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ABSTRACT

Large-eddy simulation (LES) is used to model turbulent winds in a nominally neutral atmospheric

boundary layer at varyingmesh resolutions. The boundary layer is driven by wind shear with zero surface heat

flux and is capped by a stable inversion. Because of entrainment the boundary layer is in a weakly stably

stratified regime. The simulations use meshes varying from 1282 3 64 to 10242 3 512 grid points in a fixed

computational domain of size (2560, 2560, 896) m. The subgrid-scale (SGS) parameterizations used in the

LES vary with the mesh spacing. Low-order statistics, spectra, and structure functions are compared on the

different meshes and are used to assess grid convergence in the simulations. As expected, grid convergence is

primarily achieved in the middle of the boundary layer where there is scale separation between the energy-

containing and dissipative eddies. Near the surface second-order statistics do not converge on the meshes

studied. The analysis also highlights differences between one-dimensional and two-dimensional velocity

spectra; differences are attributed to sampling errors associated with aligning the horizontal coordinates with

the vertically veeringmean wind direction. Higher-order structure functions reveal non-Gaussian statistics on

all scales, but are highly dependent on the mesh resolution. A generalized logarithmic law and a k21 spectral

scaling regime are identified with mesh-dependent parameters in agreement with previously published

results.

1. Introduction

Large-eddy simulation (LES) has become an essential

tool for studying a wide range of societal pertinent at-

mospheric boundary layer (ABL) applications (e.g.,

wind energy meteorology; Calaf et al. 2010; Abkar and

Porté-Agel 2013; Churchfield et al. 2012; Sørensen et al.

2015; Allaerts and Meyers 2015) where accurate simu-

lation and representation of near-surface processes are

needed. Hence the community needs to thoroughly in-

vestigate the numerous assumptions, components, and

choices underpinning LES.

Although the fundamentals underpinning LES re-

main similar to their original formulation introduced

numerous years ago (Lilly 1967; Deardorff 1970, 1972),

recent advances in high-performance computing allows

for larger domains and higher resolutions such that LES

can now simulate a sufficiently wide inertial range to

provide important insight into turbulence beyond

second-order statistics (Stevens et al. 2014). Since the

physical subgrid-scale model (SGS) used to close the

equations depends on resolution, mesh size is a crucial

factor. Increasing the number of grid points for sim-

ulations using similar domain lengths implies that

finer turbulent structures are resolved. In the atmo-

spheric surface layer (i.e., the portion of the ABL

directly influenced by the underlying ground surface),

the characteristic length scale of turbulence grows as

kz, where k ; 0.4 is the von Kármán constant and z is

the distance from the surface. Thus, close to the sur-

face high resolution is needed. The inherent problem

of resolving the surface layer and capturing the loga-

rithmic law describing the mean wind speed is well

described by Brasseur and Wei (2010) and will also be

discussed later in this paper.

A target of the present work is to examine the impact

of mesh resolution D on neutral ABL turbulence gen-

erated by LES. In typical LES applications, the SGSCorrespondingauthor: JacobBerg, jacob.berg.joergensen@gmail.com
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model utilizes a turbulent eddy viscosity prescription

nt ;
ffiffiffi
e

p
D where e is the SGS energy and ‘ is a length scale;

the SGS parameterization ismade scale aware by choosing

‘;D. Thus, variations in mesh spacing or equivalently

turbulent eddy viscosity change the large-eddy Reynolds

number Re‘ of the simulation (see section 4a). The impact

of Reynolds number on turbulence is a traditional focus of

direct numerical simulation (DNS) studies (e.g., Moin and

Mahesh 1998), but its impact in atmospheric LES is rarely

studied (e.g., Sullivan and Patton 2011; Bou-Zeid 2015).

In general, studying the effect of mesh resolution across

the entire ABL is also relevant for applications where re-

alistic turbulence profiles are needed (e.g., wind turbines

operate in the lowest couple of hundredmeters of theABL

and the turbulence is responsible for the loading and hence

fatigue on the turbines). When deciding where to po-

sition a wind turbine (i.e., choosing the correct turbine

class to match the local site conditions) (International

Electrotechnical Commission 2005), any uncertainty in

predicting turbulence levels will manifest itself as an

increased uncertainty of the turbine’s life expectancy

and operation window.

The ABL can be naturally divided into three main ca-

nonical classes: the 1) neutral, 2) convective (or unstable),

and 3) stable boundary layer, which can largely be

characterized by zero, positive, and negative surface heat

fluxes, respectively. The effect of mesh resolution on

turbulence simulated by large-eddy simulation in the

latter two ABL classes has been carefully studied by

Sullivan and Patton (2011, convective) and Sullivan et al.

(2016, stable) with the same pseudospectral model uti-

lized here. Both of those studies found that second-order

turbulence statistics can be strongly affected bymesh size.

In those studies, the ABL was also capped by potential

temperature inversion creating a region through which

warm air entrains from above by eddies of decreasing

size as the turbulence interacts with the overlying strati-

fication. Since increasing resolution alters the range of

turbulent structures resolved, high resolution also po-

tentially impacts the region surrounding the capping in-

version and hence the ability to properly simulate ABL

growth. We therefore use a similar setup to the previous

two aforementioned studies but examine the asymptotic

situation of negligible heat flux at the surface (i.e., the

neutral boundary layer in which production of turbulent

kinetic energy primarily occurs through shear but where

heat entrained at the top of the ABL ensures weak stable

stratification throughout the ABL). This type of canoni-

cal boundary layer has been called an inversion capped

neutral boundary layer or a conditionally neutral bound-

ary layer in contrast to the Neutral Ekman boundary

layer where temperature effects are completely absent.

Neutral Ekman boundary layers were also recently

studied with the same LES model as in our study (Jiang

et al. 2018), and it was found that increased horizontal

grid resolution has a profound effect on the size of the

logarithmic layer near the ground by thinning the layer

closest to the surface where the most energetic eddies

are underresolved by the LES.

Several studies have focused on LES of conditionally

neutral boundary layers: Lin et al. (1996) focuses mainly

on the momentum flux and vorticity balance, Pedersen

et al. (2014) showed the development of boundary layers

from looking at the terms in the turbulent kinetic

energy (TKE) equation, and Otte andWyngaard (2001)

primarily focused on the interfacial layer around the

capping inversion, while Moeng and Sullivan (1994)

compared the overall structure in relation to stable and

convective boundary layers. Furthermore, wind farm

studies have been presented by Abkar and Porté-Agel

(2013) andAllaerts andMeyers (2015, 2017) focusing on

how the strength of the inversion affects wind turbine

performance within farms as a result of altered mo-

mentum fluxes in the wake regions. Pollard et al. (1973)

and Zilitinkevich et al. (2007) showed that the height of

the boundary layer also depend on the Brunt–Väisälä
frequency, thus adding another time scale to the prob-

lem in addition to that introduced by the Coriolis force.

Common for all the studies just mentioned is that all the

simulations discussed use fairly coarse resolution com-

pared to those examined by Sullivan and Patton (2011)

and Sullivan et al. (2016). Pedersen et al. (2014) claimed

to observe mesh independence when it comes to cap-

turing the log law at the surface and when estimating the

boundary layer growth rate we (in the absence of sub-

sidence); but we will show mesh dependencies for sta-

tistics even down to second order for simulations using

similar domain sizes but resolved by up to 10242 3 512

grid points on a domain with physical size (2560m)2 3
896m. It should also be noted that Pan and Chamecki

(2016) found a resolution dependence in the logarithmic

layer of a canopy ABL when looking at non-Gaussian

effects at the smallest scales through velocity structure

functions.

The paper is organized as follows: section 2 pres-

ents a description of the LES and its configuration.

Section 3 provides and overview of the suite of LES

simulations studied including the ABL development and

sampling/averaging procedure considerations. Section 4

contains the analysis and discussions, and section 5

provides a summary of the findings.

2. LES equations

Weuse the National Center for Atmospheric Research

(NCAR) pseudospectral LES code (Sullivan and Patton
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2011; Sullivan et al. 2016), mimicking a dry atmospheric

boundary layer (ABL) under the Boussinesq approxi-

mation over a flat lower boundary with constant rough-

ness length z0. The origin of the model goes back to the

original work of Deardorff (1970) with the novel modi-

fications introduced by Moeng (1984) and Moeng and

Wyngaard (1988).

The LES equations are formulated in a right handed

Cartesian coordinate system, x 5 (x1, x2, x3) 5 (x, y, z),

for the spatial filtered variables ~ui(x, t), ~u(x, t), ~p(x, t),

and e(x, t), which are the velocity, potential tempera-

ture, modified hydrodynamic pressure (normalized by a

reference density), and subgrid-scale (SGS) kinetic en-

ergy, respectively:
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The incompressibility condition listed in Eq. (2)

leads to a Poisson equation for the pressure variable

~p. The advection term in Eq. (1) is written in rota-

tional form, and the vertical momentum equation (i5
3) is solved only for the part deviating from hydro-

static balance and the horizontal mean (i.e., h~u3i5 0 at

all heights) (Moeng 1984). The model is forced by a

geostrophic relationship with a constant height inde-

pendent geostrophic velocity UG
i and Coriolis pa-

rameter f (i.e., mimicking barotropic conditions). The

buoyancy parameter, b 5 g/u0, is held constant with

gravitational acceleration g 5 9.81m s22 and refer-

ence potential temperature u0 5 290K. Where ap-

propriate we will use explicit variable naming; (u, y,

w) instead of the more compact Einstein notation (u1,

u2, u3) for the velocity vector.

We useDeardorff’s (1980) SGSmodel with a stability-

corrected length scale. Details of the right-hand-side

terms in Eq. (4) representing shear production P ,

buoyancy B , diffusion D , and dissipation E as well as

the SGS terms in Eqs. (1)–(4):
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can be found in Deardorff (1980), Moeng (1984), and

Moeng and Wyngaard (1988). Near the surface we use

the two-part SGS eddy-viscosity model extension that

explicitly accounts for the near-surface mean flow

(Sullivan et al. 1994). For all simulations discussed, the

scale at which the equations are filtered falls at scales at

least decades larger O(1–10) m than the Kolmogorov

microscale O(1) mm; therefore, the viscous terms that

would otherwise appear in Eq. (1) have been neglected.

As in both Sullivan and Patton (2011) and Sullivan

et al. (2016) the focus in this paper is on the dependence

of mesh resolution given a specific SGS model. Results

may therefore differ when applying SGS models of

other types (such as the different dynamic Smagorinsky

TABLE 1. Overview of simulations.

Name Grid points (Lx, Ly, Lz) (m) (Dx, Dy, Dz) (m) Df (m) Dtavg (s) T (s)

A 1282 3 64 (2560, 2560, 896) (20.0, 20.0, 14.0) 23.3 3.86 1.2 3 105

B 2562 3 128 (2560, 2560, 896) (10.0, 10.0, 7.0) 11.6 1.85 2.3 3 105

C 5122 3 256 (2560, 2560, 896) (5.0, 5.0, 3.5) 5.8 0.88 1.1 3 105

D 10242 3 512 (2560, 2560, 896) (2.5, 2.5, 1.75) 2.9 0.43 1.0 3 105

FIG. 1. The relationship between zi and h for simulation times

between 35TE and –135TE in steps of 10 TE from run B. The fit is

forced to have a zero intercept.
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models introduced and discussed in Porté-Agel et al. 2000;

Meneveau and Katz 2000; Bou-Zeid et al. 2005, 2008).

We apply rough wall boundary conditions at the

lower bottom ‘‘surface’’ through specification of Monin–

Obukhov similarity functions (Moeng 1984; Moeng and

Sullivan 1994). At the upper boundary a radiation condi-

tion is applied (Klemp and Durran 1983). We use periodic

boundary conditions at all lateral walls. Broad details re-

garding code parallelization and use of fast Fourier trans-

forms to solve the Poisson equation for the nonlocal

pressure can be found in Sullivan and Patton (2011).

Time is advanced through a third-order Runge–Kutta

scheme,where the time step is dynamically calculated each

iteration based upon a constant Courant–Friedrichs–Lewy

(CFL) number of 0.5. We take advantage of the Galilean

invariance of the governing equations and hence move the

mesh with a speed equal to half the geostrophic speedUG,

which permits approximately a factor-of-2 larger time step.

3. Design of LES experiments

a. Grid mesh

The focus is on mesh dependence of shear driven

boundary layers under weakly stable stratification,

hence a series of simulations have been conducted with

varying mesh resolution from 1282 3 64 to 10242 3 512

(Table 1). All simulations use the same domain size (Lx,

Ly, Lz) 5 (2560, 2560, 896) m; however, the simulation

durationT differs slightly across simulations. We denote

the average time step in the simulations with Dtavg. As is

common practice in pseudospectral codes in order to

avoid aliasing effects, the top one-third of wavenumbers

are ignored (Orszag 1971), meaning that the spatial res-

olution [i.e., the effective LES filterwidth isDf5 [(3/2)Dx,
(3/2)Dy, Dz]1/3]. Due to the doubling of resolution at

each simulation level the aspect ratio, Dx/Dz5Dy/Dz, is
held constant in our study. Brasseur and Wei (2010)

discuss possible implications of grid aspect ratio for

the ‘‘overshoot’’ problem in the logarithmic layer, and

FIG. 2. Profiles of (left) wind speed S and (right) normalized total Reynolds stress

(h~u0 ~w0 1 t13i2 1 h~y0 ~w0 1 t23i2)1/2. Profiles are plotted averaging intervals from 5TE to 135TE

in steps of 10TE. Data are presented for run B.

FIG. 3. Growth of zi as a function of simulation time in units of

the eddy-turn over time TE. The dashed horizontal line indicates

0.85mm s21. The colors refer to the four simulations A–D.
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Ercolani et al. (2017) finds an optimal value of 4 (it is

;1.4 in our study and thus closer to the isotropy as-

sumption in the SGS model), although it is not clear

whether that result applies to incompressible pseudo-

spectral solvers like the NCAR LES code.

b. Imposed parameters

The externally imposed parameters defining the ca-

nonical ABL are held constant for all runs, these in-

clude: surface heat flux Q0 5 0Kms21, geostrophic

velocity (UG, VG)5 (5, 0) m s21, Coriolis parameter f5
1024 s21, and surface roughness length z0 5 0.05m. All

simulations are initialized with constant potential tem-

perature gradient, ›~uf /›z5 0:003Km21, throughout the

domain. The subscript f refers to the ‘‘free’’ atmosphere

(i.e., the nonturbulent atmosphere into which the bound-

ary layer develops). As time advances, boundary layer

growth occurs as turbulent kinetic energy is produced by

shear production at the surface and entrainment of po-

tential temperature at the top. The stable stratification

capping the ABL from above is characterized by a Brunt–

Väisälä frequency, N2 5b›~uf /›z5 1024 s22. The coordi-

nate system is aligned with i 5 1 in the direction of the

geostrophic wind, UG, which has consequences for one-

dimensional spectral properties (see section 4c).

The velocity fields are initialized with the geostrophic

wind profile. Incompressible velocity and temperature

fluctuations initiate turbulence in the lowest 50m.

Following Beare et al. (2006), horizontally homogeneous

vertical profile of SGS kinetic energy is initialized in the

lowest 250m as e(z) 5 0.4(1 2 z/250).

c. Averaging procedures

Due to horizontal homogeneity we approximate en-

semble averaging (denoted with angle brackets) with

horizontal averaging, which then becomes only a func-

tion of the vertical direction z. We denote the local

fluctuations in a variable x(x, y, z, t) as departures from

the horizontal average according to

~x0(x, y, z, t)5~x(x, y, z, t)2 h ~xi(z, t), (8)

where the time dependence has been kept in order to

emphasize the inherent statistical nonstationarity of the

flow. We use the longest duration simulation (run B) to

identify a pseudostationary time period for comparison

of the different mesh resolution simulations.

At every time step, we estimate the boundary layer

height using two different methods: 1) the ‘‘maximum

gradient method’’ applied to potential temperature

(Sullivan et al. 1998) leading to zi, and 2) finding the

height h at which the square root of the total Reynolds

stress (h~u0 ~w0 1 t13i2 1 h~y0 ~w0 1 t23i2)1/4 falls to 5% of its

surface value u+ (Kosović and Curry 2000). We evalue

u+ at z 5 Dz/2 (i.e., in the first grid point from the re-

solved horizontal velocities ~u and ~y through the loga-

rithmic law). Figure 1 compares zi and h for times

larger than 35TE for run B (i.e., at times after the initial

spinup). We observe a linear relationship with a ratio,

zi/h 5 1.12 Since absolute numbers are not relevant,

from here onward we will refer to zi as our ABL height

estimate.

To compare the four simulations, we define a large-

eddy turn-over time scale as TE 5 zi/u+. Figure 2 shows

profiles of mean wind speed, S5 (h~ui2 1 h~yi2)1/2, and the

total Reynolds Stress as a function of time, where we

present profiles for the longest simulation, run B, aver-

aged over intervals ranging from {5–15}TE to {125–135}

TE. In both panels we see that the profiles each approach

a limiting profile as time advances. At {55–65}TE we

conclude that the profile shapes are similar to the lim-

iting shapes and that a pseudo-stationary state has been

reached.

Figure 3 shows the growth rate (or alternatively the

entrainment rate), we 5 ›zi/›t, as a function of the eddy

FIG. 4. Friction velocity of u+ as a function of simulation time in

units of the eddy-turnover time TE. The colors refer to the four

simulations A–D.

TABLE 2. Bulk parameters.

Name h (m) zi (m) zi/h (–) u+ (m s21) zi(jf jN)1/2u21
+ (–) TE (s) zi/Df (–) Re‘ (–)

A 348 399 1.15 0.230 1.74 1733 17.1 182

B 353 395 1.12 0.229 1.73 1722 34.1 398

C 338 372 1.10 0.225 1.65 1648 64.1 886

D 321 350 1.09 0.221 1.59 1579 120.1 2012
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turnover time TE. At {55–65}TE, the growth rate reaches

a constant value of we ; 0.85m s21 and the variation in

we among the four simulations is less than 5%. This time

interval ({55–65}TE) can therefore be assumed quasi

stationary and is used from here forward as our aver-

aging interval. Figure 4 shows that the friction velocity

u+ also converges by {55–65}TE; u+ actually converges

much earlier, at around 30TE, since u+ is by definition

governed by surface processes in contrast to zi.

4. Results

This section presents mesh resolution sensitivity re-

sults. Bulk parameters from the simulations are calcu-

lated using averages over the interval {55–65}TE. The

numbers are presented in Table 2.

a. Large-eddy Reynolds number and SGS dissipation

In Sullivan and Patton (2011) on convective boundary

layers the ratio zi/Df was used as a measure of the ABL

resolution as it represents the separation between the

largest possible energy-containing eddy in the flow and

the scales of motion nearest to the LES cutoff. In Fig. 1 we

have shown that in our conditional neutral boundary layer

zi; 1.12h for the B run. Since the ratio zi/h, as can be seen

in Table 2, only changes slightly with mesh size, we use the

ratio zi/Df to express ABL resolution. With zi 2 {350–

399} m across the four simulations, we furthermore find

that the domain size is large enough compared to theABL

height; the ‘‘rule of thumb’’ says that Lx/zi . 5, Ly/zi . 5,

and Lz/zi . 2 needs to be satisfied (reference unknown).

The resolved turbulence in the high-Reynolds-number

LES should be independent of processes taken place on

scales below the filter scale Df. To state that a given

mesh is fine enough and that the simulation has is in-

dependent of the SGS viscosity is equivalent to stating

that the large-eddy Reynolds number is a function of

the effective resolution alone. The effective resolution

is here defined as the ratio between the largest and

smallest scales resolved in the simulation zi/Df. We

define the large-eddy Reynolds number:

Re
‘
5

u‘

n
t

[
u
+
z
i

C
k
D
f
e1/2

, (9)

where in contrast to Moeng and Wyngaard (1988) and

Sullivan and Patton (2011) the friction velocity u+ is

the characteristic velocity scale since turbulence in our

study is produced by shear. In Eq. (9) we use a defini-

tion of SGS viscosity consistent with that used in the

LES code; Ck 5 0.1. Pollard et al. (1973) propose

‘5 ccnu+(jf jN)21/2 from studies with a simple model of

the upper ocean. From ABL LESs Zilitinkevich et al.

(2007) find ccn 5 1.36 using same definition of h as

used in our study. The spinup time in their LES is, how-

ever, different compared to our study, and hence a dif-

ferent numerical value should be expected, due to the

FIG. 5. Re‘ multiplied with (Df/zi)
4/3 as a function of zi/Df for the

three heights z/zi5 0.1 (diamonds), 0.5 (squares), and 0.9 (circles).

FIG. 6. Ratio between resolved shear production SP5
2(h~u0 ~w0i›h~ui/›z1 h~y0 ~w0i›h~yi/›z) and dissipation hE i as a function
of normalized height z/zi.
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inherent lack of stationarity in the problem. We adopt

zi 5 ccn0u+(jf jN)21/2, and find values of ccn0 as provided

in Table 2; most pronounced is a small dependence on

mesh size. Together with the SGS model (Lilly 1967;

Moeng and Wyngaard 1988) (here without the stability

correction—see section 4b), E 5CE e
3/2/Df , and the SGS

identity of constants (cs 5C3/4
k c21/4

E with cs 5 0.18) we

can also express the large-eddy Reynolds number as

Re
‘
5

 
z
i

c
s
D

f

!4/3"
u2
+(jf jN)1/2

c
cn0E

#1/3
. (10)

We thus recover the (zi/Df)
4/3 dependence also found

in Sullivan and Patton (2011) and in direct numerical

simulation (Pope 2000). Since the product of all the

other parameters in the second parentheses of Eq. (10)

are mesh independent (u2
+/ccn0 5 0:030m2 s22 in all four

simulations), E needs to be constant in the inertial

subrange (assuming that Df is in the inertial subrange).

In Fig. 5 we plot Re‘ multiplied with (Df /zi)
4/3 for the

three heights: z/zi 5 0.1, z/zi 5 0.5, and z/zi 5 0.9. At

z/zi 5 0.9. we observe mesh independence going from

simulation C to D. Closer near the surface where the

dissipation rates E aremuch higher, mesh independence

is still not achieved. In Sullivan and Patton (2011) mesh

independence through a similar analysis was reported

from zi/Df . 60 in a convective boundary layer. This

correspond to our run C at 5122 3 256. The different

mechanisms producing turbulence in convective and

conditional neutral boundary layers (Moeng and Sullivan

1994), and the difference in the resulting characteristic

turbulence scales, is thus of significant importance when

studying mesh influence. Without going into details of all

the budget terms in the turbulent kinetic energy equation,

we show in Fig. 6 the ratio between resolved shear pro-

duction, SP52(h~u0 ~w0i›h~ui/›z1 h~y0 ~w0i›h~yi/›z)—the only

term creating turbulent kinetic energy–and the dissipation,

hE i, derived from the Deardorff (1980) SGS model:

FIG. 7. Snapshots of the (top) streamwise velocity uh and (bottom) vertical velocity w at z/zi 5 0.1 for (left)

simulationA and (right) simulationD. Black arrows in the lower-left corner of each panel represent the mean wind

direction.
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hE i5
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0:191 0:74
l

D
f

!
e3/2

l

+
, (11)

where l is a stability-limited length scale calculated

according to l5min[l+, Df ] with l+ 5 0:67
ffiffiffiffiffiffiffiffiffiffi
e/N2

p
. In

principle there is also production of turbulent kinetic

energy through a subfilter shear production htij›~u0
i/›xji

but since this term is balanced by an equal amount of

turbulent kinetic energy transferred from the resolved

scales to the subfilter scales, we do not consider it here.

The ratio SP/hE i shows heights at which a local balance

between shear production and dissipation is achieved.

This height increases with decreasing resolution. For

the coarsest simulation A it is never achieved, and even

for the finest resolution runs, C and D, is the height

interval very narrow. For runs C and D it is found at

z/zi ; 0.1. We will return to this balance when looking

at structure functions later in the paper.

Very small dissipation rates are found near theABL top

(z/zi5 0.9) for all four simulations. Strictly speaking, runD

is the only simulation where hl+i=Df . 1 at z/zi 5 0.9 (not

shown), hence only in run D is there sufficient resolution

to resolve the smallest scales for the problemdesign.At the

larger-scale end of the eddy spectrum, the Dougherty–

Ozmidov length scale, Lo 5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hE i=hN2i3/2

q
(Dougherty

1961; Ozmidov 1965), provides a measure of eddy sizes ‘

for which overturning would be inhibited (‘.Lo) by the

strong stratification arising from entrainment of warm air

from the ‘‘free’’ atmosphere above and turbulent mixing

throughout the ABL. At z/zi 5 0.9 we find Lo/Df 5 {0.2,

0.5, 1.2, 2.4}, whichmeans that only in runs C andD are the

smallest scales unaffected by the strong stratification. Due

to very high values ofLo as we approach the surface where

N2 vanishes, for all simulations at z/zi , 0.75, we find that

‘,Lo for all resolved eddies.

Instantaneous horizontal (x–y) slices of streamwise

velocity uh and vertical velocity w reveal significant

differences in the qualitative patterns between the

coarsest and finest simulations (Figs. 7, 8). Here, stream-

wise velocity is defined uh 5 (~u, ~y, 0) � k̂h, where the

streamwise vector (in the direction of the mean wind)

is defined as k̂h 5 (h~ui, h~yi)/j(h~ui, h~yi)j. Figure 7 pres-

ents snapshots at z/zi 5 0.1, while height z/zi 5 0.9, is

presented in Fig. 8.

FIG. 8. As in Fig. 7, but for z/zi 5 0.9. The color bars have been changed compared Fig. 7.
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A comparison of the horizontal and vertical velocity

fields from simulations A and D, collected at the same

nondimensional vertical location, shows a dramatic in-

crease in the intensity and number of small-scale eddies

with increasing resolution. This is expected given the

increase in large eddy Reynolds number in run D (e.g.,

Jiménez 2012). The abundant small-scale eddies in run

D blur the relatively smooth large-scale velocity pat-

terns readily observed in run A. The impact of increased

resolution on vertical velocity is noticeably pronounced.

FIG. 9. Vertical momentum flux profiles: resolved, h~u0
i ~w

0i (dashed); SGS, hti3i (dotted); and
total (solid) for (left) i 5 1 and (right) i 5 2 normalized with u2

+.

FIG. 10. Vertical profiles of (left) mean horizontal wind speed S (inset is S/u+ vs z/zi), (center) nondimensional wind shear fm, and (right)

wind direction u as a function of z/zi.
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At z/zi 5 0.9, the inability of run A to resolve the small

scales associated with the buoyant destruction of tur-

bulent kinetic energy as previously discussed is evident:

the near intermittent velocity patterns observed in runD

are qualitatively different from runA.A slight change in

the main wind direction is also observed between the

two resolutions at all heights and is due to the inability to

resolve the turbulent momentum fluxes and shifts in zi,

FIG. 11. Vertical profiles of horizontally and time-averaged (left) vertical heat flux and

(right) temperature h~ui as a function of z/zi and z, respectively. the heat flux is shown as

follows: resolved, h ~w0~u0i (dashed); SGS, htu3i (dotted); and total (solid).

FIG. 12. Vertical profiles of (left) nondimensional TKE, (center) ratio of SGS to the total TKE, and (right)
ffiffiffiffiffiffiffiffiffiffiffi
TKE

p
/S as a function of z/zi.

Lines are as follows: resolved (dashed), SGS (dotted), and total (solid).
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which both influence the wind veer with height (see

section 4b).

b. Profiles of first- and second-order moments

As previously mentioned, the turbulent momentum

fluxes play a significant role in producing turbulence

(viz. the importance of shear production in the turbu-

lence kinetic energy budget). Figure 9 shows the re-

solved h~u0
i ~w

0i, SGS hti3i, and the total momentum fluxes.

Except for simulation A, profiles of the total momentum

flux in the two horizontal directions (solid lines, Fig. 9)

do not change substantially with resolution changes for

heights z/zi . 0.2. On the other hand, the ratio between

the resolved and SGS contributions increases signifi-

cantly as the resolution increases. The first grid point at

which the momentum fluxes are evaluated is at z 5 Dz.
Whereas the magnitude of the total momentum flux

vector at this level only differ by 2% between run A and

run D, the angle tan21(h~y0 ~w0 1 t23i/h~u0 ~w0 1 t13i) is more

different. One finds a 38 difference between runsA andD

(the angle in run D is 22.98). If we on the other hand only

look at the resolved contribution, tan21(h~y0 ~w0i=h~u0 ~w0i),
we find a 58 difference. That is, the run D is capable of

resolving relatively more of the smaller-scale h~y0 ~w0i co-
variance compared to the coarser run A. Since the mo-

mentum flux vector is aligned with the vector of themean

shear, (dh~ui/dz, dh~yi/dz), this has implications for the

wind direction (Berg et al. 2013). A change in mean wind

direction was observed in Figs. 7 and 8 when comparing

run A and run D.

The mean wind S is shown in Fig. 10 (left panel). All

simulations produce a supergeostrophic velocity with

maximum speed location increasing with increasing

resolution (z/zi; 0.85 for runA to z/zi; 0.93 for runD).

Some discrepancy between simulations can be seen in

the near-surface mean wind profiles, but they become

more similar after rescaling the profiles with each sim-

ulation’s respective u+, at least up to around z/zi ; 0.2.

Visualization of true logarithmic scaling (which should

only exist in true shear-driven boundary layers, i.e., in

the absence of stratification and Coriolis forces), is best

performed by looking at the nondimensional wind shear,

FIG. 13. Contour plots of the spectral tensor diagonal termsFii at z/zi5 0.1 for the 12823 64 (run A) simulation:

(top left) F11, (top right) F22, (bottom left) F33, and (bottom right) (F11 1 F22)/2. The contour lines are loga-

rithmically scaled. The black lines are aligned with the streamwise and spanwise wavenumbers k1 and k2. The

yellow rings are lines of constant kh.
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fm 5 (kz/u+)(›S/›z) in close proximity to the lower

boundary; fm is plotted in Fig. 10 (center panel),

where a true near-surface logarithmic layer should ap-

pear as a region where fm 5 1. Near-surface departure

from fm 5 1 (i.e., the overshoot) is constant in magni-

tude for all runs but shifts toward the surface with in-

creasing resolution, a result consistent with Brasseur and

Wei (2010). The relatively low magnitude of the over-

shoot (less than 10%) is attributed to application of

Sullivan et al.’s (1994) two-part SGS model. Especially

for the two highest-resolution simulations (runs C and

D), the influence of the stable stratification appears as a

constant increase in fm from z/zi ; 0.08 and up.

In Fig. 10 (right panel) we show the mean wind direc-

tion u for the four runs. Stronger veering (wind direction

changewith height)with increased resolution is observed.

This is in agreement with the findings just reported on the

angle between resolved momentum fluxes.

We now turn to the heat flux profiles in Fig. 11 (left

panel). For all resolutions a close to linear profile from

the surface to the minimum value of heat flux is ob-

served. The minimum value decreases and the height of

this minimum increases with increasing resolution. This

is in agreement with the DNS study by Jonker et al.

(2013). In their DNS no ‘‘overshoot’’ is observed above

zi. Such ‘‘overshoot’’ is present in our coarse-resolution

runsA andB but diminishes in the fine-resolution runs C

and D. Looking at the SGS contribution htwui, we see

that the minimum value for simulation A ocurrs at a

height below the minimum of the total heat flux com-

pared to runs C and D, where it is located above the

minimum of the total flux. Since the heat flux is ulti-

mately linked to the gradient of potential temperature,

we show the profile of h~ui in Fig. 11 (right panel). In the

inset we observe how the coarse resolution fails to re-

solve the gradient and how it instead ‘‘smears’’ it out

over a larger depth compared to the fine resolution runs.

Due to the increased heat flux in the coarse simulations

the bulk ABL temperature increases slightly with de-

creasing resolution (0.1K).

Figure 12 presents the total turbulent kinetic energy,

TKE5 h~u0
i~u

0
ii/21 hei, where summation is implied and e

is the SGS turbulent kinetic energy in Eq. (4). In the left

panel the total TKE converges across simulations

throughout much of the ABL except at z/zi ; 1, where

turbulence is produced by shear associated with the

FIG. 14. As in Fig. 13, but for the 10242 3 512 (run D) simulation.
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supergeostrophic jet and destroyed by buoyancy, which

are both highly dependent on the mesh resolution due

to the small scales involved: we observe that the smaller

jet observed in simulation A (Fig. 10 do not give rise to

the same amount of turbulence as for the other more

resolved runs. Close to the surface, increasing mesh

resolution naturally resolves the increasingly smaller

scales. Convergence throughout the ABL of total TKE

implies commensurate altering of the partitioning be-

tween resolved and SGS energy with mesh resolution

variations. The contribution from SGS energy is increasing

with approximately 50% each time the filter Df is doubled.

The right panel of Fig. 12 shows a surrogate for tur-

bulence intensity (i.e.,
ffiffiffiffiffiffiffiffiffiffiffi
TKE

p
/S). We choose this defi-

nition instead of the wind-energy community’s usual

definition: suh/juhj, where suh denotes the standard de-

viation of the streamwise velocity component; however,

since sy ; 0.8su and sw ; 0.5su, (Panofsky and Dutton

1984), the difference between the two definitions should

only result in magnitude differences of ;3%. Again we

observe mesh independence throughout the ABL ex-

cept at z/zi ; 1 and close to the surface. In wind energy

meteorology such a result could potentially be quite

useful: even coarse-resolution LES can produce suf-

ficiently accurate turbulence intensity predictions to

determine appropriate wind turbine classes for siting

purposes (e.g., International Electrotechnical Commission

2005), where for this configuration coarse resolution

means Df 5 23.3m. Close to the surface the SGS model

fails to deliver the part of TKE missing due to unre-

solved eddies, and hence the somewhat bold statement

above also do not apply to turbines operating in the

surface layer.

c. The spectral tensor and inertial range scaling

Further insight into the second-order statistics can be

gained by looking at the spectral properties of the sim-

ulations. As a starting point, the spectral tensor in sta-

tionary and horizontal homogeneous conditions is

F
ij
(k

x
, k

y
, z)5

1

(2p)2

ðð
R

ij
(r

x
, r

y
, z)e2ı(kxrx1kyry) dr

x
dr

y
,

(12)

with the covariance function,

R
ij
(r

x
, r

y
, z)5 h~u0

i(x, y, z)~u
0
j(x1 r

x
, y1 r

y
, z)i, (13)

and horizontal wavenumbers, k 5 (kx, ky), aligned with

the LES coordinate system. The spectral tensor has the

properties, Fij(k, z)5F+
ji (k, z) and kiFij(k, z) 5 0,

where the pentagram denotes complex conjugation. To

account for the fact that the wind direction is not aligned

with the coordinate axis, the spectral tensor has been

rotated at each height, Frot
ij 5MikFklMjl, whereMij is the

matrix that rotates a wind vector into the mean hori-

zontal wind direction, so that k1 is in the direction of the

mean wind at each height.

FIG. 15. Two-dimensional horizontal spectra Eh(kh) (solid) and vertical spectra Ew(kh) (dashed) for z/zi 5 (left) 0.1, (center) 0.5, and

(right) 0.9. All spectra have been nondimensionalized with a factor 2pz21
i u22

+ .
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Figures 13 and 14 show the diagonal terms of the

spectral tensor for the 1282 3 64 (run A) and 10242 3
512 (run D) simulations at z/zi 5 0.1, respectively. The

main features in the spectral tensors clearly align with

the streamwise and spanwise wavenumbers k1 and k2 for

the two horizontal terms F11 and F22, respectively; this

result is especially true for the high-resolution simula-

tion D, whereas some misalignment is observed for the

coarser simulation A. The mean wind is associated

with lowest wavenumber (i.e., in the center of the

plots); the misalignment increases with increasing

wavenumber such that the smallest scales exhibit the

FIG. 16. One-dimensional spectra Fii(k1) at z/zi 5 0.5 for i 5 1 (red lines), i 5 2 (green lines), and i 5 3 (blue lines) for (left) run A, (left

center) run B, (right center) run C, and (right) run D. All spectra have been nondimensionalized with a factor z21
i u22

+ .

FIG. 17. Pdfs of velocity increments in the streamwise direction p(�)at z/zi 5 0.1 for (top) the streamwise

component and (bottom) the vertical component in (left) the coarse simulation (run A) and (right) the fine sim-

ulation (run D). The thick black line, representing 2x2, is the Gaussian distribution. We plot pdfs for separations,

r 2 [Dx, . . . , Lx/2].
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largest misalignment. Again, this result is most pro-

nounced in run A.

The average of F11 and F22 shows the azimuthal

symmetry [and hence follows the incompressibility

constraint, kiFij(k) 5 0 in Pope (2000, p. 220)], for all

but the smallest scales in run D, which makes (F11 1
F11)/2 an obvious candidate for azimuthal averaging

(also denoted as ‘‘ring averaging’’). Azimuthal sym-

metry is also observed in the vertical component F33

Run A does not display azimuthal symmetry for either

(F11 1 F22)/2 or F33.

Following Peltier et al. (1996), Kelly and Wyngaard

(2006), and Wyngaard (2010) we exploit the symmetry

observed in F33 and (F11 1 F22)/2 by calculating two-

dimensional ring-averaged horizontal velocity spectra

Eh(kh) and vertical velocity spectra Eh(kh) as a function

of horizontal wavenumber, kh 5 (k2
1 1 k2

2)
1/2
:

E
h
(k

h
)5

1

2

ð2p
0

[F
11
(k

h
, u)1F

22
(k

h
, u)]k

h
du, (14)

E
w
(k

h
)5

ð2p
0

F
33
(k

h
, u)k

h
du. (15)

In the inertial subrange, the spectra are supposed to

follow the dimensional ‘‘25/3’’ scaling, with Eh(kh)5
ahE 2/3k25/3

h and Ew(kh)5awE 2/3k25/3
h , with constants

ah5 0.54(55/18)a1d, andaw5 0.61(55/18)a1d (Wyngaard

2010), and the one-dimensional Kolmogorov constant

taken to be a1d 5 0.5 (Sreenivasan 1995). Figure 15

presents ring-averaged two-dimensional spectra Eh(kh)

andEw(kh). At z/zi5 0.1 the horizontal spectra for runs C

andD start to showan inertial subrange. Since the spectra

have been multiplied by the inverse constants, ah and aw,

collapse between the horizontal and vertical spectra in-

dicate that their mutual relationship is found to follow its

theoretical prediction. This is the case at z/zi 5 0.1 for

runs C and D. Moving to z/zi 5 0.5 we see the extended

range reasonably close to 25/3 scaling for all runs and a

collapse of the two spectra.As kzi increases and the scales

are being affected by the SGS model the slopes decline

slightly.At z/zi5 0.9 all resolved scales in all the four runs

(except the very smallest in run D affected by SGS dis-

sipation) are larger than the Ozmidov scale Lo. Hence

they are influenced by the stable stratification and

therefore do not exhibit fully three-dimensional tur-

bulence—together with the small scales present at this

height inertial range scaling is inapplicable.

Compared to more typical one-dimensional spectra,

that is,

F
ij
(k

1
)5

ð
F

ij
(k

1
, k

2
) dk

2
, (16)

the advantage of interrogating two-dimensional ring-

averaged spectra becomes apparent by studying the

FIG. 18. As in Fig. 17, but for z/zi 5 0.5.
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spectral tensor plots (Figs. 13, 14). Averaging Fij(k1)

over k2 introduces aliasing errors from spanwise mo-

tions. Furthermore, in situations including the Coriolis

force, using a square domain with principle coordinates,

x and y, the integration limits change, since the structure

of Fij aligns along k1 and k2 as opposed to along kx and

ky, in effect smaller scales, are somewhat effected.

The disadvantage of using two-dimensional spectra lies

in the lack of available measurements. Measurements

tend to be performed in the temporal domain and after

assuming Taylor’s frozen-eddy hypothesis (Taylor 1938)

and presented as one-dimensional spectra Fij(k1) in the

streamwise direction. Figure 16 shows one-dimensional

spectra Fii(k1), where the spectra have been multiplied

with the inverse Kolmogorov constant a1d at z/zi 5 0.5

(i.e., at the height that most clearly contained an inertial

subrange in the 2D spectra according to Fig. 15). The

three curves in each panel do not fully collapse in the

inertial subrange, demonstrating that they are not fully

consistent with (4/3)F11 5 F22 5 F33 as one would expect

for isotropic tensors (see Pope 2000, for example). The

collapse of the curves improves with increasing resolu-

tion, but even at the finest resolution (run D, right panel

of Fig. 16), the range over which they collapse, and follow

the 25/3 scaling law is restricted compared to its two-

dimensional counterpart. The 25/3 law is thus more

difficult to discern in the one-dimensional spectra com-

pared to two-dimensional spectra; a well known result

that we attribute to sampling issues connected to kx 2 ky
versus k12 k2 as described above—an effect that is rarely

highlighted in the literature. Recently is has also been

documented by Ansorge (2019) how a systematic dis-

placement of structures in the lowest part of the boundary

layer dictates the use of two-dimensional filters only.

d. Velocity increments, structure functions, and
generalized log law

Finally, structure function analysis allows interroga-

tion of the Gaussianity (or non-Gaussianity) of velocity

increment statistics in the streamwise and in the vertical

directions. Streamwise velocity increments at a distance

r in the streamwise direction are defined as

du
h
(r)[ k̂

h
� [~u0(x1 rk̂

h
, t)2 ~u0(x, t)], (17)

where k̂h is the streamwise unit vector defined previ-

ously, while

dw(r)[ ~w0(x1 rk̂
h
, t)2 ~w0(x, t) (18)

defines the vertical velocity increments. Normalized

probability density functions (pdfs) of the velocity

FIG. 19. Normalized (top) third moment Sk and (bottom) fourth moment, K of the velocity increments as a

function of horizontal separation distance r and at a height of z/zi5 0.1 for (left) the streamwise velocity component

and (right) the vertical velocity component.
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increments (Figs. 17, 18 ) reveal some striking features.

First of all the pdfs become more Gaussian with de-

creasing distance r (i.e., departure from Gaussian sta-

tistics is most pronounced for small scales in the flow),

which is in agreement with most previous observations

and theory describing turbulent high-Reynolds-number

flow (Frisch 1995). The pdfs of the finest-resolution

simulation (run D) exhibit the broadest tails, while in

the coarse simulation (run A) the pdf tails level-off in a

concave shape indicating truncation caused by the SGS

model. From the spectral analysis (section 4c), the in-

ertial range for this mesh size (1282 3 64) is very narrow

and hardly follows conventional scaling. Vertical veloc-

ity exhibits the largest non-Gaussianity, in agreement

with visual inspection of the smallest scales in the in-

stantaneous horizontal slices of vertical velocity in

Figs. 7 and 8. Finally, the most non-Gaussian velocity

increments in run A occurs at z/zi ; 0.5 compared to at

z/zi; 0.1 for runD, which results fromhigher-resolution

supporting a broader inertial range due to the large

turbulent scales of motion present at z/zi ; 0.5.

Defining the structure function of nth order as en-

semble averages hdun
h(r)i and hdwn(r)i for the stream-

wise and vertical components, respectively, the third

and fourth normalized moments (i.e., skewness Sk

and kurtosis K), are given by Sk[ hdu3
hi=hdu2

hi3/2 and

K[ hdu4
hi=hdu2

hi2 and similar for the vertical compo-

nent. Velocity skewness and kurtosis are presented in

FIG. 20. As in Fig. 19, but for z/zi 5 0.5.

FIG. 21. Compensated spectra (left) khEh(kh) and (right) k1F11(k1) at z/zi5 0.1 for runsA–D. The spectra have been

nondimensionalized with u22
+ . The dashed gray lines indicate the plateau level.
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Figs. 19 and 20. For streamwise velocity, the negative

skewness agrees with the exact result in turbulence the-

ory (i.e., the ‘‘24/5’’ law Frisch 1995); however, the

constant (i.e., 4/5) is not reproduced by our LES (not

shown). Skewness is more negative for the streamwise

velocity component compared to the vertical component.

For all resolutions and at both heights, skewness ap-

proaches zero for large values of the horizontal separa-

tion distance r for both streamwise and vertical velocity

components. Velocity skewness and kurtosis show subtle

mesh dependency for both streamwise and vertical ve-

locity components at both heights. Vertical velocity re-

veals the largest kurtosis occurring at z/zi ; 0.5; where

mesh dependence between runs C and D is again very

small at z/zi ; 0.5. For large r, the vertical component is

slightly super-Gaussian with a kurtosis just above a value

of 3, while the streamwise component at similar r are

below 3 (i.e., sub-Gaussian at z/zi ; 0.1 and closer to

Gaussian at z/zi; 0.5); Stevens et al. (2014) found similar

results. Also evident in the plots are the decreasing dis-

tance with increasing resolution at which both skewness

and kurtosis depart from their near-Gaussian state (i.e.,

Sk ; 0 and K ; 3).

Davidson et al. (2006) demonstrated that the stream-

wise structure functions follow a generalized logarithmic

law for scales larger than the inertial range and smaller

than some fraction of zi, and showed that this is equiva-

lent to assuming that a hierarchy of eddies exists whose

kinetic energy scales as u2
+. Based on scaling arguments

for higher-order moments of streamwise velocity fluctu-

ations (Meneveau and Marusic 2013), De Silva et al.

(2015) postulated that even-numbered structure func-

tions of streamwise velocity increments scale as

hdu
h
(r)2pi1/p 5E0

p 1D0
pln

�
r

z

�
(19)

for scales z, r � hzi, where hzi is a fraction of the tur-

bulent boundary layer depth zi. E
0
p andD0

p are expected

to be universal functions in high-Reynolds-number

turbulence; De Silva et al. (2015) finds that this might

indeed be true based on various experimental datasets

of very-high-Reynolds-number turbulence.

From proposing a logarithmic region via the second-

order structure function, it then immediately follows

that the velocity spectra should scale like k21. Davidson

et al. (2006) explain the difficulties in observing k21

spectral scaling law in one-dimensional spectra F11(k1),

and the authors list reasons similar to those mentioned

in the previous section; two-dimensional ring-averaged

spectra should not have the same issues. Figure 21 pres-

ents one-dimensional (right panel) and two-dimensional

ring-averaged (left panel) spectra for all four simulations

at a height of z/zi 5 0.1, a height at which it has been

previously demonstrated that shear production and dis-

sipation balance (at least for the finest-resolution simu-

lation, run D). Pan and Chamecki (2016) showed the

possibility of a more general scaling law that does not

require strict balance between dissipation and produc-

tion. Following Davidson and Krogstad (2014), Pan and

Chamecki (2016), and Chamecki et al. (2017), we define a

characteristic length scale ‘E 5 u3
+/E , recognizing the

importance of dissipation compared to classical surface

layer scaling kz in characterizing the turbulent eddies

in the inertial range. A comparison reveals the ratios

kz/‘E 5 f0:58, 0:73, 0:84, 0:93g for the four simulations

(runs A–D) approach a value of one with increasing

resolution; a result similar to that showed in Fig. 6 where

the balance between shear production and dissipation

improves with increasing resolution. In Fig. 21, a very

distinct plateau at k‘E ; 1 can be seen in both the

khEh(kh) and in k1F11(k1) spectra indicating k21 scaling;

where run D scales the best and the scaling is almost

nonexistent in run A. The nearly perfect scaling of

k1F11(k1) for very low k‘E is likely fortuitous compared to

the narrower range observed in khEh(kh).

We now look at the higher-order structure functions

in the streamwise direction hduh(r)ni at z/zi ; 0.1. Since

the moments are formally calculated from

hdu
h
(r)ni5

ð
du

h
(r)np[du

h
(r)] ddu

h
, (20)

where p[duh(r)] is the probability density function of

increments duh(r). Figure 22 plots the integrand for

n 5 2, . . . , 10 for the smallest and largest values of r.

All integrands for n 5 2, 4 are converged (less than

0.001 on the vertical axis) while n5 6 is borderline and

n5 8, 10 are not fully converged for the smallest value

FIG. 22. The nth moment of the pdfs of velocity increments p(x)

in the streamwise direction at z/zi 5 0.1 for run D with

x5 duh(r)/sduh(r) for smallest value of r 5 Dx (red lines) and

largest value of r 5 Lx/2 (blue lines) for n 5 2, 4, 6, 8, and 10.
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of r. Though, it is important to remember that the

generalized log law [Eq. (19)] is only valid for r . z,

hence nonconvergence for values of r well within the

inertial range is not terribly crucial.

The findings in Davidson and Krogstad (2014), Pan

and Chamecki (2016), and Chamecki et al. (2017)

leads us to evaluate the following definition in our

mesh sensitivity study of the streamwise structure

functions:

hdu
h
(r)2pi1/p
u2
+

5E
p
1D

p
ln

�
r

‘E

�
(21)

for order n 5 2p (i.e., only considering the even-

ordered structure functions); the even-ordered struc-

ture functions are presented in Fig. 23. Notice that

changing our length scale choice from z to ‘E implies

that Ep 6¼E0
p andDp 6¼D0

p. All structure functions reach

an asymptotic state for r/‘E ; 30–50, where this state

corresponds to distances that are completely decorre-

lated. Hence, hduh(r)
2i5 2s2

uh
.

The logarithmic region more clearly presents itself

when plotting the structure functions as function of

ln(r/‘E ); where, Fig. 24 presents results for run D. Using

an approach similar to Pan and Chamecki (2016), a least

squares fit from r5 ‘E to r5 0.4zi shows a coefficient of

determination R2 . 0.99 clearly indicating the existence

of a logarithmic relationship. Figure 25 showsDp andEp

derived from the fit for each simulation. For n # 6 the

mesh dependence for Dp is small with stronger inter-

mittency effects in the finer-resolution simulation (run

D), in agreement the velocity skewness and kurtosis

(Fig. 19). For n 5 8, 10 the mesh dependence increases

as do the error-bar magnitudes. A similar picture arises

in the plot of Ep. Both panels in Fig. 25 include the data

from De Silva et al. (2015) presented as gray dots. Dp

FIG. 23. Normalized structure functions

hduh(r)
2pi1/p/u2

+ for n5 2, 4, 6, 8, and 10 at z/zi5 0.1.
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from the current simulations agrees nicely with the De

Silva et al. (2015) data, while Ep values are low in the

LES data compared to the observations (i.e., the higher-

ordermoments are suppressed). Since the highmoments

are mainly associated with fluctuations of the smallest

scales of motion (i.e., close to the inertial range the SGS

influence is here also the largest), we would therefore

also expect lower values of Ep. Since Ep depends on the

chosen characteristic length scale, we also showEp using

z instead of ‘E for run D (orange dots). For n5 2, 4 data

using z as the length scale agree well, while the LES

values remain lower for higher values of n. Pan and

Chamecki (2016) also compared their atmospheric

canopy flow LES data against the data from De Silva

et al. (2015) and found nice agreement for n 5 2, but

did not look at higher values of n. Careful inspection

of Pan and Chamecki’s (2016) Fig. 7 could indicate

some mesh dependence with similar shape to that

found here (i.e., decreasing values of Dp and in-

creasing values of Ep with increasing LES Reynolds

number Re‘). In addition, Pan and Chamecki (2016)

studied meshes spanning 54#Re‘ # 136, which are

notably lower than those studied here 182#Re‘ # 2012

(see Table 2).

We can also use the k21 scaling observed in Fig. 21 to

estimate D2, since

S(k)5gu2
+k

21 , (22)

with g5D2/4 in the limit whereRe/‘. In Eq. (22), the
notation S(k) represents any streamwise velocity spec-

trum. Using the appropriate proportionality constants

predicted from their inertial range behavior, g5 0.35 for

F11(k1)and g 5 0.93/[0.54 3 (55/18)] 5 0.57 for Eh(kh),

which correspond toD2 5 1.4 andD2 5 2.2 for the one-

dimensional and two-dimensional spectra, respectively.

From the second-order structure function, Dp 5 1.93 6
0.11. Thus, ring-averaged two-dimensional spectra per-

formmuch better than one-dimensional spectra for such

predictions.

The findings thus indicate that non-Gaussian statistics

on scales in the k21 regime (i.e., scales larger than the

inertial subrange), found in the LES is in both qualita-

tive and quantitative agreement with flows at much

higher Reynolds number at least up to order n5 6. This

is despite the existence of a distinct inertial range scaling

at z/zi ; 0.1 where the analysis was carried out. Thus

direct impact from the SGS model cannot be ruled out.

FIG. 24. Least squares fits of the generalized logarithmic law in

Eq. (21) for simulation D. R2 . 0.99 for all fits.

FIG. 25. Constants (left) Dp and (right) Ep from Eq. (21) for the four simulations. Error bars are given as the

2s confidence interval of the least squares fits in Fig. 24. The gray dots are the results fromDe Silva et al. (2015) and

the orange dots are Ep for the fine simulation (run D) using z instead of ‘E as the length scale.
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We however also know from Fig. 10 that the range at

which the fm 5 1 is narrow and so then is the heights at

which these results can be applied.

5. Conclusions

A canonical neutral atmospheric boundary layer is

simulated using large-eddy simulation on four different

meshes. As is standard practice with LES, the simula-

tions use a mesh-dependent subgrid-scale (SGS) pa-

rameterization that alters the partitioning between

resolved and SGS motions. Hence designing metrics to

assess solution convergence is not straightforward.

Because of the high computational cost of three-

dimensional time-dependent calculations mesh studies

are not typically performed when using LES for appli-

cations (e.g., within wind energymeteorology). However,

our findings for a neutral atmospheric boundary layer

suggest that the statistics are not fully converged with

horizontal mesh spacing D ; 2.5m. The mesh depen-

dence is largest in areas of the domain where the spatial

scales of turbulence are small (i.e., near the surface and at

the top of the ABL in the entrainment zone). Vertical

profiles of
ffiffiffiffiffiffiffiffiffiffiffi
TKE

p
/S quantify the solution sensitivity to the

mesh resolution. These show that LES indeed provide

close-to-mesh independent profiles of integrated and

nondimensional quantities from approximately 10%–

90% of the height of the ABL. This means that LES can

directly be used even at coarser resolution if only such

quantities are desired.Wehave, however, also shown that

the resolved part of the TKE is highly dependent on the

mesh resolution throughout the ABL: the contribution

from SGS energy is increasing with approximately 50%

each time the filter Df is doubled. In a wind energy ap-

plication context this has pros and cons: modern wind

turbines are hugemachines and often have hub heights in

the range 120–170m (i.e., they are located above the

surface layer where we have shown that for example

turbulence intensity is mesh independent). On the other

hand, during low ABL heights the turbines might enter

the entrainment layer at the top of the ABL, where

processes involving buoyancy become important. To

properly resolve these processes high resolution is nee-

ded—even higher than the mesh sizes utilized in this

paper. If we, furthermore, want to address the dy-

namical loading through velocity fluctuations on the

various parts on a wind turbines, such as blades and

tower, accurate prediction of the spectral properties of

turbulence is needed.

All of the simulations produce non-Gaussian statis-

tics, but the scale at which the non-Gaussianity becomes

significant diminishes with increasing resolution (i.e.,

using data from an LES performed on a coarse mesh in

an application where the wind field is low-pass filtered)

would predict erroneous non-Gaussian statistics. In

some ways the averaging of wind turbine rotors can be

seen as a low-pass filter, and there are ongoing discus-

sions surrounding whether non-Gaussian statistics affect

wind turbine operations (Milan et al. 2013; Berg et al.

2016; Schottler et al. 2017; Meneveau 2019).

The generalized log law for even-ordered structure

functions in the k21 regime is found with mesh-

dependent exponents matching previous studies for

orders n 5 2, 4, 6 where convergence has been ob-

tained. We take this as support for the maturity and

size of LESs and hence the role LES deserves in ap-

plications where high accuracy and low intrinsic un-

certainty are required.
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