountering the steeper596
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Figure 9. Horizontal terrain-following (at constant 𝜁) slices of time-averaged streamwise velocity (⟨𝑢⟩, left
column), and spanwise velocity (⟨𝑣⟩, middle column), and vertical velocity (⟨𝑤⟩, right column) at canopy top
(𝜁/ℎ𝑐 ∼ 1) normalized by 𝑢∗ from the two 3D-hill simulations (upper row: 3D-0.16; lower row: 3D-0.26). The
dashed black line depicts the location of the hill base at 𝜁/𝐿 = 0, and the black cross marks the hill-crest. The
mean wind flow is from left to right (in the +𝑥-direction).

567
568
569
570
571

hill (𝑠𝑚 = 0.26), lateral velocities at canopy top persist downwind of the hill to at least597
𝑥/𝐿 = 4. At canopy top, the peak hill-induced upward ⟨𝑤⟩/𝑢∗ is found along the windward598
hill centerline at 𝑥/𝐿 ≃ −0.75 for both 3D-hill cases (figure 9, right column), with the599
steeper hill (𝑠𝑚 = 0.26) generating a ∼40% larger upward vertical velocity. Peak downward600
⟨𝑤⟩/𝑢∗ at canopy top is found on the leeward side of the hills, with a single peak in the601
unseparated 3D-0.16 case along hill centerline at 𝑥/𝐿 ≃ 1, and a ∼23% lower amplitude602
double peak in the separated 3D-0.26 case located at 𝑥/𝐿 ≃ 1.5 and 𝑦/𝐿 ≃ ± − 1.603

In the 3D hill cases, the canopy’s presence produces interesting lateral flow within the604
canopy (figure 10, showing spanwise vertical slices of 𝑣 at three different 𝑥/𝐿 locations605
for the case with 𝑠𝑚 = 0.26). On the upwind side of the hill (upper panel, figure 10), the606
hill induced stagnation pressure (to be further discussed in section 6.2) produces diverging607
lateral flow out to about 𝑦/𝐿 = ±3 and vertically throughout the canopy and up to heights608
of about 𝑧/𝐿 = 1 (𝑧/ℎ𝑐 = 10). At hill centerline (𝑥/𝐿 = 0, middle panel of figure 10),609
the above canopy flow continues its divergent path around the hill. However, canopy drag610
sufficiently reduces the streamwise velocities within the canopy that the hill-induced lateral611
pressure gradients produces within-canopy uphill flow on either side of the 3D hill. This612
convergent within-canopy flow starts at lateral distances of at least 𝑦/𝐿 = ±3. At 𝑥/𝐿 = 1613
(lower panel, figure 10), the lateral flow converges in the hill’s lee but over a shallower614
depth than is the divergent flow on the hill’s windward side. Similar lateral flow features615
are also found in the WT (Harman & Finnigan 2019). This hill-induced within-canopy616
lateral flow likely has significant impact on the transport of surface- and canopy-emitted617
scalars and hence the interpretation of single-point scalar flux measurements in forested618
hilly terrain.619
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Figure 10. Spanwise vertical slices (𝑦-𝑧) of time-averaged spanwise velocity 𝑣 normalized by 𝑢∗ at three along-
wind locations (upper: 𝑥/𝐿 = −1, middle: 𝑥/𝐿 = 0, and lower: 𝑥/𝐿 = 1) from 3D-0.26. Positive 𝑣 is in the +𝑦
direction. The dashed black line depicts canopy top (𝑧/ℎ𝑐 = 1). The mean streamwise wind flow is out of the
page (in the +𝑥 direction). Note that contour ranges and intervals differ between panels.

586
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588
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Figure 11. Vertical slices of average pressure normalized by the friction velocity 𝑢2
∗ . The left column present

results from cases with shallow-sloped hills (𝑠𝑚 = 0.16), and the right column from cases with steeper hills
(𝑠𝑚 = 0.26). The first row presents time- and laterally-averaged 2D-hill results, the second row presents time-
averaged 3D-hill results at hill-centerline. In all panels, the heavy dashed black line depicts canopy top, the
dash-dot line 𝜁𝑖/ℎ𝑐 , and the dash-dot-dot line 𝜁𝑚/ℎ𝑐 (see section 7). All four panels use a consistent vertical
axis relative to canopy height (ℎ𝑐), which means that they’re presented up to different heights relative to the
hill half-length (𝐿). The mean wind flow is from left to right (in the +𝑥-direction).

621
622
623
624
625
626
627

6.2. Pressure620

Axisymmetric 3D hills produce slightly higher stagnation pressure peaks on the windward628
side of the hill, and notably reduced negative pressure near the hill crest compared to629
2D hills (figure 11 and the left-hand panels of figure 12). This feature results from the630
impinging flow leaking around the lateral sides of the 3D hill compared to the 2D hill631
which produces more blockage as the flow is forced to go over the hill, hence 2D hills632
produce higher magnitude canopy-top wind speeds overall [max(𝛥𝑢/𝑢𝑏)ℎ𝑐 , table 1]. For633
both hill shapes, steeper hills (𝑠𝑚 = 0.26) shift the pressure minima more toward the hill634
crest compared to the shallower sloped hills (𝑠𝑚 = 0.16), but also broaden the along-635
wind region containing the minimum such that the lowest pressures span a region from636
approximately −0.5 ≤ 𝑥/𝐿 ≤ 1.5 (compared to −0.2 ≤ 𝑥/𝐿 ≤ 0.9 in the cases with637
shallower-sloped hills). Of note, however, is the secondary pressure minima in the hill lee638
in both the 2D-0.26 and the 3D-0.26 simulations (perhaps best seen in figure 13), a feature639
which has not been mentioned in previous studies of turbulent flow over forested hills and640
which therefore likely arises from the shallow canopy (Regime 4, figure 4) and its influence641
on flow separation.642

The middle and right-hand columns of figure 12 present horizontal surfaces (constant649
𝜁) of the streamwise and spanwise pressure gradient induced by the 3D hills; these four650
panels show results at mid-canopy height (𝜁/ℎ𝑐 ∼ 0.6) rather than at the surface like651
that in the left-hand panels. Clearly, the induced streamwise pressure gradient achieves652
larger amplitudes in the streamwise direction than in the spanwise direction. Compare:653

max
(
𝜕⟨𝑝⟩
𝜕𝑥

ℎ𝑐

𝑢2
∗

)
∼ (0.77, 1.56) and min

(
𝜕⟨𝑝⟩
𝜕𝑥

ℎ𝑐

𝑢2
∗

)
∼ (−0.64,−0.86), respectively for 𝑠𝑚 =654

(0.16, 0.26), and for the spanwise direction for which the maxima/minima are symmetric,655

with max/min
(
𝜕⟨𝑝⟩
𝜕𝑦

ℎ𝑐

𝑢2
∗

)
∼ ±(0.36, 0.59) for 𝑠𝑚 = (0.16, 0.26), respectively. Although the656

spanwise pressure gradients are of lower magnitude from that in the streamwise direction,657
the lateral uphill in-canopy flows seen in figure 10 in the case with 𝑠𝑚 = 0.26 at 𝑥/𝐿 = 0658
suggest that the hill-induced spanwise pressure gradient is of sufficient magnitude to659
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Figure 12. Horizontal terrain-following surfaces of time-averaged surface pressure (⟨𝑝⟩, left column),
streamwise pressure gradient (𝜕⟨𝑝⟩/𝜕𝑥) at 𝜁/ℎ𝑐 ∼ 0.6 (middle column), and spanwise pressure gradient
(𝜕⟨𝑝⟩/𝜕𝑦) at 𝜁/ℎ𝑐 ∼ 0.6 (right column) from the two 3D-hill simulations, normalized by appropriate
combinations of 𝑢2

∗ and ℎ𝑐 . The top row depicts results from 3D-0.16, and the bottom row from 3D-0.26.
The dashed black line depicts the location of the hill base at 𝜁/𝐿 = 0, and the black cross marks the hill-crest.
The mean wind flow is from left to right (in the +𝑥-direction).

643
644
645
646
647
648

dominate downward transport of momentum down into the canopy along the sides of the660
3D hills. Compared to the case with 𝑠𝑚 = 0.16, the case with 𝑠𝑚 = 0.26 also shows strong661
lateral pressure gradients downwind of hill crest, but concentrated primarily in regions out662
toward hill-base.663

The upper panel of figure 13 shows a comparison of the horizontal variation of671
normalized surface pressure along the hill-centerline for the four cases. The lower672
panel of figure 13 shows the correlation between the mean hill-induced surface pressure673
perturbations ⟨𝑝⟩ and the local hill slope ℎ𝑥 , where the integral under these curves represent674
the pressure drag in the 𝑥-direction at hill centerline (see 𝐹𝑝 in table 1). In all cases as675
the flow approaches the hill (from left to right in the figure), it first feels a pressure force676
retarding the flow (e.g., stagnation, positive ⟨𝑝⟩ ℎ𝑥); an increase of 10% in hill slope677
increases the pressure force in this region by approximately a factor of four. The amplitude678
and streamwise horizontal region over which this force acts also evolves with variations in679
hill-shape; where for 2D hills this retarding force acts over a smaller horizontal extent than680
it does for 3D hills, and the horizontal extent over which this retarding force acts increases681
with increasing hill-steepness. At a location somewhere between −1.1 ≤ 𝑥/𝐿 ≤ −0.7,682
pressure drag changes sign to become an accelerating force (e.g., a thrust, negative ⟨𝑝⟩ ℎ𝑥).683
Again, the spatial region over which this thrust acts on the flow increases with increasing684
hill steepness, however the horizontal extent over which it acts decreases as the hills change685
from a 2D ridge to an axisymmetric 3D hill. Pressure drag acts to retard the flow (positive686
⟨𝑝⟩ ℎ𝑥) across nearly the entire leeward side of the hill for all cases, with the exception687
of a small region of acceleration (thrust) that develops in the cases with shallower slopes688
(i.e. between 1.5 ≲ 𝑥/𝐿 ≤ 2). The region of maximum pressure drag on the leeward side689
shifts downstream with increasing hill steepness.690
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Figure 13. Upper panel) A comparison of surface pressure (⟨𝑝⟩) over 2D (dashed lines) and 3D (solid lines)
hills. Hills with 𝑠𝑚 = 0.16: blue lines, and with 𝑠𝑚 = 0.26: green lines. Note that the solid lines in this panel
are the same as those in figure 6. Lower panel) A comparison of the negative correlation between the pressure
distributions shown in the upper panel and the local hill slope (ℎ𝑥 = 𝜕ℎ/𝜕𝑥) at hill centerline normalized by 𝑢2

∗
for all simulations; i.e. the longitudinal variation of the hill- and canopy-induced pressure drag, where positive
(negative) values represent a force acting to decelerate (accelerate) the flow, respectively. Results in both panels
are laterally-averaged for cases with 2D hills, and time-averaged along hill-centerline for cases with 3D hills.

664
665
666
667
668
669
670

Consistent with Ross & Vosper (2005) and Poggi & Katul (2007a,b), peak minimum691
pressure is generally found at or just downstream of hill crest (0 ≲ 𝑥/𝐿 ≲ 0.5), however both692
of the 𝑠𝑚 = 0.26 cases interestingly show a surface pressure increase at 0.5 ≲ 𝑥/𝐿 ≲ 0.6693
not present in either of the 𝑠𝑚 = 0.16 cases (upper panel, figure 13). 2D-0.16 in figure 11694
shows a similar pressure increase in the mid-canopy and above, suggesting that this pressure695
increase might result from an interaction of canopy processes and the hill-induced large696
scale pressure field. Figure 8 also shows that the mean flow reverses in the lower- to697
mid-canopy in the region 1 ≲ 𝑥/𝐿 ≲ 2. Therefore, this secondary pressure peak might698
result from the stagnation associated with the positive within-canopy streamwise velocity699
⟨𝑢⟩/𝑢∗ at 𝑥/𝐿 = 0 and the reversed streamwise flow at 𝑥/𝐿 = 1. This secondary pressure700
increase in the lee of steeper 𝑠𝑚 = 0.26 hills for flows in Regime 4 contradicts Poggi &701
Katul’s (2007a) suggestion to estimate hill-induced pressure perturbations based upon the702
effective (or apparent) surface determined by the windward terrain surface and the leeward703
separation bubble.704

6.3. Turbulence705

All cases generate an increase in the normalized standard deviation of vertical velocity708
𝜎𝑤/𝑢∗ on the leeward side of the hill (figure 14) resulting from the hill-induced elevated709
shear layer in the hill’s lee. Generally, this leeward increase of𝜎𝑤/𝑢∗ is of larger magnitude710
in the 2D hill cases (upper row, figure 14) than in the 3D hill cases (lower row, figure 14)711
with peak values of approximately 1.6 in the lower sloped case (𝑠𝑚 = 0.16) over the712
region between 1 < 𝑥/𝐿 < 2 for both the 2D and 3D hills, while for the steeper hills713
(𝑠𝑚 = 0.26) 𝜎𝑤/𝑢∗ peaks at approximately 1.9 over the region spanning approximately714
1 < 𝑥/𝐿 < 3; accentuated vertical velocity fluctuation amplitudes persist downwind to well715
beyond 𝑥/𝐿 = 8 (or 𝑥/ℎ𝑐 = 80) and extend vertically up to heights above 𝑧/𝐿 = 1.2 (or716
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Figure 14. Vertical slices of the average standard deviation of vertical velocity 𝜎𝑤 normalized by 𝑢∗ from all
four simulations. Same layout as for figure 7. The mean wind flow is from left to right (in the +𝑥-direction).

706
707

𝑧/ℎ𝑐 = 12) with the maximum change in 𝜎𝑤 at canopy top 𝛥𝜎𝑤hc occurring at 𝑥/𝐿 ∼ 0.8717
for flow over the hills with 𝑠𝑚 = 0.16 and at 𝑥/𝐿 ∼ (2.3, 1.3) for the (2D, 3D) hills with718
𝑠𝑚 = 0.26 (table 1).719

The streamwise variation of vertical profiles of turbulent flow statistics along hill726
centerline help quantify the influence of hill shape and steepness (figure 15). Upwind of the727
hill (𝑥/𝐿 ∼ −4), (𝜎𝑢, 𝜎𝑤)/𝑢∗ above canopy-top match their theoretically expected (e.g.,728
Lumley & Panofsky 1964) values∼(2.3, 1.3), respectively, and ⟨𝑢′𝑤′⟩/𝑢2

∗ is nearly constant729
with height at a value of −1. Work performed by the flow against canopy drag ensures that730
turbulence moments diminish rapidly with descent into the canopy, similar to that found731
in the vicinity of numerous other canopies (e.g., Raupach 1994). On the windward side732
of the hills (𝑥/𝐿 ∼ −1), 𝜎𝑢/𝑢∗ and 𝜎𝑤/𝑢∗ change little at canopy top with the increased733
streamwise velocity increases shown in figures 8 and 9, however the decreased vertical734
gradient in the streamwise wind at this 𝑥/𝐿 does manifest in reduced momentum stress in735
the canopy’s vicinity – with a greater amplitude reduction of ⟨𝑢′𝑤′⟩/𝑢2

∗ near canopy-top in736
the cases with 3D hills compared to 2D hills sufficient to create a ⟨𝑢′𝑤′⟩/𝑢2

∗ minimum just737
above the canopy. The steeper hills (𝑠𝑚 = 0.26) also reveal a very small region of weak738
near-surface upward turbulent momentum flux beneath canopy-top driven by the thrust739
force found in this region (figure 13). At hill-crest (𝑥/𝐿 = 0), increased vertical shear of740
streamwise velocity amplifies 𝜎𝑢/𝑢∗ and ⟨𝑢′𝑤′⟩/𝑢2

∗ compared to their upstream values741
at 𝑥/𝐿 = −4, while 𝜎𝑤/𝑢∗ diminishes slightly. On the hill’s leeward side (𝑥/𝐿 = 1 and742
𝑥/𝐿 = 2), the hill- and canopy-induced adverse pressure gradient reduces mean streamwise743
velocity producing enhanced shear up to at least 𝑧/ℎ𝑐 = 4 which amplifies all three second744
moments throughout this depth compared to their upstream values (figure 15). At 𝑥/𝐿 = 1745
just above the canopy, 𝜎𝑢/𝑢∗ and ⟨𝑢′𝑤′⟩/𝑢2

∗ increase most in the shallower hill cases746
(𝑠𝑚 = 0.16) where the flow does not separate no matter the hill shape. Within the broader747
hill-induced shear layer in the hill lee, flow over 2D hills amplifies 𝜎𝑤/𝑢∗ and ⟨𝑢′𝑤′⟩/𝑢2

∗748
more-so than over 3D hills as the turbulence acts to counter the adverse pressure gradient.749
By 𝑥/𝐿 = 4, 𝜎𝑢/𝑢∗ has nearly recovered its upstream profile, but not 𝜎𝑤/𝑢∗ and ⟨𝑢′𝑤′⟩/𝑢2

∗750
– especially for cases with steeper hills (𝑠𝑚 = 0.26).751

To elaborate on a 3D hill’s influence on turbulence, figure 16 presents the spatial variation752
of turbulence moments along a constant 𝜁-surface at canopy top in the steeper (𝑠𝑚 = 0.26)753
3D-hill simulation. On the windward side, pressure gradients induced by the steeper754
(𝑠𝑚 = 0.26) 3D hills enhance 𝜎𝑢 (primarily between −1 ≲ 𝑥/𝐿 ≲ 0 and −1 ≲ 𝑦/𝐿 ≲ 1),755
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Figure 15. Vertical profiles of the standard deviation of streamwise velocity (upper row) and vertical velocity
(middle row) normalized by the friction velocity 𝑢∗ comparing the four cases at 𝑥/𝐿 = (−4,−2,−1, 0, 1, 2, 4).
Lower row presents vertical profiles of the vertical flux of streamwise momentum ⟨𝑢′𝑤′⟩ normalized by 𝑢2

∗ at
the same 𝑥/𝐿 locations. Dashed lines depict results for flow over the 2D hills, and solid lines depict results over
3D hills at hill centerline (𝑦/𝐿 = 0). Flow over the shallow-sloped hills (𝑠𝑚 = 0.16) are in blue, and flow over
the steeper hills (𝑠𝑚 = 0.26) are in green. The mean wind flow is from left to right (in the +𝑥-direction).

720
721
722
723
724
725

enhance 𝜎𝑣 more broadly spatially across the hill, and slightly diminish 𝜎𝑤 (in a similar756
spatial region as 𝜎𝑢). On the leeward side of the steep 3D hills: 1) 𝜎𝑢 rapidly diminishes757
to magnitudes below upstream values over a similar range of 𝑦/𝐿 (−1 ≲ 𝑦/𝐿 ≲ 1) but758
extending to at least 𝑥/𝐿 = 6, 2) 𝜎𝑣 diminishes below upwind values over most of the759
hill’s leeward region, but then picks up again when the terrain flattens, and 3) 𝜎𝑤 increases760
through out the leeward hill region peaking at the hill base and then slowly returns to761
upstream values by about 𝑥/𝐿 = 4.762

Steep 3D hills (𝑠𝑚 = 0.26) reduce the vertical flux of streamwise momentum at canopy-771
top across their entire windward side, with peak reductions down to as low as ⟨𝑢′𝑤′⟩/𝑢2

∗ ∼772
0.1 between −1 ≲ 𝑥/𝐿 ≲ 0 and −1 ≲ 𝑦/𝐿 ≲ 1, i.e. the region coincident with the773
largest positive hill-induced streamwise pressure gradient (figure 12, lower middle panel).774
Steep 3D hills (𝑠𝑚 = 0.26) accentuate ⟨𝑢′𝑤′⟩/𝑢2

∗ at canopy-top primarily on the outward775
flanks (between 0.5 ≲ 𝑥/𝐿 ≲ 2 and 0.5 ≲ ±𝑦/𝐿 ≲ 1.5). Vertical shear of the spanwise776
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Figure 16. Horizontal slices of time-averaged velocity standard deviations normalized by 𝑢∗ (upper row) and
momentum flux normalized by 𝑢2

∗ (lower row) along the 𝜁/ℎ𝑐 = 0.95 surface (i.e. near canopy top) from the
steeper (𝑠𝑚 = 0.26) 3D hill simulation, 3D-0.26. In the upper row, results are presented for streamwise velocity
(𝜎𝑢, left column), spanwise velocity (𝜎𝑣 , middle column) and vertical velocity (𝜎𝑤 , right column), and in the
lower row results are presented for vertical flux of streamwise momentum (⟨𝑢′𝑤′⟩, left panel), vertical flux of
spanwise momentum (⟨𝑣′𝑤′⟩, middle panel), and spanwise flux of streamwise momentum (⟨𝑢′𝑣′⟩, right panel).
The dashed black line depicts the location of the hill base at 𝜁/𝐿 = 0, and the black cross marks the hill-crest.
The mean wind flow is from left to right (in the +𝑥-direction).

763
764
765
766
767
768
769
770

wind (figure 10) driven by the hill-induced pressure gradient ensures an importance of777
canopy-top vertical flux of spanwise momentum (⟨𝑣′𝑤′⟩/𝑢2

∗) on the outer flanks of the778
hill, with peaks between −1 ≲ 𝑥/𝐿 ≲ 0 and 0.5 ≲ ±𝑦/𝐿 ≲ 1.5, however the hill-induced779
peaks of ⟨𝑣′𝑤′⟩/𝑢2

∗ are of notably smaller magnitude than the hill-induced modification to780
⟨𝑢′𝑤′⟩/𝑢2

∗. Flow divergence around the windward side of the hill produces a spanwise flux781
of streamwise momentum (⟨𝑢′𝑣′⟩/𝑢2

∗). More importantly, large-amplitude spanwise fluxes782
of streamwise momentum in the hill’s lee participate strongly in laterally transporting783
streamwise momentum leaking around the hill-sides to regions inward behind hill-crest –784
a flow recovery mechanism not present in flow over 2D hills. The variability in figure 16785
highlights limitations of the finite duration time-averaging in the 3D-hill cases.786

7. Evaluating current theory787

The small perturbation theory outlined in section 2 was originally developed for predicting788
turbulence over very low hills but is frequently applied outside its strict range of validity.789
The present LES data provide an opportunity to evaluate the analytic theory when applied790
to flows in Regime 4. Here, we evaluate how well results on the 2D ridges and on the plane791
of symmetry of the 3D hills follow the analytic theory.792
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7.1. Perturbation analysis description793

7.1.1. Turbulence production terms in streamline coordinates794

Current theory describing turbulent flow over forested hills hinges on equations written in795
streamline coordinates that simplify interpretation of the hill-induced forces perturbing the796
flow (e.g., Finnigan & Belcher 2004). The dominant production terms in the 2D Reynolds797
stress equations valid for the LES along hill-centerline in streamline coordinates can be798
written as:799

𝑢̃
𝜕 ⟨𝑢̃′𝑤̃′⟩
𝜕𝑥

= −𝜎𝑤̃2
𝜕𝑢̃

𝜕𝑧
− 1

2
⟨𝑢̃′𝑤̃′⟩ 𝜕𝑢̃

𝜕𝑥
− (2𝜎𝑢̃2 − 𝜎𝑤̃2) 𝑢̃

𝑅
+ · · · (7.1)800

𝑢̃
𝜕 𝜎𝑢̃2

𝜕𝑥
= −2𝜎𝑢̃2

𝜕𝑢̃

𝜕𝑥
− 2 ⟨𝑢̃′𝑤̃′⟩ 𝜕𝑢̃

𝜕𝑧
+ 2 ⟨𝑢̃′𝑤̃′⟩ 𝑢̃

𝑅
+ · · · (7.2)801

𝑢̃
𝜕 𝜎𝑤̃2

𝜕𝑥
= 2𝜎𝑤̃2

𝜕𝑢̃

𝜕𝑥
− 4 ⟨𝑢̃′𝑤̃′⟩ 𝑢̃

𝑅
+ · · · (7.3)802

where, the ellipses represent the triple moment, subgrid-scale, and canopy drag terms, and803
the ⟨ ⟩ averaging notation is only retained for the covariances. Note that in (7.1) to (7.3)804
the sign convention applied to the streamline curvature 1/𝑅 is opposite to that used in805
Finnigan (1983) and Kaimal & Finnigan (1994). As in Finnigan (2024), we define 𝑅 or806
1/𝑅 as negative if the center of curvature lies in the negative 𝑧 direction (Aris 1990).807
In (7.1) to (7.3), the operators (𝜕/𝜕𝑥, 𝜕/𝜕𝑧) denote directional derivatives parallel and808
perpendicular to the (𝑥, 𝑧) coordinate lines, respectively. Velocity components (𝑢̃, 𝑤̃) and809
turbulent stresses (𝜎2

𝑢̃
,𝜎2

𝑤̃
, ⟨𝑢̃′𝑤̃′⟩) in (7.1) to (7.3) should be interpreted as those that would810

be measured in a right-handed Cartesian coordinate frame (𝑥, 𝑧) aligned at any point with811
its 𝑥-axis tangent to the streamline and its 𝑧-axis normal to the streamline. This coordinate812
system has the advantage that velocity vectors and tensors have their usual dimensions and813
interpretation but comes at the cost that partial derivatives must be replaced by directional814
derivatives (Finnigan 2024).815

7.1.2. Production terms in terrain-following coordinates816

Flow separation complicates the use of streamline coordinates. We therefore turn to a817
coordinate system tied with the terrain-following coordinate surfaces of the simulation818
which remain well-defined even in the presence of flow separation. Upwind of any flow819
separation, we expect that the terrain-following coordinate lines do not depart very far820
from streamlines.821

As an approximation to flow variables transformed into streamline coordinates in (7.1)822
to (7.3), we transform the LES flow variables into a system defined relative to the local823
tangent of the coordinate surfaces, i.e. we approximate 𝑢̃ and 𝑤̃ as:824

𝑢̃ ≈ 𝑢 𝑒1 + 𝑤 𝑒3, and (7.4)825

𝑤̃ ≈ −𝑢 𝑒3 + 𝑤 𝑒1. (7.5)826

where, 𝑒1 = 𝑑𝑥/(𝑑𝑥2 + 𝑑𝑧2) 1
2 and 𝑒3 = 𝑑𝑧/(𝑑𝑥2 + 𝑑𝑧2) 1

2 .827
Turbulence statistics of variables in this terrain-following coordinate system (⟨𝑢̃′𝑤̃′⟩,𝜎2

𝑢̃
,828

𝜎2
𝑤̃

) are approximated by locally rotating time-averaged statistics of LES-derived variables829
calculated during the simulations into the terrain-following coordinate system via:830

⟨𝑢̃′𝑤̃′⟩ ≈ −𝜎2
𝑢𝑒1𝑒3 + ⟨𝑢′𝑤′⟩(𝑒2

1 − 𝑒
2
3) + 𝜎

2
𝑤𝑒1𝑒3 (7.6)831

𝜎2
𝑢̃ ≈ 𝜎2

𝑢𝑒
2
1 + 2⟨𝑢′𝑤′⟩𝑒1𝑒3 + 𝜎2

𝑤𝑒
2
3 (7.7)832

𝜎2
𝑤̃ ≈ 𝜎2

𝑢𝑒
2
3 − 2⟨𝑢′𝑤′⟩𝑒1𝑒3 + 𝜎2

𝑤𝑒
2
1 (7.8)833
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The directional derivatives (𝜕/𝜕𝑥, 𝜕/𝜕𝑧) in (7.1) to (7.3) are approximated by derivatives834
along the LES coordinate surfaces (i.e. 𝜕/𝜕𝑥 ≈ 𝜕/𝜕𝜉 = 𝜕/𝜕𝑥, and 𝜕/𝜕𝑧 ≈ 𝜕/𝜕𝜁), where835
we have taken advantage of the fact that 𝜉 = 𝑥 (and 𝑑𝜉 = 𝑑𝑥) in our code. An incremental836

arc length along a terrain-following coordinate line 𝑑𝑥 ≈ 𝑑𝑥(1 + 𝑠2) 1
2 , where 𝑠 = 𝑑𝑧/𝑑𝑥 is837

the local slope of the coordinate line. We additionally assume 𝑑𝑥 ≈ 𝑑𝑥 and recognize that838
the maximum slope 𝑠𝑚 of any terrain-following coordinate line in our simulations is 0.26839
and that this choice introduces a small error in the derivatives of ≲3.3%.840

7.1.3. Analysis heights841

We investigate the relationship between the changes to the mean flow and the Reynolds842
stresses in three layers: 1) the upper canopy layer ℎ𝑐 > 𝑧 > 𝑑 (where 𝑑 is the canopy’s843

displacement height, section B), 2) the inner shear stress layer ℎ̂𝑖 > 𝑧 > ℎ𝑐, and 3) the844

middle layer ℎ̂𝑚 > 𝑧 > ℎ̂𝑖 . We therefore present variations of the mean flow and turbulence845

along lines of constant 𝜁 midway through the middle layer at 𝜁𝑚 = ℎ̂𝑖 + 0.5( ℎ̂𝑚 − ℎ̂𝑖),846

midway through the inner surface layer at 𝜁𝑖 = ℎ𝑐 + 0.5( ℎ̂𝑖 − ℎ𝑐), and in the upper canopy847
at 𝜁𝑐 = 0.75ℎ𝑐. Since the middle layer and inner layer depths depend on the hill length848
scale 𝐿 (see section 3 and section B), 𝜁𝑖 and 𝜁𝑚 change with hill steepness. Upwind of849
any flow separation, the terrain-following coordinate lines, 𝜁𝑚, 𝜁𝑖 , 𝜁𝑐 do not depart too far850
from streamlines.851

7.2. Hill-induced flow perturbations852

7.2.1. Middle layer867

The left-most column of figure 17 shows for all four cases that increases in 𝛥𝑢̃ (where,868
𝛥𝑢̃ = ⟨𝑢̃⟩ − 𝑢𝑏, and 𝑢𝑏 = ⟨𝑢̃⟩𝑏) are nearly in phase with the hill crest as we expect given869
that the flow perturbations in the outer region are primarily an inviscid response to the870
pressure field induced by the hill. Consequently, the steeper hills produce larger 𝛥𝑢̃ than the871
shallower hills, and the 2D hills produce larger 𝛥𝑢̃ than the 3D hills. 𝛥𝑢̃ in the 3D-hill cases872
also takes more than 8𝐿 to recover to its upwind undisturbed value although comparison873
with figure 7 shows that 𝜁𝑚 is above the separation bubble. The vertical gradient of mean874
perturbation streamwise velocity 𝜕𝛥𝑢̃/𝜕𝑧 decreases at this height starting at 𝑥/𝐿 ∼ −1 for875
all cases, and then becomes positive at about 𝑥/𝐿 ∼ 1 with notably larger increased vertical876
shear in the cases with steeper hills (∼35% increase for cases with 𝑠𝑚 = 0.16 versus ∼180%877
increase for cases with 𝑠𝑚 = 0.26). The streamwise velocity gradient, 𝜕𝑢̃/𝜕𝑥 (= 𝜕𝛥𝑢̃/𝜕𝑥)878
peaks on the upwind slope and attains its lowest values on the lee slope with the largest879
values on the 2D ridges.880

The third important mean strain term appearing in the production terms of the Reynolds881
stress equations (7.1) to (7.3) is 𝑢̃/𝑅, where 𝑅 is the local radius of curvature of the surface-882
following coordinate lines. The effects of rotation on the turbulent stresses are particularly883
important and are often expressed in terms of a curvature Richardson Number 𝑅𝑖𝑐 because884
the centrifugal forces generated following a curved trajectory are analogous to the effects of885
buoyancy but have a larger effect on the turbulence than a simple comparison of 𝑢̃/𝑅 with886
other strains such as 𝜕𝑢̃/𝜕𝑥 or 𝜕𝛥𝑢̃/𝜕𝑧 would suggest (Bradshaw 1969, 1973; Finnigan887
1983). 𝑢̃/𝑅 attains its largest positive values over the upwind and downwind concave hill888
surfaces and its largest negative values over the convex hill crest. The combination of889
greater curvature and larger velocity perturbations on the steeper (𝑠𝑚 = 0.26) hills implies890
𝑢̃/𝑅 is more than twice as large on those hills as on the shallower (𝑠𝑚 = 0.16) hills.891

Streamwise velocity variance 𝜎2
𝑢̃

increases up to the hill crest on the 3D hills but892
decreases slightly on the 2D hills; this likely represents a response to the greater streamwise893
acceleration over the 2D ridges as the first production term in (7.2), [−2𝜎2

𝑢̃
𝜕𝑢̃
𝜕𝑥̃

] represents894
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Figure 17. Streamwise variation of hill-induced perturbations of mean first- and second-order statistics relative
to background values in the undisturbed flow upwind of the isolated hills (marked as: 𝑏) along the three constant
𝜁-coordinate surfaces (left column: middle-layer, 𝜁𝑚; middle column: inner-layer, 𝜁𝑖 ; right column: upper canopy
layer, 𝜁𝑐); see section 7.1.3 for the definition of 𝜁𝑚, 𝜁𝑖 , and 𝜁𝑐 . The first row presents perturbation streamwise
velocity [𝛥𝑢̃/𝑢𝑏 = (⟨𝑢̃⟩ − 𝑢𝑏)/𝑢𝑏 , where 𝑢𝑏 = ⟨𝑢̃⟩𝑏]. The second row depicts the variation of the centrifugal
acceleration 𝑢̃/𝑅 (in units of s−1). The third row shows 𝜕𝑢̃/𝜕𝑥 = 𝜕𝛥𝑢̃/𝜕𝑥 (in units of s−1). The fourth row
presents the perturbation vertical gradient of streamwise velocity 𝜕𝛥𝑢̃/𝜕𝑧. The fifth row presents perturbation
streamwise momentum stress [𝛥𝑢̃𝑤̃/𝑢𝑤𝑏 = (⟨𝑢̃′𝑤̃′⟩ − 𝑢𝑤𝑏)/𝑢𝑤𝑏 , where 𝑢𝑤𝑏 = ⟨𝑢̃′𝑤̃′⟩𝑏]. The sixth row
presents perturbation streamwise velocity variance [𝛥𝜎2

𝑢̃
/𝜎2

𝑢𝑏
= (𝜎2

𝑢 − 𝜎2
𝑢𝑏
)/𝜎2

𝑢𝑏
, where 𝜎2

𝑢𝑏
= ⟨𝑢̃′2⟩𝑏], and

the seventh row presents vertical velocity variance [𝛥𝜎2
𝑤̃
/𝜎2

𝑤𝑏
= (𝜎2

𝑤̃
− 𝜎2

𝑤𝑏
)/𝜎2

𝑤𝑏
, where 𝜎2

𝑤𝑏
= ⟨𝑤̃′2⟩𝑏].

Long-dashed lines present results for cases with isolated 2D hills, and solid lines present results for cases
with 3D hills along hill-centerline; blue colors: 𝑠𝑚 = 0.16, green colors: 𝑠𝑚 = 0.26. A 1-2-1 smoothing in the
streamwise direction has been applied to all fields. The mean wind flow is from left to right (in the +𝑥-direction).
See section A for description of quantities marked with 𝑏 .
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stretching of vortex tubes aligned in the streamwise direction, which increases 𝜎2
𝑣̃

and 𝜎2
𝑤̃

895

at the expense of𝜎2
𝑢̃

. The slight decrease in shear, 𝜕𝛥𝑢̃/𝜕𝑧 and in 𝛥𝑢̃𝑤̃, adds to the decrease896

in 𝜎2
𝑢̃

production but the third production term 2 ⟨𝑢̃′𝑤̃′⟩ 𝑢̃
𝑅
] acts to augment 𝜎2

𝑢̃
over the 3D897

hills as both ⟨𝑢̃′𝑤̃′⟩ and 𝑢̃/𝑅 are negative. The most prominent feature of the 𝜎2
𝑢̃

evolution898
is the large increase on the lee slope over the 2D hills and the steeper 3D hill. This large899
increase is likely associated with the large increase in mean shear 𝜕𝛥𝑢̃/𝜕𝑧 bounding the900
upper edge of the separation bubble. This finding is not evident over the shallower 3D hill901
where there is no increase in 𝜎2

𝑢̃
.902

7.2.2. Inner layer903

In the inner layer [middle column, figure 17], 𝛥𝑢̃ initially decreases with approach to904
the hill, then at 𝑥/𝐿 ∼ −1, 𝛥𝑢̃ increases to maximum values occurring just upwind of905
hill-crest (𝑥/𝐿 = 0), and then diminishes to a minima at 𝑥/𝐿 ∼ 1.5. The breaking of the906
symmetry between 𝛥𝑢̃ and the hill profile seen in the middle layer, results from the action907
of hill-induced perturbations on the shear stress ⟨𝑢̃′𝑤̃′⟩. This asymmetry leads in turn to908
generation of aerodynamic drag on the hill. The maxima and minima in 𝛥𝑢̃ are ∼10%909
higher for the cases with 2D hills compared to 3D hills and shift slightly upwind for cases910
with 𝑠𝑚 = 0.26. At this height, flow over hills of 𝑠𝑚 = 0.16 recovers its upwind 𝛥𝑢̃ value911
by 𝑥/𝐿 ∼ 6, while flow over hills with 𝑠𝑚 = 0.26 recover their upwind values by 𝑥/𝐿 ∼ 8.912

Compared to the middle layer, hill-induced variations in 𝜕𝛥𝑢̃/𝜕𝑧 shift upwind by 𝑥/𝐿 ∼913
0.5 with a minimum just upwind of hill-crest (i.e. at 𝑥/𝐿 ∼ −0.5), a maximum downwind914
of hill-crest (i.e. at 𝑥/𝐿 ∼ 0.5), which is much larger on the steeper hills and is probably915
associated with the strong shear capping the separation bubble. A downwind minimum916
occurs at 𝑥/𝐿 ∼ 3 from which all cases don’t recover their upwind values until 𝑥/𝐿 ∼ 8.917

Variations in 𝜎2
𝑢̃

on the 2D hills in the inner layer are largely in phase with 𝜕𝛥𝑢̃/𝜕𝑧,918

which is the dominant mean strain entering the largest production term, [−2 ⟨𝑢̃′𝑤̃′⟩ 𝜕𝑢̃
𝜕𝑧̃
] in919

(7.2). This response in 𝜎2
𝑢̃

is amplified by the reduction in 𝛥𝑢̃𝑤̃, a reduction itself largely920
driven by the changes in 𝜕𝛥𝑢̃/𝜕𝑧 as we can see from (7.3) as well as by the damping effect921
of streamline curvature over the convex hill slope before flow separation occurs. Over the922
3D hills, we see an increase in 𝜎2

𝑢̃
on the upwind slope, which could be attributed to the923

unstable curvature upwind of 𝑥/𝐿 ∼ −1.924
The reduction in 𝜎2

𝑤̃
over the hill crest can be associated with the reduction in the vortex925

stretching strain 𝜕𝑢̃/𝜕𝑥 just ahead of the hill but is primarily attributable to the effect of926
the curvature term [− 4 ⟨𝑢̃′𝑤̃′⟩ 𝑢̃

𝑅
], which acts to reduce 𝜎2

𝑤̃
directly. However, stabilizing927

curvature also reduces ⟨𝑢̃′𝑤̃′⟩ over the hill crest and this change also feeds through to928
slightly mitigate curvature’s damping effect on 𝜎2

𝑤̃
. Changes in ⟨𝑢̃′𝑤̃′⟩ closely follow the929

changes in 𝜕𝛥𝑢̃/𝜕𝑧 until the separation bubble and wake is encountered at 𝑥/𝐿 ∼ 1. The930
large spike in ⟨𝑢̃′𝑤̃′⟩ at 𝑥/𝐿 ∼ 1 is likely associated with the free shear layer at the upper931
boundary of the bubble. ⟨𝑢̃′𝑤̃′⟩ is also strongly reduced by curvature’s damping effect over932
the crest through the third, curvature-linked, production term in (7.1). The largest impact933
of separation is on 𝜎2

𝑤̃
behind the steepest 2D ridge and this is where we would expect the934

most active and established separation region (figure 14) although we see large increases935
in 𝜎2

𝑤̃
on the other hills also. Somewhat surprisingly, 𝜎2

𝑢̃
reduces behind the hill with the936

largest reduction occurring behind the 3D hills.937

7.2.3. Upper canopy layer938

The first striking difference between the inner layer and the upper canopy layer is the upwind939
shift in the positive peak in 𝛥𝑢̃ which now occurs at 𝑥/𝐿 ∼ −0.5. The negative peak in940
𝛥𝑢̃ upwind of the hill also moves further upwind and both peaks increase in magnitude.941
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Finnigan & Belcher (2004) explain these upwind movements of the 𝛥𝑢̃ peaks as a physical942
consequence that in the lower canopy, the background velocity 𝑢𝑏 becomes smaller than943
the velocity perturbations, which are driven by the hill-induced pressure perturbations that944
are able to pass through the canopy unimpeded. Consequently, the 𝛥𝑢̃ perturbations come945
into phase with the pressure gradient −𝜕⟨𝑝⟨/𝜕𝑥 which has its maximum positive value946
around 𝑥/𝐿 ∼ −2 (figure 13). The upper and lower canopy velocity fields are connected by947
turbulent mixing so the upper canopy 𝛥𝑢̃ perturbation is dragged upwind compared to 𝛥𝑢̃948
in the inner layer. The Finnigan & Belcher (2004) theory (applicable in Regime 1, figure 4)949
assumes that the velocity shear 𝜕𝑢̃/𝜕𝑧 and shear stress ⟨𝑢̃′𝑤̃′⟩ in the lower canopy are both950
negligible so that the velocity perturbations are driven only by −𝜕⟨𝑝⟩/𝜕𝑥, not by turbulent951
momentum transfer. figures 8 and 15 show that in the present ‘shallow canopy’ (Regime952
4) configuration, velocity shear in the lower canopy is significant and ⟨𝑢̃′𝑤̃′⟩ cannot be953
ignored. We therefore expect that the velocity perturbations in the lower canopy are less954
closely linked to the pressure gradient but also share some of the dynamics of the upper955
canopy flow where velocity perturbations more closely follow the pressure perturbations.956
Consequently we expect that the upwind shift of the velocity peak observed here is smaller957
than would be observed over the same hill contour covered by a denser and/or deeper958
canopy.959

The strongly negative 𝛥𝑢̃ perturbations in the lee of the hill indicate separation within960
the canopy on both steeper and shallower hills. Recall that the Finnigan & Belcher (2004)961
theory predicts that separation can occur within the canopy even on hills which are too962
shallow for the separation bubble to extend into the inner and middle layers. The strain963
fields, 𝑢̃/𝑅, 𝜕𝑢̃/𝜕𝑥 and 𝜕 𝛥𝑢̃/𝜕𝑧 also change in the upper canopy. While 𝑢̃/𝑅 and 𝜕𝑢̃/𝜕𝑥964
closely follow the pattern of the inner layer with their variations simply being reduced in965
magnitude, 𝜕𝛥𝑢̃/𝜕𝑧 departs distinctly from its inner layer behavior. The four hills each966
generate different and complicated 𝜕𝛥𝑢̃/𝜕𝑧 evolution upwind and around the hilltop, with967
the 𝑠𝑚 = 0.16 and more strikingly the 𝑠𝑚 = 0.26 hills exhibiting strong reductions in vertical968
shear with minima at 𝑥/𝐿 ∼ 2. These presumably signal the presence of within-canopy969
separation.970

The evolution of 𝜎2
𝑢̃

in the upper canopy is difficult to explain simply in terms of the971

production terms in (7.1) to (7.3). In all four simulations, 𝜎2
𝑢̃

increases upwind of the hill972

crest. The largest production term in (7.2) is [−2 ⟨𝑢̃′𝑤̃′⟩ 𝜕𝑢̃
𝜕𝑧̃
] but ⟨𝑢̃′𝑤̃′⟩ falls where 𝜎2

𝑢̃
973

increases while changes in 𝜕 𝛥𝑢̃/𝜕𝑧 are small. The vortex stretching strain 𝜕𝑢̃/𝜕𝑥 is large974
on the upwind slope for both the steeper 2D and 3D hills and this term should act to reduce975
𝜎2
𝑢̃

and increase 𝜎2
𝑤̃

but instead the latter decreases on the upwind slope. This decrease976

in 𝜎2
𝑤̃

can be explained by the damping effect of streamline curvature which is apparently977
larger than production by vortex stretching. The fluctuating canopy-drag covariance term978
⟨𝑢̃′𝐹̃′

𝑥⟩ (not shown) acts as a sink of variance on the windward side of the hill and a weak979
source in the hill lee but is of insufficient amplitude to overwhelm the production terms.980
There is a positive contribution to 𝜎2

𝑢̃
from the curvature term 2 ⟨𝑢̃′𝑤̃′⟩ 𝑢̃

𝑅
but it is difficult981

to understand why this should have a large positive effect on the isolated steep hill but not982
the steep 2D hill.983

We tentatively conclude that the redistribution of energy between 𝜎2
𝑢̃

and 𝜎2
𝑤̃

in the984
canopy by pressure and its interaction with the lower boundary (possibly because these985
simulations lie within Regime 4) prevents interpretation of the upper canopy Reynolds986
stresses in terms of the mean flow straining alone. 𝜎2

𝑢̃
, 𝜎2

𝑤̃
, and ⟨𝑢̃′𝑤̃′⟩ all show large peaks987

behind the hill on both the steeper and shallower hills, with the peaks on the shallower 2D988
and 3D hills occurring around 𝑥/𝐿 ∼ 2 whereas on the steeper hills the peaks are displaced989
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downwind to 𝑥/𝐿 ∼ 3 and preceded by a dip just behind the crest, which presumably990
corresponds to separated flow.991

8. Summary and conclusions992

To advance understanding of hill-slope’s and hill-shape’s role on turbulent air flow over993
isolated forested hills, we interrogate four turbulence-resolving simulations. A spectrally994
friendly fringe-technique enables the use of periodic boundary conditions to simulate flow995
over isolated 2D and 3D hills of cosine shape. The simulations target recently-conducted996
wind-tunnel experiments that are configured to fall outside the regimes for which current997
theory applies.998

First, simulation skill for flow over isolated 3D hills is demonstrated through matching999
the canopy and hill configuration with the recently-conducted wind-tunnel experiments and1000
inter-comparing results. Subsequently, response of the mean and turbulent flow components1001
to 2D vs. 3D hills along hill-centerline are discussed. Finally, a discussion of the phase1002
and amplitude of spatially varying responses of flow over forested hills are evaluated. Our1003
analysis provides insight into flow features induced by changes in hill shape and slope1004
when in Regime 4, and to the mechanisms behind and locations where assumptions made1005
when developing current theory fail toward advancing theory to regimes beyond Regime1006
1.1007

Key findings include:1008 r Flow over isolated 2D forested hills produces larger amplitude vertical motions on a1009
hill’s windward and leeward faces and speed-up of the mean wind compared to that1010
over isolated 3D forested hills at hill-centerline. At canopy top, maximum speed up1011
max(𝛥𝑢/𝑢𝑏)ℎ𝑐 occurs at approximately 𝑥/𝐿 = −0.3. A change in hill slope from1012
𝑠𝑚 = 0.16 to 0.26 increases max(𝛥𝑢/𝑢𝑏)ℎ𝑐 by approximately 30% for 2D hills and1013
34% for 3D hills. Flow separation induced by the steeper 𝑠𝑚 = 0.26 hills ensures1014
that mean flow fields require notably longer distances downstream of the hill before1015
full recovery (i.e. not until 6 ≲ 𝑥/𝐿 ≲ 8).1016 r 3D hills generate surface pressure minima over hill-crest that are nearly half the1017
magnitude of those over 2D hills. 3D hills influence the pressure field in the spanwise1018
direction out to 𝑦/𝐿 ∼ ±3. Pressure gradients in the spanwise direction are smaller1019
than in the streamwise direction, but the spanwise pressure gradients are of sufficient1020
amplitude to overcome downward turbulent momentum transport into the canopy1021
and drive mean uphill within-canopy flow on the hill flanks. The spatial region over1022
which the hill-induced negative pressure drag acts increases with increasing hill1023
steepness, however the horizontal extent over which this thrust force acts decreases1024
as the hills change from a 2D ridge to an axisymmetric 3D hill.1025 r The perturbation analysis in section 7 suggests that the assumptions about the1026
dominant flow dynamics embodied in partitioning the flow into an upper layer1027
with an inviscid response to the hill’s pressure field, an inner layer where changes1028
to the shear stress and the mean flow are strongly coupled and a canopy layer1029
where the non-linear treatment of velocity perturbations in the lower canopy affects1030
flow throughout the layer are robust inasmuch as they lead to solid predictions of1031
hill-induced perturbations to the mean flow. However, when we try to apply those1032
assumptions to predict the evolution of the turbulent moments, we find they provide1033
approximate explanations at best. This is especially true in the upper canopy, where1034
additional canopy-induced physics affects the transfer of 𝑇𝐾𝐸 between orthogonal1035
velocity components.1036
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The results presented only scratch at the surface of understanding how hill shape and1037
steepness modulate turbulent flow over low hills covered with a shallow forest canopy1038
(Regime 4 in the 𝐿/𝐿𝑐 vs ℎ𝑐/𝐿𝑐 parameter space) and how well current theory predicts their1039
interaction. In particular, this analysis focuses on neutrally-stratified conditions; inclusion1040
of buoyancy forces would likely alter the current findings substantially.1041
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Appendix A. Assessing background inflow conditions1060
Section 5 compares time-averaged profiles at a single location. Harman et al. (2016) demonstrated that a single1061
profile in the vicinity of a single canopy element does not accurately represent the horizontal average due to1062
variability of the time-mean with position relative to the canopy element. To ascertain the potential spatial1063
variability of the observations collected over the 3D hills, Harman & Finnigan (2019) performed a detailed1064
spatial sampling (DSS) experiment upstream of the hills collecting profiles at sixteen different spatial locations1065
surrounding a single peg – similar to that Harman et al. (2016) conducted around their tombstone elements.1066
The LES does not physically resolve individual canopy elements, hence the wind fields averaged over these1067
sixteen different profiles should better represent the LES predictions than would any individual observed profile.1068
Therefore to more completely assess the numerical and physical inflow conditions approaching the hills, Figure1069
18 presents an intercomparison of the DSS wind tunnel measurements and the LES, where the LES results1070
reflect time-averaged flow fields that have been horizontally averaged over the entire upwind fringe region. The1071
horizontal bars on the WT data reflect ± one standard deviation of each statistic associated with the sixteen1072
time-averaged profiles.1073

Normalized mean wind fields in the approach flow compare well between the WT and the LES and generally1087
with expectation. Mean streamwise velocity is approximately logarithmic with increasing height above the1088
canopy and decays exponentially with descent within. Spanwise and vertical velocity nearly vanish in the1089
absence of a Coriolis force and as a result of zero flow through the underlying surface. However in the WT,1090
vertical velocity remains finite above the canopy resulting primarily from a combination of slight errors in1091
the matrix used to rotate from laser coordinates to Cartesian coordinates, but Harman & Finnigan (2019) also1092
speculate that the finite downward mean velocity observed in the WT might reflect a small bias in the seed fog1093
resulting from its continual deposition to the underlying canopy element surface. The substantial variability of1094
the within-canopy spanwise and vertical velocity observations about the sixteen profiles is also notable.1095

Second-order moments in the LES adhere nicely to expectation (e.g., Raupach et al. 1996), and only differ1096
slightly from the WT observations. Momentum flux above the canopy is nearly constant with height; where1097
compared to the zero-pressure gradient WT, having imposed a finite pressure gradient in the LES ensures that1098
⟨𝑢′𝑤′⟩𝑏/𝑢2

∗ falls off linearly with height between canopy-top and the top of the domain such that the minimal1099
reduction of ⟨𝑢′𝑤′⟩𝑏/𝑢2

∗ between 𝑧/ℎ𝑐 = 1 and 3 in the LES speaks to the fact that the domain is over 133 times1100
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Figure 18. An intercomparison of wind tunnel profile statistics spatially-averaged over 16 individual profiles that
spatially sample the within-canopy airspace surrounding a single canopy element and its neighbors, compared
against profile statistics derived from the LESs which have been horizontally-averaged over the entire upwind
fringe region; these profiles represent the background inflow conditions (labeled as: 𝑏). From left to right,
panels in the upper row depict mean streamwise velocity ⟨𝑢⟩𝑏 , spanwise velocity ⟨𝑣⟩𝑏 , vertical velocity ⟨𝑤⟩𝑏 ,
vertical flux of streamwise momentum ⟨𝑢′𝑤′⟩𝑏 , and the vertical flux of spanwise momentum ⟨𝑣′𝑤′⟩𝑏 , and
the lower row presents profiles of streamwise velocity standard deviation 𝜎𝑢𝑏 = ⟨𝑢′2⟩1/2

𝑏
, spanwise velocity

standard deviation 𝜎𝑣𝑏 = ⟨𝑣′2⟩1/2
𝑏

, vertical velocity standard deviation 𝜎𝑤𝑏
= ⟨𝑤′2⟩1/2

𝑏
, streamwise velocity

skewness Sk𝑢𝑏 = ⟨𝑢′3⟩𝑏/𝜎3
𝑢𝑏

, and vertical velocity skewness Sk𝑤𝑏
= ⟨𝑤′3⟩𝑏/𝜎3

𝑤𝑏
. Where noted, quantities are

normalized by the friction velocity 𝑢∗ (or 𝑢2
∗) to ensure proper comparison. Solid lines depict the LES results

and symbols the wind tunnel results along with horizontal bars marking ± one standard deviation associated
with the 16 independently observed profiles comprising the mean. Results from 3D-0.16 are in blue, and from
3D-0.26 are in green (the green lines were drawn first, so they are hidden beneath the blue lines).
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taller than the canopy. Consistent with Harman et al. (2016), ⟨𝑢′𝑤′⟩𝑏/𝑢2
∗ in the WT shows a peak at canopy top1101

thought to result from insufficient sampling of flow in proximity to the canopy elements. Momentum absorption1102
through pressure drag induced by the canopy ensures that ⟨𝑢′𝑤′⟩𝑏/𝑢2

∗ diminishes nearly exponentially with1103
descent into the canopy for both the WT and LES. Somewhat counter to expectation (e.g., ⟨𝑣′𝑤′⟩𝑏/𝑢2

∗ = 0)1104
is that ⟨𝑣′𝑤′⟩𝑏/𝑢2

∗ exhibits a small increase with increasing height in the WT. Velocity standard deviations1105
(𝜎𝑢𝑏 , 𝜎𝑣𝑏 , 𝜎𝑤𝑏

)/𝑢∗ also generally agree well with each other and expectation, but diminish with decreasing1106
height from canopy top more rapidly in the LES than in the WT – a result that could again suggest that as many1107
as sixteen observed profiles may still not reflect the total flow field variability.1108

Profiles of velocity skewness from the LES are consistent with most outdoor field observations (i.e. positive1109
streamwise velocity skewness Sk𝑢𝑏 and negative vertical velocity skewness Sk𝑤𝑏

at canopy top, which reflect1110
the organized nature of the turbulence at canopy-top thought to be produced by an inflection point instability1111
of the mean wind profile (e.g., Raupach et al. 1996; Finnigan et al. 2009). Sk𝑤𝑏

in the WT is negative within1112
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the canopy, but is positive at canopy top and above; such Sk𝑤𝑏
profiles have been observed previously, but1113

primarily in wind and water tunnel flows sampling in the vicinity of sparse organized canopy element structure1114
(e.g., the tombstone, rods, and light-bulb elements discussed in: Raupach et al. 1996; Poggi et al. 2004; Böhm1115
et al. 2013) suggesting that the flow sampled in the WT might be reflective of a wall-bounded shear flow with1116
canopy drag augmented by wakes shed in the element lee. Nevertheless, the results presented in Figure 181117
clearly demonstrate the comparability of the WT and LES inflow conditions impinging on the hills and provide1118
a measure of the variability anticipated by sampling a single profile over the forested WT hills.1119

Appendix B. Defining the inner shear stress layer and middle layer depths1120
Small perturbation analyses of turbulent flow over low hills (Jackson & Hunt 1975; Hunt et al. 1988; Belcher1121
et al. 1993) divide the flow into separate layers with different physical processes dominating the flow in each1122
layer. Separate solutions to the flow equations are found for each layer and the resulting integration constants1123
are determined by asymptotic matching between the layers. Two main regions are defined, the outer, where the1124
response to the pressure field generated by flow over the hill is inviscid, and the inner, where perturbations to1125
the turbulent Reynolds stresses affect the perturbations to the mean flow. Each region is further divided into1126
layers. The middle layer of depth ℎ𝑚 is the lower part of the outer region and in this region the flow responses1127
are inviscid but rotational to accommodate shear in the approach flow. In the upper layer, which extends from1128
ℎ𝑚 to the top of the boundary layer, flow responses are irrotational and can be computed by potential theory.1129
The inner region consists of the shear stress layer of depth ℎ𝑖 , and the thin inner surface layer, of depth 𝑙𝑠 , which1130
allows formal matching with the surface boundary condition. In the inner region, perturbations to the turbulent1131
stresses affect the perturbations to the mean flow.1132

Hunt et al. (1988) and Belcher et al. (1993) define the middle layer depth by an implicit formula:1133

ℎ𝑚

𝐿
ln1/2

(
ℎ𝑚

𝑧◦

)
∼ 1 (B 1)1134

where 𝑧◦ is the roughness length of the surface and 𝐿 the half-length or horizontal length scale of the hill. If1135
ln(𝐿/𝑧◦) ≫ 1, (B 1) can be approximated by an explicit relationship:1136

ℎ𝑚

𝐿
ln1/2

(
𝐿

𝑧◦

)
∼ 1 (B 2)1137

The shear stress layer depth ℎ𝑖 is also defined by an implicit relationship:1138

ℎ𝑖

𝐿
ln

(
ℎ𝑖

𝑧◦

)
= 2𝜅2 (B 3)1139

Where 𝜅 is von Karman’s constant. Hunt et al. (1988) give two different ways of deriving this definition while1140
Belcher et al. (1993) arrive at the same formula by a slightly different route.1141

Most variation of the shear stress perturbation with height occurs through ℎ𝑖 above the inner surface layer of1142
depth 𝑙𝑠 ≪ ℎ𝑖 . However across 𝑙𝑠 , the shear stress gradient 𝜕⟨𝑢′𝑤′⟩/𝜕𝑧 changes rapidly to match the surface1143
streamwise pressure gradient at 𝑧 = 𝑧◦. The depths of the middle layer ℎ𝑚 (B 2) and the shear stress layer ℎ𝑖1144
(B 3) are derived formally in Hunt et al. (1988) and Belcher et al. (1993) based on several assumptions. First,1145
that the ‘background’ velocity profile in the flow approaching the hill is assumed to be in equilibrium with the1146
upstream surface and so can be described by the standard logarithmic law, viz., :1147

𝑢𝑏 (𝑧) =
𝑢∗
𝜅

ln
(
𝑧

𝑧◦

)
(B 4)1148

where 𝑢∗ is the friction velocity. Second, that in the shear stress layer the hill-induced perturbations to the1149
turbulent shear stress 𝛥𝑢𝑤 and to the mean velocity gradient 𝜕𝛥𝑢/𝜕𝑧 obey the same mixing length relationship1150
as in the logarithmic approach flow (B 4), and third, that all the streamwise momentum is absorbed as drag or1151
surface friction on the ground (at 𝑧 = 𝑧◦).1152

However, (B 3) can yield physically implausible results for ℎ𝑖 over surfaces covered with tall roughness, ℎ𝑖1153
from (B 3) can be found at heights lower than the height of the roughness elements (Finnigan et al. 1990). This1154
is particularly problematic over hills covered with tall canopies (e.g., Finnigan & Brunet 1995) or in the present1155
experiment. Finnigan & Belcher (2004) extended the Hunt et al. (1988) model structure by replacing the thin1156
inner surface layer 𝑙𝑠 by a deep plant canopy parameterized by linearized flow equations in the upper canopy1157
but where the unavoidably non-linear dynamics in the lower canopy were treated heuristically.1158

Identifying the inner shear stress layer depth (ℎ𝑖) and the middle layer depth (ℎ𝑚) is critical to applying the1159
asymptotic small perturbation theory to interpret measurements or model results and so the definitions in (B 1)1160
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and (B 3) must be modified to account for the presence of a deep canopy. The first and most obvious change1161
is that, if (B 4) is used to describe the approach flow above the canopy, the origin of the 𝑧 coordinate must be1162
shifted from 𝑧 = 0 to 𝑧 = 𝑑 + 𝑧◦, where 𝑑 is the displacement height (or mean height of the within-canopy1163
momentum sink, e.g., Kaimal & Finnigan 1994) and 𝑧◦ now refers to the roughness length of the canopy, so1164
that (B 4) becomes,1165

𝑢𝑏 (𝑧) =
𝑢∗
𝜅

ln
(
𝑧 − 𝑑
𝑧◦

)
(B 5)1166

so that 𝑢𝑏 (𝑑 + 𝑧◦) = 0. The second set of changes follows from the fact that the flux-gradient relationship1167
between turbulent shear stress and velocity shear in the roughness sublayer (RSL) just above a tall canopy is1168
altered by the presence of energetic coherent turbulence, which originates from the hydrodynamic instability1169
of the inflection in the mean velocity profile, which always develops at the top of the canopy because of the1170
distributed pressure drag on the foliage (Raupach 1994; Finnigan et al. 2009).1171

Harman & Finnigan (2007, 2008) have successfully parameterized this effect using roughness sublayer1172
functions, 𝜙

(
𝑧−𝑑
𝛿𝜔

)
and 𝜓

(
𝑧−𝑑
𝛿𝜔

)
, where 𝛿𝜔 is the vorticity thickness evaluated at canopy top ℎ𝑐 . These RSL1173

functions are analogous to the familiar Monin-Obukhov functions 𝜙
(
𝑧−𝑑
𝐿𝑀𝑂

)
and 𝜓

(
𝑧−𝑑
𝐿𝑀𝑂

)
, which are used to1174

accommodate diabatic stability in surface layer parameterizations, 𝐿𝑀𝑂 being the Obukhov length (e.g., Garratt1175
1992). After incorporating these RSL functions, the mixing length relationship and the above-canopy log law1176
in the approach flow become, respectively:1177

𝜏𝑏 = 𝑢2
∗ = 𝜅 𝑢∗ (𝑧 − 𝑑) 𝜙−1

(
𝑧 − 𝑑
𝛿𝜔

)
𝜕 𝑢𝑏

𝜕𝑧
, (B 6)1178

and,1179

𝑢𝑏 (𝑧) =
𝑢∗
𝜅

[
ln

(
𝑧 − 𝑑
𝑧◦

)
+ 𝜓

(
𝑧 − 𝑑
𝛿𝜔

)]
(B 7)1180

where1181

𝜓

(
𝑧 − 𝑑
𝛿𝜔

)
=

∫ ∞

𝑧−𝑑

1 − 𝜙
(
𝑧′
𝑙/𝛽

)
𝑧′

𝑑𝑧′ (B 8)1182

is the integrated form of 𝜙
(
𝑧−𝑑
𝛿𝜔

)
. Harman & Finnigan (2007) define 𝜙

(
𝑧−𝑑
𝛿𝜔

)
as:1183

𝜙 = 1 − 𝑐1 exp
(
− 𝛽 𝑐2 𝑧

𝑙

)
(B 9)1184

where 𝛽 = 𝑢∗/𝑢𝑏 evaluated at ℎ𝑐 , 𝐿𝑐 = (𝑐𝑑 𝑎)−1, 𝑙 = 2 𝛽3 𝐿𝑐 , and 𝑐1 = 1 − 𝜙(0). 𝐿𝑐 is the momentum1185
absorption length of the canopy, with 𝑐𝑑 a leaf level drag coefficient and 𝑎 the leaf area per unit volume of1186
the foliage. In (B 9), 𝑐1 is a constant of integration and 𝑐2 relates the vertical scale of the RSL to the vorticity1187
thickness 𝛿𝜔 . Following Harman & Finnigan (2008) we choose 𝑐2 = 1/2, therefore (B 9) yields 𝑐1 = 𝑒

1/4. 𝜓 is1188
obtained from (B 9). For example when 𝜙 = 1,1189

𝜓 = 𝑐1 𝛤

(
0,

𝑧

8 𝐿2
𝑐 𝛽

6

)
(B 10)1190

where 𝛤 is the incomplete Gamma function.1191
The forms of the 𝜙 and 𝜓 functions as well as the examples of the application of this RSL theory to forest1192

canopies of different form and density in Harman & Finnigan (2007, 2008) reveal that the presence of the 𝜙1193
function in the flux-gradient relationship (B 6) reduces the mean velocity gradient 𝜕 𝑢𝑏/𝜕𝑧 in the RSL because1194
the additional turbulent mixing produced by the coherent eddies produced by the canopy-induced inflection1195
point instability (Raupach et al. 1996; Finnigan et al. 2009) allows the constant momentum flux 𝜏𝑏 = 𝑢2

∗ to be1196
supported by a smaller velocity gradient, while at the same time the actual velocity 𝑢𝑏 in the RSL is increased1197
by the 𝜓 term in (B 7).1198

These changes to both the log law and to the flux gradient relationship are incorporated in the following1199
modified form of the implicit relationship for ℎ̂𝑖 which is appropriate for use over a canopy or other tall1200
roughness:1201

ℎ̂𝑖

𝐿

[
ln

(
ℎ̂𝑖

𝑧◦

)
+ 𝜓

(
ℎ̂𝑖

)]
𝜙

(
ℎ̂𝑖

)
= 2𝜅2 (B 11)1202
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(B 11) yields the depth of the inner shear stress layer but the origin of the vertical coordinate is now the1203
displacement height 𝑑 and the location of the top of the shear stress layer must be measured from that location.1204

Equivalent adjustments to the formulas for ℎ𝑚 (B 1) and (B 2)) should also be made. However because the1205
changes to 𝑢𝑏 and 𝜕 𝑢𝑏/𝜕𝑧 are only significant within the RSL (which occupies only the lowermost portion of1206
the shear stress layer), the only sensible change to ℎ𝑚 results from the upward shift in the origin of the vertical1207
coordinate of ℎ̂𝑚 to 𝑧 = 𝑑 + 𝑧◦.1208
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