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Abstract
Direct numerical simulations (DNS) at bulk Reynolds number Re = 104 and bulk Richard-
son number Ri = 0.25 of plane Couette flow are performed with the results used to analyze
the structure and mixing intensity in strongly stable boundary-layer flows. The Couette flow
set-up is used as a proxy for a real-world stable boundary layer flow with surface thermal
heterogeneity. Along the upper and lower walls, the temperature is either homogeneous or
varies sinusoidally, but the horizontal-mean surface temperature is the same in all cases.
Over homogeneous surfaces, the strong stratification always quenches turbulence resulting
in linear velocity and temperature profiles. However, over a heterogeneous surface turbu-
lence survives. Molecular diffusion and turbulence contribute to down-gradient momentum
transfer. The total (diffusive plus turbulent) heat flux is directed downward, but its turbulent
contribution is positive, i.e., up the mean temperature gradient. Analysis of covariances of
velocity and temperature, their skewness, and theflowstructure suggests that counter-gradient
heat transport is due to quasi-organized cell-like vortical motions generated by surface ther-
mal heterogeneity. Thesemotions transfer heat upwards similar to their counterparts in highly
convective boundary layers. Thus, the flow over heterogeneous surface features local convec-
tive instabilities and upward eddy heat transport, although the overall stratification remains
stable with downward mean heat transfer. The DNS results are compared to the results from
large-eddy simulations of weakly stable boundary layers (Mironov and Sullivan in J Atmos
Sci 73:449–464, 2016). The DNS findings corroborate the key role of temperature variance
in setting the structure and transport properties of stably stratified flow over heterogeneous
surfaces, and the importance of third-order transport of the temperature variance.
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1 Introduction

Modelling the stably stratified planetary boundary layer (SBL) is of considerable importance
for numerical weather prediction, climate studies, and related applications. Model errors
associated with the SBL, a regime characterized by relatively weak turbulence and low
mixing intensity, are often substantial (Holtslag et al. 2013), and it is still largely unclear how
the trouble can be cured. Many SBL features are poorly understood (see, e.g., Mahrt 2014,
for discussion). One particularly challenging issue is the strongly stable boundary layer over
a thermally heterogeneous surface. In the present study, we use direct numerical simulation
(DNS) to gain insight into the effect of surface thermal heterogeneity on the structure and
transport properties in a strongly stable boundary layer.

Mironov and Sullivan (2016, hereafter MS16) used large-eddy simulation (LES) to
examine turbulence in the atmospheric SBL over thermally homogeneous and thermally
heterogeneous surfaces. TheLESdatawere used to performa comparative analysis of second-
moment budgets andmixing intensity in homogeneous andheterogeneousSBLs.Aphysically
plausible explanation of the enhanced mixing in the heterogeneous SBL was found, and pos-
sible ways to parameterize the heterogeneity effects in atmospheric models were discussed. It
should be emphasized that the results of MS16 are pertinent to weakly-to-moderately stable
boundary layers characterized by continuous and rather vigorous turbulence. The structure
and mixing intensity in strongly stable boundary layers characterized by weak and often
intermittent turbulence are still largely unknown and need to be investigated. The present
study attempts to make a step forward in this direction.

Among the many questions to explore, the following outstanding questions should be
addressed: (i) If turbulence dies out over a homogeneous surface due to strong stability,
does it survive over a heterogeneous surface? (ii) If turbulence survives, how anisotropic
is it and does it generate appreciable vertical fluxes of momentum and scalars? (iii) What
are the particular features of the second-moment budgets in a strongly stable regime, and
what is the role of pressure-scrambling and third-order transport in maintaining the variance
and flux budgets? The present contribution addresses issues (i) and (ii). Analysis of the
second-moment budgets is left for future work.

The present study is not aimed at simulating a specific real-world geophysical (e.g., atmo-
spheric or oceanic) flow. Instead, we focus on physical processes at work in strongly stratified
boundary-layer flows, namely on the effect of surface thermal heterogeneity on the structure
and transport properties of turbulence. To this end, we use an idealized plane Couette flow
set-up (a physical analog of our numerical configuration is discussed in the next section). The
flow is driven by a fixed velocity of the upper surface, while the lower surface is at rest. The
stable density stratification is imposed by a fixed temperature difference between the upper
and lower boundaries. The temperature at the horizontal upper and lower surfaces is either
homogeneous or varies sinusoidally in the streamwise direction, while the horizontal-mean
temperature is the same in all cases. The DNS data are used to compute vertical profiles
of mean fields, second-order and (some) third-order statistical moments of turbulence, and
to analyze the structure and mixing intensity over thermally homogeneous and thermally
heterogeneous surfaces.

Clearly, a real-world atmospheric SBL and an idealized Couette flow differ in many
respects (e.g., the surface roughness can play an important role). We tend to think, however,
that results from the present analysis with respect to the maintenance of turbulence in hetero-
geneous strongly stable flows are relevant to the real-world flows, at least qualitatively. The
relevance of our DNS findings for atmospheric SBL flows is further discussed in Sect. 5.
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Turbulence Structure and Mixing in Stable Turbulence

The plane Couette flow configuration is often used to study various aspects of neutral,
convective, and stably stratified turbulence (see, e.g., Lee and Kim 1991; Komminaho et al.
1996; Papavassiliou and Hanratty 1997; Sullivan et al. 2000; Sullivan andMcWilliams 2002;
García-Villalba et al. 2011; Pirozzoli et al. 2014; Avsarkisov et al. 2014; Richter and Sullivan
2014; Deusebio et al. 2015; Zhou et al. 2017; Lee and Moser 2018; van Hooijdonk et al.
2018; Alcántara-Ávila et al. 2019; Glazunov et al. 2019; Mortikov et al. 2019, and refer-
ences therein). To the best of the authors’ knowledge, DNS of Couette flows over thermally
heterogeneous surfaces has not been performed so far.

A fewwords are in order to make clear what is referred to as “turbulence” in the context of
the present study. By applying averaging over horizontal planes to compute turbulence statis-
tics (see Sect. 3), we basically assume that turbulence incorporates all fluctuations within the
DNSmodel domain. That is, turbulence encompasses both nearly isotropic and nearly homo-
geneous small-scale fluctuations and quasi-organized coherent structures that are strongly
non-isotropic and non-homogeneous (a discussion of coherent structures encountered in our
Couette-flow configuration is given in Sect. 4). Different definitions are used by different
research communities, however. Quite often, quasi-organized coherent motions would not
be classified as turbulence in the atmospheric science literature. Those motions are referred
to as “sub-meso-scale motions” to discriminate them from the classical Kolmogorov-type
nearly isotropic and nearly homogeneous turbulence.

From the standpoint of a large-scale ormeso-scale atmosphericmodel, for which the entire
DNS domain is a single model grid box, the definition adopted in the present study would
mean that turbulence comprises all sub-grid scale (SGS) fluctuations. Statistical moments
of SGS fluctuating velocity and scalar fields (fluxes and variances) should be described by
a turbulence parameterization scheme. Note, however, that atmospheric models with rela-
tively coarse resolution do not apply a single parameterization scheme that describes the
effects of various types of SGS fluctuations in a unified framework. A number of parameter-
ization schemes are applied instead, where each scheme serves to describe the effects of a
particular process separately, e.g., the effects of internal gravity waves, cumulus convection
(shallow and deep), and turbulence. This artificial separation of processes in numerical mod-
els of the atmosphere causes many conceptual and practical problems (see, e.g., Arakawa
2004; Mironov 2009, for discussion). It is desirable to achieve a more coherent description
of the various types of SGS fluctuations within a unified parameterization framework. The
present-day tendencywith high-resolutionmodels is to switch off gravity-wave and cumulus-
convection parameterization schemes (at least deep convection scheme), or to make those
schemes less active, assuming that at high resolution the SGS motions are more isotropic
and homogeneous. Then, the relative importance of turbulence parameterization schemes
considerably increases. It should be emphasized, however, that even with the finest resolu-
tion attainable today (and likely for many years to come) for numerical weather prediction
and climate models the SGS fluctuating velocity and scalar fields remain anisotropic and
heterogeneous, and this is especially true for stably stratified boundary layers. It is this type
of boundary layers that is the focus of the present study.

The present paper is closely related to the legacy of Sergej Zilitinkevich, who had keen
interest in the stably stratified boundary layers throughout his scientific career. Sergej’s con-
tributions to the SBL studies include the now classical SBL depth scale (Zilitinkevich 1972),
resistance and heat-transfer laws for stably stratified boundary layers (e.g., Zilitinkevich
1989a, b), and turbulence closure models for stably stratified flows (e.g., Zilitinkevich et al.
2013), to mention a few. Sergej showed particular interest in the problem of maintenance of
turbulence in strongly stable boundary-layer flows and the role of coherent quasi-organized
motions in setting the SBL mean and turbulent structure. In this regard (and in relation to
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the present paper), the work of Glazunov et al. (2019) should be mentioned, where DNS of
plane Couette flow is used to get insight into the SBL structure.

Now we give an outline of the paper. The flow configuration and governing equations are
described in Sect. 2. Details of the simulations performed are given in Sect. 3. Simulation
results are discussed in Sect. 4. Conclusions are presented in Sect. 5.

2 Flow Configuration and Governing Equations

We consider a three-dimensional, stably stratified, plane Couette flow. The fluid depth is H ,
the lower boundary is at rest, and the upper boundary moves with a constant velocityUu. Sta-
ble buoyancy stratification is maintained by a temperature difference Δθ = θu − θl between
the upper and lower boundaries. The physical characteristics of the fluid are the kinematic
molecular viscosity ν, themolecular temperature conductivity κ , and the buoyancy parameter
βi = −giαT, where gi is the acceleration due to gravity and αT is the thermal expansion
coefficient. Both ν and κ are taken to be constant in our simulations. The Boussinesq approx-
imation is used, and the simplest linear equation of state is utilized, ρ = ρr [1 − αT (θ − θr)],
where ρ is the fluid density, ρr is the constant reference density, θ is the potential tempera-
ture (for the sake of brevity, it will also be referred to as simply “temperature”), and θr is the
constant reference potential temperature. Both αT and βi are constant.

The governing equations given below contain three dimensionless parameters. These are
the bulk Reynolds number,

Re = UuH

ν
, (1)

the Prandtl number,
Pr = ν

κ
, (2)

and the Richardson number,

Ri = g3HαTΔθ

U 2
u

, (3)

where g3 is the magnitude of the gravity vector; in the co-ordinate system used here gi =
(0, 0,−g3).

A real-world flow configuration closely analogous to our numerical configuration can
hardly be found in geophysical flows. A conceivable physical analog of our numerical set-up
is a laboratory tank (a channel-like apparatus of infinite band type) filled with fresh water at
room temperature. Using H = 0.25 m, Uu = 0.04 m s−1, and ν = 10−6 m2 s−1 (the value
for fresh water at 20 ◦C), we obtain Re = 104. Using a quadratic fresh-water equation of

state (Mironov et al. 2010), ρ = ρr

[
1 − 1

2
aT (θ − θr)

2
]
, where aT = 1.6509 × 10−5 K−2

is an empirical coefficient and θr = 277.13 K is the temperature of maximum density of
fresh water, we find that a temperature difference between the upper and lower horizontal
boundaries of about 1 K is needed to obtain Ri = 0.5. To arrive at this estimate, we recast
the Richardson number in terms of the buoyancy difference between the upper and lower
horizontal boundaries, Ri = HΔb/U 2

u , where b = g3 (ρr − ρ) /ρr , g3 = 9.81 m s−1,
θl = 292.65 K (19.5 ◦C), and θu = 293.65 K (20.5 ◦C). Note that the Prandtl number is
about 7 for fresh water (at 20 ◦C), which is considerably higher than the value of Pr = 1 that
we adopt for our numerical fluid.
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The flow variables are made dimensionless with the length scale H , velocity scale
Uu, time scale H/Uu, and temperature scale Δθ , and dimensionless temperature θ̂ =
(θ − θl) / (θu − θl) is introduced. The governing equations written in dimensionless form
are (in order to simplify the notation, we omit hats over dimensionless variables):

(
∂

∂t
+ uk

∂

∂xk

)
ui = − ∂ p

∂xi
+ δi3Riθ + 1

Re

∂2ui
∂x2k

, (4)

∂ui
∂xi

= 0, (5)

(
∂

∂t
+ ui

∂

∂xi

)
θ = 1

PrRe

∂2θ

∂x2i
. (6)

Here, t is time, xi are the right-hand Cartesian co-ordinates, ui are the velocity components,
and p is the kinematic pressure (deviation of pressure from the hydrostatically balanced
reference pressure divided by the constant reference density). The Einstein summation con-
vention for repeated indices is adopted. The origin of the co-ordinate system is at the lower
boundary, the x3 axis is aligned with the gravity vector and is positive upward, and the x1 axis
is in the direction of Uu. Note that, since the vertical-velocity equation in our simulations is
solved for the fluctuation of u3 about its horizontal mean, θr can be set equal to θl so that the
dimensionless reference temperature (θr − θl) / (θu − θl) drops out from the buoyancy term
on the right-hand side (r.h.s.) of Eq. 4.

Periodic boundary conditions for ui and θ are applied in both x1 and x2 horizontal direc-
tions. At the horizontal boundaries, the following Dirichlet boundary conditions are used:

u1 = 0, u2 = u3 = 0 at x3 = 0,
u1 = 1, u2 = u3 = 0 at x3 = 1,

(7)

and:
θ = δθ sin [2πnx1/L1] at x3 = 0,
θ = 1 + δθ sin [2πn (x1 −Uut) /L1] at x3 = 1,

(8)

where L1 is the domain size in the x1 direction, δθ is the (dimensionless) amplitude of the
temperature variations at the upper and lower surfaces, and n is the number of cold and warm
stripes (the number of surface temperature waves). In the homogeneous case, δθ = 0. In the
heterogeneous cases, δθ > 0 but the horizontal-mean surface temperature is the same as in
the homogeneous case.

Notice the lower and upper boundary conditions (7) and (8) preserve the flow symmetry
of a Couette flow configuration. Along the upper boundary the temperature waves propagate
in the x1 direction with boundary speed Uu which generates a thermally heterogeneous
surface matching its counterpart along the lower wall. The Couette set-up although idealized
has desirable features for the present application: the average boundary temperatures are
constant in time, and with no mean pressure gradient forcing the average total momentum
and temperature fluxes are constant with height. As a result, we are able to acquire stationary
statistics by long temporal integration even under strongly stable intermittent flow conditions.
Couette flowwith constantmomentum and temperature fluxes is an approximate analog to the
assumed constant flux layer in a high Reynolds number boundary layer flow (e.g., Wyngaard
2010, p. 215).
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Table 1 Governing parameters of simulated cases

Case δθ Tt Ts Reτ Riτ × 103 Q∗ × 105 1/L

HOM 0.00 715 15 104.63 2.284 −10.93 9.54

HET025 0.25 1166 166 100.50 2.475 −9.80 9.65

HET050 0.50 1392 392 107.77 2.153 −7.45 5.95

HET075 0.75 1380 380 112.16 1.987 −5.12 3.63

3 Simulations Performed

The DNS code and its parallelization used in the present study are described in detail in
Sullivan et al. (2000), Sullivan and McWilliams (2002), and Sullivan and Patton (2011). A
description of the code is not repeated here; readers are referred to the above papers.

One simulationwith homogeneous lower and upper surfaces (HOM) and three simulations
with heterogeneous surfaces (HET) are performed. In all simulated cases, the fixed values of
Pr = 1, Re = 104, and Ri = 0.25 are used. The number of grid points is (512, 512, 256) in
the (streamwise x1, spanwise x2, vertical x3) directions, respectively. The domain size in the
vertical direction is 1, and the domain size in both horizontal directions is 8. The number of
cold and warm stripes (the number of surface temperature waves) in the heterogeneous cases
is 4. Governing parameters of the simulations performed are summarized in Table 1.

InTable 1, Tt is the total length of the simulation in dimensionless timeunits, Ts is the length
of the sampling period (at the end of the run), Reτ = u∗Re is the wall Reynolds number
based on the surface friction velocity u∗, Riτ = u−2∗ Ri = Re−2

τ Re2Ri is the Richardson
number based on the surface friction velocity u∗ (e.g., Gandía-Barberá et al. 2021), Q∗ is the
surface temperature flux, and 1/L is a bulk stability measure where L = −u3∗/κRiQ∗ is the
Obukhov length (Obukhov 1954), and κ = 0.4 is the von Kármán constant. Recall that all
variables are made dimensionless with the scales H ,Uu, H/Uu, and Δθ for length, velocity,
time, and temperature, respectively.

The homogeneous simulation starts with a fully developed, stationary, neutral Couette
flow. The stable buoyancy stratification is established by gradually (linearly in time) increas-
ing the Richardson number over 100 dimensionless time units fromRi = 0 to Ri = 0.25. The
simulations are then continued until turbulence dies out, and a laminar Couette flow regime
is achieved. The value of Ri = 0.25 proves to be sufficient to fully quench turbulence in the
homogeneous case. Based on the stability measures Riτ and 1/L , all of the simulations in
Table 1 are in the very stable regime. As a comparison, Nieuwstadt (2005) finds that turbu-
lence is not sustained when 1/L > 0.5 in channel flow: we modified the definition of L in
Nieuwstadt (2005) to match the present definition.

The heterogeneous flows start withRi = 0, δθ = 0, and a linear velocity profile. In order to
assist initial turbulence spin-up, velocity and temperature fluctuations taken from the neutral
turbulent Couette flow are added in the lower 1/4 and the upper 1/4 of the computational
domain. TheRichardson number is increased (linearly in time) fromRi = 0 toRi = 0.25 over
10 time units, while the temperature difference δθ is increased from zero to its value given
in Table 1 over 100 time units. The simulations over heterogeneous surfaces are carried
forward over many time units until a quasi-stationary flow regime is reached; the flow is
considered stationarity when the average momentum and scalar flux profiles are constant
with height. The number of time samples differs between the cases, but the sampling period
in the heterogeneous cases covers more than 150 time units (see Table 1).
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Fig. 1 (Left) streamwise component ofmean velocity, and (right) mean temperature from simulations HET025
(blue), HET050 (green), and HET075 (red). Black dotted line shows the laminar solution

The DNS data are averaged over horizontal planes, and the resulting profiles are then
averaged over several thousand time steps. These horizontal and time mean quantities are
treated as approximations to the ensemble-mean quantities. In what follows, an overbar
denotes a horizontal-mean quantity, a prime denotes a fluctuation about a horizontal mean,
and the angle brackets denote quantities averaged over time.

Note that, apart from the results from the homogeneous simulation HOM and three het-
erogeneous simulations HET025, HET050, and HET075 (which are the major focus of the
present study), results from the fully turbulent neutral and convective Couette-flow simu-
lations are also shown for comparison in Figs. 3 and 8. The neutral run (used to initialize
the stably stratified homogeneous run HOM) and the convective run (used to initialize the
neutral run) are similar to HOM, but the Richardson numbers are Ri = 0 and Ri = − 0.2,
respectively, and the length of the sampling period is Ts = 100.

4 Results

4.1 Mean Fields

Vertical profiles of the streamwisemean-velocity componentU = 〈u1〉 andmean temperature
Θ = 〈

θ
〉
are shown in Fig. 1. The spanwise mean-velocity component is negligibly small

in all simulations and is not shown. In the homogeneous case, the profiles of both U and
Θ are linear, corresponding to the laminar solution of the plane Couette problem. Although
we provide turbulence a good chance to survive by starting the homogeneous simulation
with a vigorously turbulent neutral flow and gradually increase the Richardson number, the
buoyancy stratification at Ri = 0.25 is strong enough to fully extinguish turbulence.

As seen from Fig. 1, the mean velocity is only slightly affected by the surface thermal
heterogeneity, the mean flow gradient in the middle of the domain is only slightly larger
than the laminar Couette value, ∂U/∂x3 > 1. The situation is noticeably different for mean
temperature. As the amplitude δθ of the surface temperature variations increases, the flow
becomes increasingly mixed with respect to Θ away from the walls. The associated increase
of the temperature gradient near the horizontal boundaries is due to the fixed temperature
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Fig. 2 Vertical profiles of (shear, buoyancy) frequencies (S2, N2) denoted by (solid, dotted) lines, respectively
(left panel), and gradient Richardson number Rig (right panel) for the heterogeneous simulations HET025
(blue), HET050 (green), and HET075 (red)

boundary conditions.Note that the effect of temperature heterogeneity onmean temperature is
appreciable because of the relatively large values of δθ in simulations HET050 and HET075.
In simulation HET025, δθ is comparatively smaller, the effect of surface heterogeneity is
weak, and the temperature profile is nearly linear. Vertical profiles of the (shear, buoyancy)
frequencies (S2, N 2) and gradient Richardson number Rig, shown in Fig. 2, further expose
the impact of surface heterogeneity on the mean flow state, especially in the wall region.
Here,

S2 =
(

∂U

∂x3

)2

, N 2 = g3αT
∂Θ

∂x3
, Rig = N 2

S2
. (9)

Inspection of Fig. 2 reveals a surprisingly complex dependence on δθ , not apparent in Fig. 1,
especially for the shear frequency. Notice the variation of S2 at a fixed vertical location
near the boundaries below x3 < 0.2 is not monotonic with increasing δθ , e.g., at x3 = 0.1
S2 = (1.02, 0.25, 0.51) with increasing amplitude of the heterogeneity. At the same height,
N 2 = (0.25, 0.36, 0.36). As a result, the vertical profile of the gradient Richardson number
varies in a complex way and simulation HET050 features the largest most stable Rig ∼ 1.4
at locations x3 = (0.1, 0.9) near the walls. The turbulent fluctuations generated near the
boundary do impact the mean flow gradients in the middle of the domain, Rig smoothly
decreases as the amplitude of the heterogeneity increases.

Figure 3 shows profiles of the streamwise mean-velocity component in wall units
(U+, x+

3 ) = (U/u∗, x3Reτ ). The flow in the close vicinity of the boundaries is very well
resolved in our simulations. The first grid point above the surface is x+

3 ≈ 0.2. A larger
grid spacing may be used in neutral Couette flows, but the resolution cannot be compro-
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Fig. 3 Streamwise mean-velocity component plotted in wall units. Solid curves show the profiles from simu-
lations HET025 (blue), HET050 (green), HET075 (red), and from the neutrally stratified Couette flow (black).
Black dashed line shows the logarithmic velocity profile, and green dot-dashed line shows theMonin–Obukhov
log-linear velocity profile computed with the surface friction velocity and the surface buoyancy flux from the
simulation HET050 (see text for details)

mised in our simulations because of the need to resolve the large temperature gradients in
the near-wall thermal boundary layers. It is these temperature gradients that drive turbulence
in the heterogeneous simulations. Test runs with lower resolution in the vertical direction
yield results (not shown) that are quantitatively and even qualitatively different from the
results of our high-resolution simulations and are not trustworthy. Note the domain size in
the horizontal directions cannot be compromised either because of the need to simulate large-
scale elongated structures characteristic of plane Couette flows (e.g., Komminaho et al. 1996;
Papavassiliou andHanratty 1997; Pirozzoli et al. 2014; Avsarkisov et al. 2014; Jiménez 2018;
Lee and Moser 2018).

Black solid and dashed lines in Fig. 3 show, respectively, the streamwise velocity from
the neutral Couette-flow simulation and the logarithmic velocity profile:

U+ = 1

κ
ln

(
x+
3

) + B0, (10)

where B0 = 5.0 is a dimensionless constant. The neutral velocity profile closely follows
classic log-layer scaling over the height range 20 ≤ x+

3 ≤ 200. This is not the case for the
flows over thermally heterogeneous surfaces, where the velocity profiles reveal no log-layer
scaling. The green dot-dashed curve in Fig. 3 shows the Monin–Obukhov log-linear velocity
profile (Obukhov 1954; Monin and Obukhov 1954; Monin and Yaglom 1971):

U+ = 1

κ
ln

(
x+
3

) + B0 + Cu

κ

x+
3

L+ , (11)

where Cu = 5 is a dimensionless constant, and L+ = LReτ is the Obukhov length in wall
units. TheMonin–Obukhov velocity profile in Fig. 3 uses (u∗, Q∗) from simulation HET050
and external parameters (Re, Ri). Inspection of the results in Fig. 3 shows the velocity
profile in case HET050 (green solid curve) does not show similarity to (11). This is not
surprising however, because theMonin–Obukhov surface-layer flux–profile relationships are
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Fig. 4 Turbulence kinetic energy from simulations HET025 (blue), HET050 (green), and HET075 (red)

Fig. 5 (Left) streamwise velocity variance, and (right) spanwise (dot-dashed curves) and vertical (dashed
curves) velocity variances from simulations HET025 (blue), HET050 (green), and HET075 (red)

only applicable to turbulent layers over homogeneous surfaces. For thermally heterogeneous
surfaces, different flux-profile relationships are required.

4.2 Second-Order Moments

Vertical profiles of turbulence kinetic energy TKE = 1
2

〈
u′2
i

〉
are shown in Fig. 4. TKE

increases with increasing amplitude of the surface temperature variations. The turbulence
level is very low in case HET025, as δθ = 0.25 proves to be too small to make the flow
vigorously turbulent.

Velocity variances uu =
〈
u′2
1

〉
(streamwise), vv =

〈
u′2
2

〉
(spanwise), and ww =

〈
u′2
3

〉
(vertical) are shown in Fig. 5. In the cases HET050 and HET075, both the spanwise and the
vertical velocity variances are considerable; they are roughly a factor of 3 smaller than the

123



Turbulence Structure and Mixing in Stable Turbulence

Fig. 6 Velocity variances plotted in wall units for the lower part of the model domain. (left) Streamwise
velocity variance and (right) spanwise (dot-dashed curves) and vertical (dashed curves) velocity variances
from simulations HET025 (blue), HET050 (green), and HET075 (red)

streamwise velocity variance. In case HET025, the dominate contribution to the TKE is uu,
with only small contributions from vv and ww.

Figure 6 shows the velocity variances in wall units (i.e., uu+ = uu/u2∗, vv+ = vv/u2∗,
and ww+ = ww/u2∗ as function of x+

3 = x3Reτ ). The streamwise velocity variances do not
collapse on the same curve, but the results from simulations HET050 and HET075 (green
and red curves in Fig. 6) get somewhat closer to each other if the surface friction velocity is
used for normalization. A similar statement can be made about the vertical velocity variances
(although with a less confidence), but not about the spanwise velocity variances.

In strongly stable flows, Mahrt (2014) finds an abundance of structures with intermittent
turbulencemixedwithwavelikemotions and anisotropic two-dimensionalmodes. Toquantify
the turbulence anisotropy in our flows, we use the departure-from-isotropy tensor (see, e.g.,
Pope 2000):

bi j =
〈
u′
i u

′
j

〉
〈
u′2
k

〉 − 1

3
δi j , (12)

recall that all components of bi j are zero in isotropic turbulence. In the two-component limit,
where velocity fluctuations in one direction (e.g., vertical) are suppressed, the corresponding
diagonal component of bi j is equal to −1/3. As seen from Fig. 7, b33 is negative throughout
the flow in simulationsHET050 andHET075, indicating that the vertical-velocity fluctuations
are strongly damped by buoyancy and the turbulence is mainly confined in a horizontal plane.
In simulationHET025, b33 is slightly positive in small regions near the boundaries, but overall
turbulence in HET025 is very weak and all three velocity variances and hence the TKE are
negligibly small, see Figs. 4 and 5.

An informative diagnostic used to characterize the turbulence anisotropy are the second
II = bi j bi j and third III = bi j b jkbik invariants of the departure-from-isotropy tensor (e.g.,
Lumley and Newman 1977). These invariants are also often defined as: II = − 1

2bi j bi j and
III = 1

3bi j b jkbik (e.g., Lumley 1978; Choi and Lumley 2001). Alternatively, one can use the

quantities ξ = ( 1
6bi j bi j

)1/2
and η = ( 1

6bi j b jkbik
)1/3

. An anisotropymap in the ξ −η plane is
known as the Lumley triangle (Pope 2000), although one side is not straight. Figure8 shows

123



D. V. Mironov, P. P. Sullivan

Fig. 7 The b33 component of the departure-from-isotropy tensor, Eq. 12, from simulations HET025 (blue),
HET050 (green), and HET075 (red)

results from five Couette-flow simulations in the ξ − η plane, where each circle corresponds
to one vertical grid level. Results from the fully turbulent neutral and convective simulations
are shown for comparison with the three heterogeneous cases. The non-monotonic variation
of the orange circles illustrates the complex structural evolution of convective turbulencewith
increasing distance from the boundary. Convective turbulence features several anisotropic
states: ranging from a nearly two-component (2C) state close to the walls where horizontal
velocity fluctuations dominate to an axisymmetric state with a tendency towards a one-
component (1C) limit in regions away from the walls where the vertical velocity fluctuations
are dominant. The black open circles form a pattern characteristic of a neutral wall-bounded
flow (cf. Fig. 11.1 in Pope 2000, showing DNS of channel flow). Blue circles indicate that
turbulence in the heterogeneous caseHET025 is either in a 1Cor 2Cstate. The two-component
state in HET025 is of little interest as the regions of the flow with 2C turbulence have
negligibly small TKE. The turbulence in HET050 and HET075 is in a 2C state near the
walls but smoothly transitions into an axisymmetric state similar to the neutral case above
the boundary. Notice, in all three heterogeneous cases near the mid-plane x3 = 1/2 3D
turbulence is nearly quenched and the residual motions are 1C u′

1 sloshing motions.

As expected, the temperature variance θθ =
〈
θ ′2

〉
increases with increasing amplitude of

the surface temperature variations δθ , see Fig. 9. It is significant that the large values of θθ are
confined to the immediate vicinity of the lower and upper boundaries, while the temperature
variance is small in the bulk of the flow interior 0.1 ≤ x3 ≤ 0.9.

Vertical profiles of the streamwise momentum-flux component (denoted wu) and vertical
temperature flux (denoted wθ ) are shown in Figs. 10 and 11, respectively. The spanwise
momentum-flux component (not shown) is negligibly small in all simulations. In the steady
state, the total fluxes, i.e., the sum of turbulent and molecular fluxes, are depth constant. That
is,

〈
u′
3u

′
1

〉
− 1

Re

∂ 〈u1〉
∂x3

= const, (13)
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Fig. 8 (Left) the Lumley triangle on the ξ − η plane, and (right) a blow-up of the area close to the upper right
triangle vertex corresponding to the one-component limit. Circles show data from simulations HET025 (blue),
HET050 (green), HET075 (red), and from the convective (orange) and neutrally stratified (black) Couette
flows

Fig. 9 (Left) temperature variance from simulations HET025 (blue), HET050 (green), and HET075 (red).
(right) The same as in the left panel but for the lower part of the domain
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Fig. 10 Streamwise momentum-flux component from simulations HET025 (blue), HET050 (green), and
HET075 (red). Solid curves show total (turbulent plus molecular) flux, and dot-dashed and dashed curves
show contributions due to turbulence and due to molecular diffusion, respectively

Fig. 11 (Left) vertical component of the temperature flux from simulations HET025 (blue), HET050 (green),
and HET075 (red). Solid curves show total (turbulent plus molecular) flux, and dot-dashed and dashed curves
show contributions due to turbulence and due to molecular diffusion, respectively. (right) The same as in the
left panel but for the lower part of the domain

and:

〈
u′
3θ

′
〉
− 1

PrRe

∂
〈
θ
〉

∂x3
= const. (14)

In the laminar Couette flow, the contributions to wu and wθ are solely due to molecular
diffusion with total fluxes equal to Re−1 and (PrRe)−1, respectively.

As seen from Fig. 10, the magnitude of the total streamwise momentum-flux component
increases with the increasing amplitude of the surface temperature variations. In the simu-
lation HET025, the turbulent momentum flux is very small and the total flux is virtually the
same as in the laminar flow. In the simulations HET050 and HET075, both the turbulent and

123



Turbulence Structure and Mixing in Stable Turbulence

Fig. 12 (Left) vertical-velocity skewness and (right) temperature skewness from simulations HET025 (blue),
HET050 (green), and HET075 (red)

molecular fluxes are negative, contributing to downward momentum transport, only small

positive values of
〈
u′
3u

′
1

〉
can be identified in case HET050.

The total vertical temperature flux, see Fig. 11, decreases with the increasing amplitude
of the surface temperature variations. This is counter to the total streamwise momentum-flux
component. The total temperature flux in simulation HET025 is very close to that in laminar

flow. However, the turbulent temperature flux
〈
u′
3θ

′
〉
is not entirely negligible. A remarkable

feature of the heterogeneous simulations is the sign of the vertical turbulent temperature flux.
Although the flow is stably stratified in the mean and the total (molecular plus turbulent)
vertical temperature flux is negative, the turbulent heat flux proves to be positive. Turbulent
motions generated by the surface thermal heterogeneity transfer heat up the gradient of the
mean temperature. It somewhat resembles convective boundary-layer flows, where quasi-
organized cell-like structures induce counter-gradient heat transport.

4.3 Vertical-Velocity and Temperature Skewness and Flow Structure

Figure 12 presents vertical profiles of vertical-velocity and temperature skewness:

Sw = 〈u′3
3 〉

〈u′2
3 〉3/2

and Sθ = 〈θ ′3〉
〈θ ′2〉3/2

. (15)

As seen from the plots, in all three heterogeneous simulations (Sw, Sθ ) > 0 near the lower
boundary, and by symmetry about the mid-plane x3 = 1/2, (Sw, Sθ ) < 0 near the upper
boundary. Sw > 0 indicates that positive (upward) vertical velocity has a lower fractional
area coverage (more localized) than negative (downward) vertical velocity. Likewise, Sθ > 0
indicates a stronger localization of positive temperature fluctuations (about the horizontal-
mean temperature) as compared to negative temperature fluctuations.

The statistics from our stably stratified Couette flow with surface thermal heterogeneity
are broadly similar to a dry convective boundary layer (CBL) driven by surface potential-
temperature (buoyancy) flux (e.g., Lenschow et al. 2012) or Rayleigh–Bénard convection
between plates of fixed temperature (e.g., Moeng and Rotunno 1990). Both Sw and Sθ are
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positive in the major part of the CBL, where highly localized positive potential-temperature
anomalies are collocated with positive vertical velocity, forming familiar convective plume
structures which account for most of the upward potential-temperature flux.

Flow visualization of the (u3, θ) fields in our heterogeneous simulations reveals strongly
localized quasi-coherent flow structures characterized by large positive fluctuations in vertical
velocity and temperature. As a result, these structures generate positive turbulent temperature
flux in the lower part of the flow (Fig. 11), i.e., precisely where both Sw and Sθ are positive
(Fig. 12). In the upper part of the flow, large negative vertical velocity with Sw < 0 is
collocated with large negative potential-temperature fluctuation Sθ < 0, leading to a positive
turbulent temperature flux.

The instantaneous snapshots in Figs. 13 and 14 reveal spatially intermittent turbulent
flow structures in the wall region. Figure13 shows fluctuations of vertical velocity, u′

3, and
of potential temperature, θ ′, in an x1 − x2 plane just above the lower surface for simulation
HET050; for reference, the streamwise variation of the surface temperature θs f c = θ(x3 = 0)
given by (8) is also shown in the figures. The most vigorous positive and negative vertical
velocity fluctuations are concentrated at the same streamwise locations x1 ≈ (0.9, 2.9)
with quiescent nearly laminar motions at intermediate locations x1 ≈ (2, 4). Thus, the
vigorous fluctuations in u′

3 occur at a streamwise location roughly 70 degrees forward of the
peak surface temperature but behind the location of maximum − ∂θs f c/∂x1 at x1 = (1, 3).
Visualization also shows positive fluctuations in streamwise velocity u′

1 positioned farther
downstream than the peak in θ ′. Apparently horizontal advection in the wall region transports
high amplitude turbulence forward of the location of the peak surface temperature variation,
similar to weakly stratified heterogeneous flows, e.g., Stoll and Porté-Agel (2009) andMS16,
and the temperature field responds more rapidly to the surface boundary conditions than
streamwise velocity. It is important tomention that the spatially intermittent flow structures in
our very stable heterogeneous simulations are noticeably different from the tilted temperature
fronts found in weakly stable boundary layers and stratified Couette flows with continuous
turbulence (e.g., García-Villalba et al. 2011; Chung and Matheou 2012; Sullivan et al. 2016;
Glazunov et al. 2019).

Coherent patterns of strongpositiveu′
3 nearly collocatedwith the patterns of strongpositive

θ ′ are readily identified, and their spatial correlation results in positive (upward) turbulent
temperature flux over a considerable part of the flow as shown in Fig. 14. Although positive
values of u′

3θ
′ cover a smaller fractional area (more localized) than negative values of u′

3θ
′,

their amplitude is large. The peak positive values of u′
3θ

′ are roughly four times larger in
magnitude compared to their peak negative counterparts; the fluctuations u′

3θ
′ are an order

of magnitude larger than their horizontal average u′
3θ

′ and the horizontal-mean turbulent
temperature flux is positive (upward). Importantly, the flow remains stably stratified in a
global (horizontal mean) sense, and the total, i.e., turbulent plus molecular, temperature flux
remains negative (downward). The flow visualization supports the explanation of positive
turbulent temperature flux suggested by the vertical-velocity and temperature skewness. The
visualization in panel b) of Fig. 14 shows vertical turbulent temperature flux for simulation
HET075. Although the pattern of u′

3θ
′ differs in detail between simulations HET050 and

HET075, e.g., in terms of distance between the “arrow-shaped” regions of strong positive
u′
3θ

′ and an increased amplitude in HET075, the overall picture of temperature flux remains
the same between the two simulations.
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Fig. 13 Horizontal cross sections of the fluctuations of vertical velocity (left panel) and potential temperature
(right panel) about their horizontal mean values for simulation HET050. The cross sections are taken at
x3 = 0.076 (x+

3 = 8.19) above the lower surface near the end of the sampling period; to highlight details only

1/4 of numerical domain is shown. Red (blue) colors correspond to positive (negative) values of u′
3 (×102)

and θ ′ as shown in the color scale bars. For reference the spatial variation of the imposed surface temperature
θs f c is shown in the bottom panel of each figure

4.4 Flux of Temperature Variance

Using LES, MS16 performed a comparative analysis of the second-moment budgets and
mixing intensity in weakly (moderately) stable boundary layers over thermally homogeneous
and thermally heterogeneous surfaces. Among other things, the study revealed a key role
of the temperature variance in turbulent mixing in a horizontally heterogeneous SBL and
the importance of the third-order turbulent transport term in maintaining the temperature-
variance budget. Due to the surface heterogeneity, the third-order moment, i.e., the vertical
flux of temperature variance (denoted by wθθ ), is nonzero at the surface. As a result, the
turbulent transport term (divergence of the temperature-variance flux) not only redistributes
the temperature variance in the vertical, but is a net gain.

The following expression is used to estimate the vertical flux of temperature variance on
the basis of LES data:

wθθ =
〈
ũ′
3θ̃

′2
〉
+

〈
ũ′
3θ̃

s2′
〉
+ 2

〈
θ̃ ′˜us3θ s

′〉 +
〈

˜us3θ
s2

〉
, (16)

where a tilde denotes a resolved-scale (filtered) quantity, and the superscript “s” denotes
a sub-grid (sub-filter) scale fluctuation. As in the previous sections, an overbar denotes a
horizontal-mean quantity, a prime denotes a fluctuation about a horizontal mean, and angle
brackets denote quantities averaged over time. The first two terms on the r.h.s. of Eq. 16
are zero at the surface because ũ3 = 0. The last term cannot be estimated from LES but is

123



D. V. Mironov, P. P. Sullivan

(a) (b)

Fig. 14 Horizontal cross section of the vertical temperature flux for simulations HET050 (a) and HET075 (b).
The cross section is taken at x3 = 0.076 (x+

3 = 8.19 in HET050, and x+
3 = 8.52 in HET075) above the lower

surface near the end of the sampling period. Red (blue) colors correspond to positive (negative) values of the
temperature flux (×103) as shown in the color scale bar. Note the range of the color bar is different between
(a) and (b). For reference the spatial variation of the imposed surface temperature θs f c is shown in the bottom
panel of each figure

presumably small (seeMS16 andMachulskaya andMironov 2018, for discussion). The third
term is zero in the homogeneous SBL because θ̃ ′ = 0 at the surface. In the heterogeneous
SBL, surface temperature variations modify local stability conditions and thus modulate the

surface temperature flux. The surface temperature θ̃ and the surface temperature flux ˜us3θ
s

prove to be positively correlated, leading to a positive flux of temperature variance at the
surface.

Within the DNS framework, the expression for the vertical flux of temperature variance
reads:

wθθ =
〈
u′
3θ

′2
〉
− 1

PrRe

∂
〈
θ ′2

〉
∂x3

. (17)

It is instructive to establish the correspondence between the LES and DNS estimates of the
temperature-variance flux.

The first two terms on the r.h.s. of Eq. 16 describe the transport of resolved (first term)
and sub-grid (second term) temperature variance by the resolved vertical velocity ũ3. The
sum of these terms is in one-to-one correspondence with the first term on the r.h.s. of Eq. 17
that describes the transport of temperature variance by the vertical velocity (there are no
sub-grid scale quantities in DNS, hence there is only “total” velocity and “total” temperature
variance).

There is no one-to-one matching of the third and the fourth terms on the r.h.s. of Eq. 16
with the second term on the r.h.s. of Eq. 17. It can be readily seen, however, that under certain
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Fig. 15 (Left) third-order vertical velocity-temperature covariance (vertical flux of the temperature variance)
from simulations HET025 (blue), HET050 (green), and HET075 (red). Solid curves show total (turbulent plus
molecular) covariance, and dot-dashed and dashed curves show contributions due to turbulence and due to
molecular diffusion, respectively. (right) The same as in the left panel but for the lower part of the domain for
simulations HET050 (green) and HET075 (red)

conditions the LES and DNS terms are closely analogous. If the resolution is sufficiently
high, most energy-containing scales of motion are simulated explicitly by LES with nearly
isotropic sub-grid scale turbulence. Then, the sub-grid scale temperature flux is of diffusive

and down-gradient character, that is, ˜usi θ
s = −κ̃s∂θ̃/∂xi , where κ̃s is the sub-grid scale

temperature diffusivity. The third term on the r.h.s. of Eq. 16 becomes:

2

〈
θ̃ ′˜us3θ s

′〉 = −
〈
κ̃s

∂θ̃ ′2
∂x3

〉
−

〈
κ̃ ′
s
∂θ̃ ′2
∂x3

〉
−

〈
κ̃ ′
s θ̃

′ ∂θ̃

∂x3

〉
. (18)

Applying a diffusive down-gradient approximation to the fourth term on the r.h.s. of Eq. 16,
we obtain:

〈
˜us3θ

s2

〉
= −

〈
κ̃s

∂θ̃ s2

∂x3

〉
−

〈
κ̃ ′
s
∂θ̃ s2

′

∂x3

〉
. (19)

If the temperature diffusivity κ̃s does not change considerably in space (κ̃ ′
s is small) the second

and the third terms on the r.h.s. of Eq. 18 and the second term on the r.h.s. of Eq. 19 can be

neglected. If changes of κ̃s in time can also be neglected (κ̃s −
〈
κ̃s

〉
is small), then Eqs. 16, 18

and 19 yield the following expression for the LES-based vertical temperature-variance flux:

wθθ =
〈
ũ′
3

(
θ̃ ′2 + θ̃ s2

′)〉
− 1

PrsRes

∂
〈
θ̃ ′2 + θ̃ s2

〉
∂x3

. (20)

Here, Prs and Res are the Prandtl number and the Reynolds number, respectively, defined
in terms of (constant) sub-grid scale viscosity and (constant) sub-grid scale temperature
diffusivity. Thus, the estimates of the vertical temperature-variance flux based on DNS,
Eq. 17, and on LES, Eq. 20, coincide up to definitions of the temperature variance and of the
Prandtl and Reynolds numbers.
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Vertical profiles of wθθ from our heterogeneous DNS runs are shown in Fig. 15. Both
the turbulent and molecular contributions to wθθ given by the first and second terms on
the r.h.s. of Eq. 17, respectively, are positive close to the lower boundary; by symmetry,
these contributions are negative close to the upper boundary. Importantly, the molecular
temperature-variance flux is nonzero at the surface. Hence, the third-order transport term not
only redistributes the temperature variance in the vertical, but is a net gain. The situation
is broadly similar to that in weakly (moderately) stable flows, where the surface thermal
heterogeneity produceswθθ that serves to increase the temperature variance in the boundary
layer.

5 Conclusions

Direct numerical simulations at bulk Reynolds number Re = 104 and bulk Richardson
number Ri = 0.25 are performed to analyze the structure and mixing intensity in strongly
stable boundary-layer flows over thermally homogeneous and heterogeneous surfaces. An
idealized plane Couette flow set-up is used as a proxy for real-world flows. The flow is driven
by a fixed velocity at the upper surface, while the lower surface is at rest. The temperature at
the horizontal upper and lower surfaces is either homogeneous or varies sinusoidally in the
streamwise direction, while the horizontal-mean temperature is the same in the homogeneous
and heterogeneous cases.

The stratification is strong enough to quench turbulence over homogeneous surfaces,
resulting in linear velocity and temperature profiles. However, turbulence survives over
heterogeneous surfaces. Both the molecular diffusion and the turbulence contribute to the
downward, i.e., the down-gradient, transfer of horizontal momentum. The total (diffusive
plus turbulent) heat flux is directed downward. However, the turbulent contribution to the
heat flux appears to be positive, i.e., up the gradient of the mean temperature. An analysis of
the second-order velocity and temperature covariances and of the vertical-velocity and tem-
perature skewness suggests that the counter-gradient heat transport is due to quasi-organized
cell-like vortex motions generated by the surface thermal heterogeneity. These motions act to
transfer heat upwards similar to quasi-organized cell-like structures that transfer heat upwards
in convective boundary layers. This finding is corroborated by visualization of the velocity
and temperature fields. Thus, the flow over heterogeneous surface features local convective
instabilities and upward eddy heat transport, although the overall stratification remains stable
and the heat is transported downward in the mean.

Due to the surface thermal heterogeneity, the vertical flux of temperature variance is
nonzero at the surface. As a result, the transport term (divergence of the temperature-variance
flux) in the temperature-variance budget not only redistributes the temperature variance in
the vertical, but is a net gain. The same effect is encountered in weakly (moderately) stable
flows over thermally heterogeneous surfaces, where the third-order transport terms serves to
increase the temperature variance in the boundary layer.

A few words are in order concerning the relevance of our DNS findings to the real-world
atmospheric flows. For instance, the temperature contrast between the warm and cold stripes
in our simulationsmay look unrealistically high at first glance. The following simple example
demonstrates, however, that the governing parameters of our idealized flow configurations
may be quite similar to the governing parameters of the real-world atmospheric SBL flows.
Take the following values that are fairly typical of an atmospheric stably stratified boundary
layer during calm clear nights: the SBL depth is 70m, the wind speed at the SBL top is
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4m s−1, and the temperature difference across the SBL (from top to bottom) is 2 K. With
the gravitational acceleration of 9.81m s−2 and the reference temperature of 280 K, we
obtain Ri = 0.31, which is close to Ri = 0.25 in our simulations. With a 2 K temperature
difference across the SBL, a 4 K difference between warm and cold stripes is needed to
obtain the flow configuration very similar to that of our simulation HET050. Such a surface
temperature difference is clearly possible; furthermore, even larger temperature differences at
real-world surfaces are quite likely. In order to make a more definitive quantitative statement,
data from targeted field measurements are required. Rough estimates may be obtained using
crowdsourced data.

A subject of our future work is a comprehensive analysis of the second-moment budgets,
where the emphasis is on the turbulence anisotropy and the role of pressure-scrambling
effects in maintaining the budgets. It should also be examined whether major conclusions
from the present analysis remain valid at higher values of the Reynolds number and for
other flow configurations, e.g., for pressure-gradient driven channel flows over homogeneous
and heterogeneous surfaces. Further open issues are the effects of the surface roughness,
of the surface heterogeneity orientation (e.g., temperature-wave crests normal vs. parallel
to the mean flow), and of the size and form of the surface patches on the flow structure
and mixing intensity. Finally, efforts should be made to use the DNS findings to improve
parameterizations of strongly stable boundary layers in large-scale atmospheric models.
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