A direct numerical simulation (DNS) of an unstably stratified convective boundary layer with system rotation was performed to study top-down and bottom-up diffusion processes. In order to better understand near-wall dynamics associated with scalar diffusion in the absence of surface roughness, direct simulation is utilized to numerically integrate the governing equations that model the atmospheric boundary layer. The ratio of the inversion height to Obukhov length scale, \(z_i/L = -49.1 \), indicates moderately strong heating for the case studied. Two passive scalars were initialized in the flow field: the first with a zero gradient at the wall (\(q_t \), top-down diffusion), and the second with a non-zero wall gradient and a close-to-zero gradient at the height of the temperature inversion (\(q_b \), bottom-up diffusion). Scalar flux, variance and covariance profiles show good agreement between the DNS and rough-wall large-eddy simulation (LES). The top-down gradient function displays a slight increase in amplitude, indicating reduced mixing efficiency for the smooth-wall, low-Reynolds-number convective boundary layer. For the bottom-up process, the gradient matches other rough-wall simulations. The only notable difference between the smooth-wall DNS data and other rough-wall simulations is an increase in the gradient function near the wall. This indicates that the bottom-up gradient functions for a rough wall and a smooth wall are nearly identical except as the viscous sublayer is approached. Finally, a new empirical model for the scalar variance of a bottom-up scalar is proposed: here, a single function replaces two piecewise relationships to accurately capture the DNS results up to the viscous sublayer. The scalar covariance between top-down and bottom-up processes agrees with rough-wall and tree-canopy LES results; this indicates that the scalar covariance is independent of both Reynolds number and surface friction.

Key words: atmospheric flows, turbulence simulation, turbulent convection

1. Introduction

In the unstably stratified atmospheric boundary layer (ABL), mean velocity and potential temperature are well mixed below the capping inversion. To account for non-zero gradients in the mixed layer for specific humidity, Wyngaard & Brost (1984)
proposed the concept of top-down and bottom-up diffusion. Given a scalar concentration c, Wyngaard & Brost describe the total scalar flux as a linear combination of the surface flux (subscript b) and entrainment-zone flux (subscript t):

$$\overline{w'c'} = \overline{w'c'_b} + \overline{w'c'_t}. \quad (1.1)$$

Top-down diffusion characterizes entrainment processes near the potential temperature inversion that occurs in the atmospheric boundary layer. A scalar is under the influence of top-down diffusion alone when the scalar flux is zero at the wall and is at a maximum at a height h_1. Conversely, bottom-up diffusion has a non-zero wall flux but zero flux at h_1. These two processes are clearly shown in figures 4 and 5 of Wyngaard & Brost (1984).

Such a decomposition allows the two separate processes to be modelled individually. By means of large-eddy simulation (LES), Wyngaard & Brost (1984) parametrized the eddy diffusivity for both top-down and bottom-up passive scalars by treating the processes as symmetric. Their results show good agreement between LES and their proposed closure approximation. Moeng & Wyngaard (1984) built upon this analysis by constructing functions to parametrize scalar covariances and compute the flux budgets for both top-down and bottom-up scalars. The two production terms (buoyant and scalar gradient) in the flux budgets are found to behave differently for the bottom-up and top-down processes. Consequently, a model of the flux that does not account for the different behaviours will probably perform poorly when both processes are significant.

The gradient functions g_t and g_b for a scalar c are generalized as

$$\frac{\partial c_t}{\partial z} = -\frac{\overline{w'c'_t}}{w_s z_i} g_t \quad (1.2)$$

and

$$\frac{\partial c_b}{\partial z} = -\frac{\overline{w'c'_0}}{w_s z_i} g_b. \quad (1.3)$$

If the gradient functions above are known, the gradient of an arbitrary scalar ($\partial c/\partial z$) can be approximated by a linear combination of g_t and g_b. Wyngaard & Brost (1984) and Moeng & Wyngaard (1984) propose models of these gradient functions for a rough-wall convective boundary layer. Piper et al. (1995) performed a water-tank experiment of top-down and bottom-up convection using dye and temperature measurements. Their results demonstrated close agreement with the gradient functions proposed by Wyngaard & Brost (1984) and Moeng & Wyngaard (1984). Patton, Sullivan & Davis (2003) and Wang et al. (2007) proposed revisions to the gradient functions given by Wyngaard & Brost (1984) for a convective boundary layer over a forested site where the canopy acts to increase surface roughness.

The purpose of this work is to simulate passive scalars as bottom-up and top-down processes over a smooth surface while resolving flow features through the viscous sublayer and down to the wall via direct numerical simulation (DNS). This allows a fundamental study of the two diffusion processes in the absence of a rough wall and avoids assumptions concerning near-wall temperature and scalar fluxes. Furthermore, Sullivan & Patton (2011) demonstrated that increasing mesh resolution leads to an increase in the magnitude of various third-order moments (see also Moeng & Wyngaard 1988, 1989). Directly simulating the convective boundary layer will assist in illustrating the effects that small scales may have on the top-down and bottom-up
diffusion processes. Comparison between DNS results and previous LES simulations also provides insight into the effect of surface roughness on scalar flux. Adrian, Ferreira & Boberg (1986) noted similarity in the large scales of laboratory-generated thermal convection when $Re_c > 500$. Although a significant difference in Reynolds number exists between atmospheric dynamics and the present simulation, it is expected that major differences will be a result of the surface roughness or the strength of unstable buoyant forcing, and not, necessarily, caused only by the low Reynolds number of the simulation. The DNS presented is well above the limit ($Re_c > 4000$; see § 3) set by Adrian et al. (1986), so large-scale features are expected to be similar to flows with higher Reynolds numbers. Furthermore, Willis & Deardorff (1974) and Deardorff & Willis (1985) claim Reynolds number independence for their water-tank experiments of the convective boundary layer when Re_c is approximately 6500 and 1500, respectively. Additional support for the assumption that results from the DNS display Reynolds number similarity is given by Moeng & Wyngaard (1988), Wyngaard (2010) and Sullivan & Patton (2011).

2. Simulation specifications

To study top-down and bottom-up processes, a DNS of the incompressible Navier–Stokes equations and energy equation with rotation and buoyancy is performed. The following sections discuss the governing equations (§ 2.1), numerical solution procedure (§ 2.2) and initial/boundary conditions (§ 2.3).

2.1. Governing equations

The Ekman layer with a heated surface and capped inversion is used to approximate the unstably stratified ABL. The governing equations, in conservative form and with the Boussinesq approximation for the buoyancy, are given by

\[
\frac{\partial u_i}{\partial t} + \frac{\partial u_i u_j}{\partial x_j} + \frac{1}{Re} u_j \varepsilon_{ji3} = -\frac{\partial P}{\partial x_i} + \frac{1}{Re} \nabla^2 u_i + \theta \delta_{i3},
\]

\[
\frac{\partial \theta}{\partial t} + \frac{\partial u_j \theta}{\partial x_j} = \frac{1}{Re Pr} \nabla^2 \theta,
\]

\[
\frac{\partial q}{\partial t} + \frac{\partial u_j q}{\partial x_j} = \frac{1}{Re Sc} \nabla^2 q.
\]

Here, u_i corresponds to the (u_1, u_2, u_3) or (u, v, w) velocity components in the (x_1, x_2, x_3) or (x, y, z) directions, where x_3 (z) is the wall-normal direction. The Reynolds number $Re = U g \delta_E / v$ is defined in terms of the geostrophic velocity (U_g), the Ekman depth ($\delta_E = \sqrt{\nu / \Omega}$) and the kinematic viscosity (v). System rotation is aligned with the wall-normal direction at a rate of Ω; its effects are included via a Rossby number $Ro = U_g / 2 \Omega \delta_E$. The dimensionless potential temperature θ is given by

\[
\theta = \frac{g \delta_E}{U_g^2} \left(\frac{T - T_0}{T_0} \right),
\]

where g is the gravitational constant and T_0 is a reference temperature. Also, P is the pressure normalized by the density and q is the concentration of a passive scalar. The Prandtl number $Pr = v / \kappa$ is the ratio of viscous to thermal diffusion, and the Schmidt number $Sc = v / D$ is the ratio of viscous to molecular diffusion for the given scalar.
In (2.1b) we have adopted the Boussinesq approximation to introduce buoyant forcing into the vertical momentum equation:

\[- \rho g \hat{k} = - \rho_0 g \left(1 - \frac{T - T_0}{T_0} \right) \hat{k}. \tag{2.3}\]

Hydrostatic pressure \((- \rho_0 g \hat{k})\) is included in the mean pressure gradient \(\partial P / \partial x_i\) along with the centrifugal component of system rotation (\(\Omega^2 R\), where \(R\) is the radius from the centre of the axis of rotation to the fluid element). For this work, we assume the geostrophic approximation, i.e. Coriolis forces and the pressure gradient are in balance. Consequently, the mean pressure gradient is defined such that the geostrophic velocity \(U_g\) aligns with the \(x\) axis:

\[- \frac{\partial P}{\partial x_i} = - \frac{2}{Re} \delta_{i2}. \tag{2.4}\]

The overbar is used to indicate the fact that (2.4) denotes a mean pressure gradient; pressure fluctuations are solved for in the numerical scheme.

2.2. Numerical solution procedure

The governing equations given by (2.1) were solved using a semi-implicit fractional-step method based on the implicit Crank–Nicolson and the explicit Adams–Bashforth methods (see Waggy \textit{et al.} 2012). Accordingly, vertical diffusion terms are advanced implicitly; all remaining terms (horizontal diffusion, Coriolis, advection) are explicitly solved for based on the previous two time realizations. The time advancement scheme for the velocity is as follows:

\[
\left(1 - \frac{\Delta t}{2Re} \frac{\partial^2}{\partial x_i^2} \right) \hat{u}_i = u_i^n + \Delta t \left(\frac{1}{2} M_i^n + \frac{3}{2} L_i^n - \frac{1}{2} L_i^{n-1} \right) + O(\Delta t^2),
\]

where

\[
M_i^n = \frac{1}{Re} \frac{\partial^2 u_i^n}{\partial x_i^2} \tag{2.6}
\]

and

\[
L_i^n = - \frac{\partial u_i^n u_j^n}{\partial x_j} - \frac{1}{Ro} \frac{\partial u_j^n \varepsilon_{j13}}{\partial x_i} + \frac{1}{Re} \left(\frac{\partial^2 u_i^n}{\partial x_i^2} + \frac{\partial^2 u_i^n}{\partial x_j^2} \right) + \theta^n \delta_{i3}. \tag{2.7}\]

In the above expressions, \(u_i^n\) refers to the velocity component in the \(x_i\) direction at the \(n\)th time step. The hat denotes a predicted quantity at the fractional step. A correction from the predicted velocity to the velocity at the \((n + 1)\)th iteration is accomplished by defining a pseudo-pressure \(\phi\) such that

\[
\frac{u_i^{n+1} - \hat{u}_i}{\Delta t} = - \frac{\partial \phi}{\partial x_i}. \tag{2.8}\]

This allows a zero divergence to be enforced on \(u_i^{n+1}:\)

\[
\frac{1}{\Delta t} \left(\frac{\partial u_i^{n+1}}{\partial x_i} - \frac{\partial \hat{u}_i}{\partial x_i} \right) = - \frac{\partial^2 \phi}{\partial x_i \partial x_i}. \tag{2.9}\]
Since $\partial u^{n+1}_i / \partial x_i = 0$, a linear system of equations for ϕ can be solved since \hat{u}_i is known:

$$-\Delta t \frac{\partial^2 \phi}{\partial x_i \partial x_i} = \frac{\partial \hat{u}_i}{\partial x_i}. \tag{2.10}$$

Rearranging, (2.8) yields the velocity at the new time step.

$$u^{n+1}_i = \hat{u}_i - \Delta t \frac{\partial \phi}{\partial x_i}. \tag{2.11}$$

Integration of the equations for potential temperature and passive scalars follows the same procedure as above, except that no pressure correction is required. As evident in (2.7), the potential temperature θ is lagged by one time step.

Spatial differences are obtained by using fourth-order-accurate, centred finite differences in all three coordinate directions. A staggered and stretched mesh is employed in the vertical direction to accommodate sharp gradients close to the lower boundary. Interpolation between the wall-coincident mesh and the staggered grid is accomplished via Lagrangian polynomials. Further discussion of the numerical techniques used to solve (2.1) is given by Waggy et al. (2012). The values of the parameters described above for the current test case are provided in Table 1.

Figure 1 shows the largest ($L = k^{3/2}/\varepsilon$) and smallest ($\eta = (v^3/\varepsilon)^{1/4}$) length scales of turbulence with respect to the horizontal computational mesh. Additionally, the Taylor micro-scale λ (see § 4) is shown. In order to prevent the occurrence of grid-to-grid oscillations, an artificial dissipation term (Anderson, Tannehill & Pletcher 1984) was added,

$$L_{u_i} = \cdots + \beta \Delta x_j^4 \frac{\partial^4 u^{n}_i}{\partial x_j^4}, \tag{2.12}$$

where β controls the strength of the dissipation; for the present simulations $\beta = 0.8$. The magnitude of the artificial dissipation term remained about two orders of magnitude smaller than viscous dissipation throughout the computation. Consequently, its effect on the present results was negligible.

Validation of the DNS code was accomplished by comparing numerical solutions of instability wave propagation in plane channel flow with linear stability theory using

Table 1. Simulation parameters in the DNS: Reynolds number $Re = U_g \delta_E / \nu$, Prandtl number $Pr = \nu / \kappa$, Schmidt number $Sc = \nu / D$, surface Richardson number $Ri_0 = [g \delta_E^2 / (T_0 U_g^2)] \partial T / \partial z|_{\tilde{z}=0}$, domain size (L_x, L_y, L_z), number of mesh points (N_x, N_y, N_z), and minimum vertical mesh spacing (Δz_{\min}). Note that z_i is the height of the temperature inversion.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Re</td>
<td>1000</td>
</tr>
<tr>
<td>Pr</td>
<td>1</td>
</tr>
<tr>
<td>Sc</td>
<td>1</td>
</tr>
<tr>
<td>Ri_0</td>
<td>-1</td>
</tr>
<tr>
<td>L_x/z_i</td>
<td>6.04</td>
</tr>
<tr>
<td>L_y/z_i</td>
<td>6.04</td>
</tr>
<tr>
<td>$N_x = N_y$</td>
<td>512</td>
</tr>
<tr>
<td>L_z/z_i</td>
<td>6.71</td>
</tr>
<tr>
<td>N_z</td>
<td>256</td>
</tr>
<tr>
<td>Δz_{\min}</td>
<td>0.931</td>
</tr>
</tbody>
</table>

DNS of top-down and bottom-up diffusion in convective boundary layer 585
the Orr–Sommerfeld equation (see Waggy et al. 2012) at two different Reynolds numbers. Results from the study indicated that the growth of the disturbance amplitudes deviated from the linear theory by less than 1% over the integration time $0 \leq t \leq 10$. Furthermore, neutral Ekman layer studies performed using the same numerical procedure (Marlatt, Waggy & Biringen 2010; Waggy, Marlatt & Biringen 2011; Marlatt, Waggy & Biringen 2012) compare very favourably with results from the literature (Coleman, Ferziger & Spalart 1990; Miyashita, Iwamoto & Kawamura 2006; Spalart, Coleman & Johnstone 2008).

2.3. Boundary and initial conditions

A no-slip boundary condition is enforced on the wall for all velocity components: $u = v = w = 0$ at $z = 0$. At the top of the domain, a stress-free and a zero-flux condition are enforced: $\partial u / \partial z = \partial v / \partial z = w = 0$ at $z = z_{\text{max}}$.

The initial temperature profile shown in figure 2 was imposed directly onto a fully developed neutrally stratified turbulent Ekman layer simulation (for details, see Marlatt et al. 2012) in the same manner as used by Coleman & Ferziger (1994):

$$\theta = \frac{\gamma \pi^{1/2}}{2} R_{i_0} \left[\text{erf} \left(\frac{z}{\gamma} \right) + \text{erf} \left(\frac{b_* - z}{\gamma} \right) \right], \quad 0 \leq z \leq b_*, \quad (2.13a)$$

$$\theta = -\frac{\gamma \pi^{1/2}}{2} R_{i_0} \left[\text{erf} \left(\frac{z - b_*}{\gamma} \right) \right] + \theta_{z=0}, \quad z \geq b_*, \quad (2.13b)$$

where $\gamma = a_* (\ln 0.01)^{-1/2}$ and all variables have been non-dimensionalized by the Ekman depth δ_E (since the temperature field is directly imposed onto a neutrally stratified turbulent Ekman layer data set). The parameters a_* and b_* are used to control the depth of the temperature inversion (see Coleman & Ferziger 1994) and are set to $a_* = 4$ and $b_* = 10$. The surface Richardson number R_{i_0} controls the initial strength of unstable stratification and is defined by

$$R_{i_0} = \frac{g \delta_E^2}{T_0 U_g^2} \left. \frac{\partial T}{\partial \tilde{z}} \right|_{\tilde{z}=0}, \quad (2.14)$$
where \tilde{z} is the dimensional wall-normal coordinate. In terms of dimensionless variables, this is simply written as

$$Ri_0 = \frac{\partial \bar{\theta}}{\partial \bar{z}} \bigg|_{\bar{z}=0}. \quad (2.15)$$

The flow was initialized with $Ri_0 = -1$ and allowed to evolve naturally with time. Both the lower and upper boundaries are set to a constant temperature. To ensure that no internal waves are reflected off the top boundary by the numerical scheme (Coleman & Ferziger 1994), the temperature gradient $\partial \bar{\theta}/\partial \bar{z} \rightarrow 0$ as $\bar{z} \rightarrow \infty$. Thus, the curvature in the temperature profile at the top of the domain is a consequence of the upper boundary condition. The shape of the capping inversion for $z > z_i$ is reminiscent of the convective tank experiments of Deardorff & Willis (1985) and Piper et al. (1995). As the flow evolves with time, a mixed layer quickly develops and the near-wall temperature gradient grows. Over the time-averaging period used for this study (see § 3), the mean surface Richardson number decreases to $Ri_0 = -14.02$, indicating vigorous surface heating.

Once the unstably stratified simulation reached a quasi-steady state based on the convergence of Ri_0, two scalars were initialized in the domain with small-amplitude random fluctuations. The first passive scalar q_b was initialized with a constant value through most of the boundary layer and with a steep gradient near the wall. A constant scalar value ($q_b = 1$) condition was imposed at the wall with $\partial q_b/\partial \bar{z} = 0$ at z_{max}. The top-down scalar q_t was initialized using a step function and allowed to evolve with a zero gradient condition at the wall. The height of the initial step function for q_t was chosen to align with the temperature inversion height (though z_i grows with time). With the newly introduced passive scalars q_b and q_t, the field was advanced forwards in time until a quasi-steady state was reached. Field variables were then averaged using 50 data realizations. The mean profiles of q_b and q_t are shown with their corresponding initial distribution in figure 3(a) and (b), respectively. The near-wall resolution allows the steep gradient in the initial distribution of q_b to be
well captured. For q_t, the step-function initial distribution occurred over a single mesh point. Although this distribution was quickly smoothed, the small region where $q_t > 1$ is a consequence of the discontinuous initial condition. Given the height at which this phenomenon occurs, it was found to have negligible impact on the region of interest in this study ($0 \leq z \leq z_i$).

3. Convective scales

Characteristic scales for the problems are taken to be the inversion height z_i and convective velocity (Deardorff 1972)

$$w_* = \left(\frac{gQ_{\theta,0}z_i}{T_0} \right)^{1/3}, \quad (3.1)$$

where $Q_{\theta,0}$ is the surface heat flux. At the wall, $w^\prime \theta^\prime = 0$ due to the no-slip wall boundary condition, $w = 0$. Thus, the total heat flux at $z = 0$ is given by the viscous flux only:

$$Q_{\theta,0} = -\frac{k}{c_p \rho} \frac{\partial T}{\partial z} \bigg|_{z=0} \quad (3.2)$$

or

$$\frac{Q_{\theta,0}}{U_\theta T_0} = -\frac{1}{RePr} \frac{\partial \theta}{\partial z} \bigg|_{z=0}. \quad (3.3)$$

Combining (3.1) and (3.3), the convective velocity is written in dimensionless form as

$$\frac{w_*}{U_\theta} = \left[-\left(\frac{z_i}{\delta_E} \right) \left(\frac{1}{RePr} \frac{\partial \theta}{\partial z} \right)_{z=0} \right]^{1/3}. \quad (3.4)$$
For this work, z_i is defined as the height at which the turbulent flux $\overline{w'\theta'}$ is minimum (Sullivan et al. 1998). Given characteristic scales w_* and z_i, the large-eddy turnover time is calculated as $\mathcal{T} = z_i/w_*$ (Deardorff 1972). The data for this work were averaged over a sampling window of $t/\mathcal{T} \approx 1.4$, i.e. an entire large-eddy turnover time was captured (note that the averaging window begins after the field has evolved for $> 6\mathcal{T}$ after initializing the temperature field). The interval $t/\mathcal{T} \approx 1.4$ corresponds to an averaging window of $t_f \approx 0.05$ in terms of the Coriolis parameter.

The strength of the surface heating is determined by the ratio of the inversion height to the Obukhov length scale, z_i/L, with L given by (Obukhov 1971)

$$ L = -\frac{u_0^3T_0}{g\kappa Q_{\theta,0}}, \quad (3.5) $$

where u_* is the friction velocity and $\kappa = 0.41$ is the von Kármán constant. A dimensionless form of (3.5) is given by

$$ \frac{L}{\delta_E} = \left(\frac{u_*}{U_g} \right)^3 \left(\frac{RePr}{\kappa} \right) \left(\frac{\partial \theta}{\partial z} \right)^{-1}_{z = 0}. \quad (3.6) $$

For the present simulation, $z_i/L = -49.1$, which indicates moderately strong heating in the same regime as Wyngaard & Brost (1984), $z_i/L = -64$, Moeng & Wyngaard (1984), $z_i/L = -10$, and Wang et al. (2007), $z_i/L = -17.9$. LeMone (1973) notes the existence of roll cells only under mild heating, when $0 < -z_i/L < 10$. As will be shown in § 4, the mixed layer of the DNS is dominated by convective cells.

Owing to surface heating, the mean velocity profiles change quite dramatically. As shown in figure 4, the surface heating causes a well-mixed region to develop between $0 < z < z_i$ with nearly vertically uniform streamwise and spanwise velocities.
The presence of stable stratification causes a jump in the streamwise velocity profile across z_i. The total temperature flux is composed of both turbulent and viscous flux components:

$$Q_\theta = \overline{w'\theta'} - \frac{1}{RePr} \frac{\partial \theta}{\partial z}. \tag{3.7}$$

The contributions of each term are shown in figure 5. Note that viscous effects only are prevalent in the very near-wall region and when $z \geq z_i$. Furthermore, it is clear that the heat flux maintains a linear shape for $0 \leq z/z_i \leq 1$. The minimum heat flux at $z = z_i$, which gives an indication of the strength of top-down diffusion to bottom-up diffusion and also entrainment, has a value of $Q_\theta/Q_{\theta,0} = -0.153$. Sorbjan (2004) simulated the unstable ABL under various conditions with $-4.17 \leq z_i/L \leq -1.95$ using LES. In Sorbjan’s LES, the ratio between the total heat flux at the top and bottom of the mixed layer varied between approximately -0.17 and -0.3. Our results indicate slightly less entrainment influences at the top of the mixed layer relative to the bottom when stronger stratification is present (Jonker et al. 2010).

In the same fashion as (3.2), a surface flux parameter is defined for the bottom-up scalar q_b:

$$\frac{Q_{q_b,0}}{U_g} = -\left. \frac{1}{ReSc} \frac{\partial q_b}{\partial z} \right|_{z_0}. \tag{3.8}$$

Note that q_b is a dimensionless scalar concentration, so $Q_{q_b,0}/U_g$ is likewise a dimensionless flux. The total, turbulent and viscous fluxes for q_b are shown in figure 6(a). The near-wall region is once again dominated by viscous flux, as the no-slip condition enforces zero turbulent flux. However, for $z/z_i > 0.04$, the viscous term is less than 1% of $Q_{q_b,0}$ where $\overline{w'\theta'}$ is the primary transport mechanism. At the inversion, $Q_{q_b,0}/U_g = 0.06$, indicating very weak scalar flux.
While it is convenient to normalize θ and q_b by the surface value of the viscous flux, such an operation is not possible for q_t since both the turbulent and viscous fluxes at $z=0$ are zero. Instead, the total flux

$$Q_{q_t} = w'q'_t - \frac{1}{ReSc} \frac{\partial q_t}{\partial z}$$

is normalized by $Q_{q_t,1}$ where

$$Q_{q_t,1} = \min(Q_{q_t}).$$

Note that, for the distribution of q_t shown in figure 3, both the turbulent and viscous fluxes will be negative over the entire mixed layer as the scalar is transported downwards towards the wall. The maximum of $Q_{q_t}/Q_{q_t,1}$ is found to occur at $z/z_i = 0.87$, which correlates very well with the crossover point where Q_{θ} goes from positive to negative flux. Unlike Q_{θ} or Q_{q_b}, the flux profile of a top-down process is not linear. Wyngaard & Brost (1984) attributed this to deepening of the ABL with time; this growth of the mixed layer is clearly seen in the water-tank experiments of Piper et al. (1995). The peak in viscous flux occurs just above the inversion ($z/z_i \approx 1.04$). At this point the turbulent and viscous fluxes are nearly equal in amplitude and greater than 17% of $Q_{q_t,1}$. Whereas viscous effects are relevant only in a very thin layer at the wall for bottom-up diffusion, both viscous and turbulent fluxes play an important role at the temperature inversion for the top-down processes given the low Reynolds number of the simulation.

A comparison between the current DNS and other LES is provided in table 2. The Reynolds number based on convective scales is defined as $Re_c = w_c z_i / \nu$ and the
Richardson number is

$$Ri = \frac{z_i/\delta_E}{(w^*/U_g)^2} \Delta \theta$$ \hspace{1cm} (3.11)$$

in terms of dimensionless quantities. Note that $\Delta \theta$ is the jump in potential temperature across the entrainment layer. Despite the fact that our DNS is at a substantially lower Reynolds number in comparison with atmospheric LES studies, all other flow parameters are comparable to rough-wall LES conditions. In terms of the convective Reynolds number, the DNS is close to the water dye experiments of Patton et al. (2003).

4. Characteristics of turbulence

The use of DNS confines the present simulation to the low-Reynolds-number regime. Defining the Taylor micro-scale as

$$\lambda = \sqrt{\frac{15uv'}{\varepsilon}}$$ \hspace{1cm} (4.1)$$
a Reynolds number Re_λ is formed such that

$$Re_\lambda = \frac{\lambda u'}{v}$$ \hspace{1cm} (4.2)$$

where $u' = \overline{u^2}^{1/2}$. For the present case, the maximum Reynolds number based on the Taylor micro-scale is $Re_\lambda \approx 190$. This is substantially lower than actual atmospheric dynamics, where Re_λ is approximately 10000 (Dhruva, Tsuji & Sreenivasan 1997), but similar features between this low-Reynolds-number simulation and high-Reynolds-number flows are evident as described below.

The turbulence generated by the simulation is a consequence of vigorous surface heating. In comparison with neutral Ekman layer simulations (Coleman et al. 1990; Miyashita et al. 2006; Waggy et al. 2011; Marlatt et al. 2012), there are several distinct differences noted in the turbulence characteristics. Figure 7 shows the variances of velocity and temperature fluctuations where the temperature fluctuations have been normalized by the characteristic temperature θ_s,

$$\theta_s = \frac{Q_{\theta,0}}{w^*_a}$$ \hspace{1cm} (4.3)$$

<table>
<thead>
<tr>
<th>Type</th>
<th>Re_c</th>
<th>$u^/w^_a$</th>
<th>Ri</th>
<th>$-z_i/L$</th>
</tr>
</thead>
<tbody>
<tr>
<td>DNS (present work)</td>
<td>SW</td>
<td>4473</td>
<td>0.203</td>
<td>55.5</td>
</tr>
<tr>
<td>Patton et al. (2003)</td>
<td>RW</td>
<td>—</td>
<td>0.252</td>
<td>—</td>
</tr>
<tr>
<td>Patton et al. (2003)</td>
<td>C</td>
<td>—</td>
<td>0.282</td>
<td>—</td>
</tr>
<tr>
<td>Piper et al. (1995)</td>
<td>WT</td>
<td>1000–2000</td>
<td>—</td>
<td>29</td>
</tr>
<tr>
<td>Moeng & Wyngaard (1984)</td>
<td>RW</td>
<td>—</td>
<td>0.350</td>
<td>54</td>
</tr>
<tr>
<td>Wyngaard & Brost (1984)</td>
<td>RW</td>
<td>—</td>
<td>0.184</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 2. Simulation parameters. Type codes: SW, smooth wall; WT, water-tank experiment; RW, rough-wall LES; and C, canopy LES.
and \(Q_{\theta,0} \) is the surface heat flux. Under neutral stratification, the streamwise normal stress dominates the flow, as production of \(\overline{u'w'} \) is the primary turbulent energy source (Marlatt et al. 2012). As unstable buoyant forcing increases, the flow is dominated less by shear and more by buoyant production of energy (Waggy 2012). In figure 7(a), \(\overline{w'w'} \) is the primary velocity variance through the mixed layer; the maximum value of \(\overline{w'w'}/w_*^2 \approx 0.44 \) is close to the values found by the laboratory model of Willis & Deardorff (1974), \(0.40 < \text{max} (\overline{w'w'}/w_*^2) < 0.55 \), and the LES of Schmidt & Schumann (1989), \(\text{max} (\overline{w'w'}/w_*^2) \approx 0.41 \).

The two horizontal velocity variances have maxima near the surface and close to the inversion. Both \(\overline{u'w'} \) and \(\overline{v'w'} \) are significantly lower than the vertical velocity variance; the profiles obtained agree closely with the LES study of the strongly convective, non-rotating boundary layer by Schmidt & Schumann (1989).

The variance of the temperature fluctuations shown in figure 7(b) demonstrates the inadequacy of using \(\theta_* \) to normalize the temperature (see Moene, Michels & Holtslag 2006). A difference of almost two orders of magnitude exists between the near-wall maximum and the minimum found near the top of the mixed layer (where \(\overline{\theta'\theta'}/\theta_*^2 \approx 1 \)).

Momentum fluxes are shown in figure 7(c). The primary covariance term \(-\overline{u'w'} \) is the dominant Reynolds shear stress in the flow and exhibits a positive value throughout the mixed layer. The negative of the Reynolds stress is shown here since a negative stress, in association with a positive velocity gradient, produces turbulent kinetic energy. Apart from the region close to the wall, the spanwise covariance is negative. Nevertheless, both \(\overline{u'w'} \) and \(\overline{v'w'} \) act to produce turbulent energy near the wall. The secondary covariance \(-\overline{u'v'} \) does not directly appear in the energy production term; however, this term is important for inter-component energy redistribution. As seen in figure 7(c), \(-\overline{u'v'} \) is roughly symmetric about \(z/z_i \approx 0.5 \).

The skewness of the vertical velocity and potential temperature are defined by

\[
S_w = \overline{w'^3}/w_*^{3/2}
\]

(4.4)
and

\[S_\theta = \frac{\bar{\theta'^3}}{\bar{\theta'^2}^{3/2}}, \]

(4.5)

respectively. Distributions for each are shown across the mixed layer in figure 8. That for \(S_w \) demonstrates a positive skewness that increases linearly throughout the mixed layer; the peak skewness is \(S_w \approx 1.16 \) and occurs just below \(z = z_i \). Although this value agrees with convective boundary-layer LES data (Mason 1989; Mironov et al. 2000; Gryanič & Hartmann 2002; Sullivan & Patton 2011), it is not representative of ABL conditions (LeMone 1990; Moeng & Rotunno 1990; Lenschow et al. 2012). In the ABL, LeMone (1990) argues that very large-scale features of size \(> 10 \) km with near-zero skewness prohibit further increases in skewness in the vicinity of \(z_i \), and therefore a decrease in skewness should occur as \(z \to z_i \). The current DNS, as well as the LES studies noted earlier, do not capture these very large scales resulting in the observed increased skewness near the inversion. The skewness of potential temperature only mimics the behaviour of \(S_w \) when \(z/z_i > 0.75 \). For most of the mixed layer, \(S_\theta \) is significantly larger than \(S_w \); similar behaviour is seen in the work of Gryanič & Hartmann (2002).

Instantaneous vertical velocity and temperature contours give an indication of typical turbulent structures found throughout the flow field. Near the wall \((z/z_i \approx 0.1) \), figure 9 shows the existence of worm-like structures elongated in the \(x \) direction and aligned with the direction of local shear. Similar elongation in the direction of shear is seen in both the Ekman layer under neutral stratification (Zikanov, Slinn & Dhanak 2003; Waggy et al. 2011) as well as in turbulent channel-flow LES results (Moin & Kim 1982). Considering the mixed layer, figure 10 shows that buoyant plumes dominate the turbulence field. High-temperature regions correspond closely to positive vertical velocities; less intense downdraft areas tend to surround the positive regions. This indicates that the stratification is too severe for roll vortices to exist (Coleman & Ferziger 1994). Above the inversion, the coupling between \(+w' \) and \(+\theta' \) is inverted (figure 11). Regions where \(\theta' \ll 0 \) tend to be associated with upward-moving fluid. This is expected, as high-momentum fluid carries cold underlying fluid up through the temperature inversion.
FIGURE 9. Instantaneous (a) w' and (b) θ'; here $z/z_i = 0.11$.

FIGURE 10. Instantaneous (a) w' and (b) θ'; here $z/z_i = 0.70$.

FIGURE 11. Instantaneous (a) w' and (b) θ'; here $z/z_i = 1.04$.

DNS of top-down and bottom-up diffusion in convective boundary layer
5. Top-down diffusion

In order for a scalar to exhibit pure top-down diffusion, the scalar gradient at $z = 0$ must be identically zero to ensure both turbulent and viscous fluxes vanish at the wall. This is accomplished by imposing a zero-gradient boundary condition on the top-down scalar q_t. Consequently, the steepest gradients in q_t occur near the inversion and decay as $z \to 0$.

A simple mixing length hypothesis for the scalar flux of q_t can be constructed as follows:

$$Q_{q_t} = -K_t \frac{\partial q_t}{\partial z}, \quad (5.1)$$

where K_t is the eddy diffusivity for a top-down scalar. Solving for K_t yields

$$K_t = -\frac{Q_{q_t}}{\partial q_t/\partial z}, \quad (5.2)$$

A dimensionless scalar gradient can be defined as

$$g_t = -\frac{z_i}{q_{t*}} \frac{\partial q_t}{\partial z}, \quad (5.3)$$

where q_{ts} is a characteristic scalar value defined as

$$q_{ts} = \frac{Q_{q_t,1}}{w_s} \quad (5.4)$$

The dimensionless mean scalar gradient g_t obtained from the present DNS is shown in figure 12 and is compared with the best-fit curve of Moeng & Wyngaard (1984) defined as

$$g_t \approx C_t (1 - z/z_i)^{-2} \quad (5.5)$$

![Figure 12. Gradient of mean top-down scalar distribution. Solid line, DNS; long dashed line, equation (5.5), $C_t = 0.7$; short dashed line, equation (5.5), $C_t = 1$; filled circles, LES with canopy (see Patton et al. 2003).](image)
with $C_t = 1$; Moeng & Wyngaard (1984) chose $C_t = 0.7$ as a fit to their LES data. The data show good agreement between their approximation and the DNS data for $0.1 < z/z_i < 0.95$. Approaching the wall, the gradient function demonstrates a deviation from (5.5) as g_t increases. Similar near-wall behaviour for a top-down scalar is noted by Piper et al. (1995). In their work, Patton et al. (2003) demonstrated that adding a tree canopy to their LES had little effect on g_t. Our results validate their findings: the top-down diffusion of a scalar is not a function of surface roughness. As shown in figure 12, only a slight increase in the gradient function throughout the mixed layer is noted for the low-Reynolds-number DNS. This increase in g_t indicates a small decrease in mixing efficiency. The difference in the amplitude of g_t is likely to be a consequence of the Reynolds number as opposed to the surface roughness, given the consistency of the offset throughout the mixed layer. Nevertheless, the similarity between the smooth-wall, low-Reynolds-number DNS and the rough-wall, atmospheric LES suggests that, in the mixed layer, g_t is only weakly influenced by surface roughness, large variations in the Reynolds number, or the degree of unstable forcing.

If a linear relationship between the scalar flux and height in the mixed layer is assumed, such that the maximum flux occurs at the temperature inversion, then

$$\frac{Q_{q_{\text{in}}}}{Q_{q_{\text{in}},1}} \approx \frac{z}{z_i}. \quad (5.6)$$

Combining (5.2)–(5.6) with $C_t = 1$, the predicted eddy diffusivity based on a linear flux profile is given by

$$\frac{K_t}{w'_{z_i}} \approx \left(\frac{z}{z_i} \right) \left(1 - \frac{z}{z_i} \right)^2. \quad (5.7)$$

Figure 13 compares this cubic polynomial approximation along with our DNS results for the eddy diffusivity and scalar flux, and indicates that (5.7) and the DNS results are in relatively good agreement. The K_t value is under-predicted through the mixed layer and over-predicted in the very near-wall region. From figure 12 it is clear that the near-wall deviation is caused by an under-estimation of the velocity gradient at the lower boundary (top of figure). As shown in figure 13(b), the location of the maximum scalar flux, which is computed via (5.1) and (5.7), is correctly captured ($z/z_i \approx 0.88$) and the magnitude of the flux is only off by approximately 3.5%. For $0.25 < z/z_i < 0.85$, the total top-down flux is marginally under-predicted. This is partially a consequence of assuming that the flux is linear, with a maximum flux at the inversion (5.6). A small improvement through the mixed layer is obtained by fitting a linear trend between the wall (zero flux) and the height at which $Q_{q_{\text{in}}}/Q_{q_{\text{in}},1} = 1$. However, the height at which this occurs ($z/z_i = 0.869$ for this case) may not be universal and could demonstrate dependence on Reynolds number or the level of unstable buoyant forcing. Finally, the parametrization of g_t by (5.5) dictates that the eddy diffusivity is zero at $z = z_i$. In fact, both the turbulent and viscous fluxes are substantial at the inversion. The total scalar flux from the DNS reaches zero at approximately $z/z_i = 1.13$.

6. Bottom-up diffusion

Since a top-down diffusion process exhibits zero flux at the wall, a true bottom-up process should exhibit zero flux near the temperature inversion. Wyngaard & Brost (1984) explicitly enforced a zero-flux condition at the top of the mixed layer (as
determined by the maximum amplitude of their top-down scalar flux). Moeng & Wyngaard (1984) and Piper et al. (1995) extract the bottom-up scalar gradient using the top-down scalar and a scalar (or temperature) that exhibits both top-down and bottom-up diffusion. Although results from the DNS (see figure 6) show that Q_{q_b} is small at z_i, indicating only a small contribution from top-down diffusion, the effect of top-down diffusion on the bottom-up scalar has been removed, so a pure bottom-up process is captured.

As with the top-down scalar, the eddy diffusivity for a bottom-up process is given by

$$K_b = -\frac{Q_{q_b}}{\partial q_b / \partial z^*},$$

and a dimensionless scalar gradient is defined as

$$g_b = -\frac{z_i}{q_{bs}^*} \frac{\partial q_b}{\partial z^*},$$

where

$$q_{bs} = \frac{Q_{q_b,0}}{w^*_z}.$$

Top-down diffusion effects are removed using the assumption that the gradient of an arbitrary scalar has both top and bottom diffusion effects:

$$\frac{\partial c}{\partial z} = \frac{\partial c_b}{\partial z} + \frac{\partial c_i}{\partial z}.$$
The gradient of c_t has already been parametrized in figure 12, so g_b (minus top-down effects) is given by

$$g_b = -\frac{z_i w_*}{Q_{q_b,0}} \frac{\partial q_b}{\partial z} = \frac{Q_{q_b,1}}{Q_{q_b,0}} g_t. \tag{6.5}$$

The height at which $Q_{q_b,1}$ was taken corresponds to the point where $Q_{q_t}/Q_{q_t,1} = 1$. The gradient profile g_b is shown in figure 14. The model

$$g_b \approx C_b \left(\frac{z}{z_i} \right)^{-3/2} \tag{6.6}$$

of Wyngaard & Brost (1984) fits the scalar q_b data very well for $0.08 < z/z_i < 0.4$. For $z/z_i > 0.4$, the gradient function changes sign and (6.6) no longer holds. Interestingly, if top-down effects are not removed, i.e. $g_b = -(z_i w_* / Q_{q_b,0}) \partial q_b / \partial z$, agreement between the model and DNS is evident up until $z/z_i \approx 0.7$ (dot-dashed curve in figure 14). The constant $C_b = 0.23$ used to fit our data is close to the value $C_b = 0.4$ used by Wyngaard & Brost (1984) for their LES data. Patton et al. (2003) notice enhanced mixing efficiency (a decrease in g_b) for flow with canopy in comparison to flow without. It is expected, then, that the smooth-wall DNS would also show an increase in g_b near the wall, as mixing from surface roughness is eliminated. However, the gradient function g_b closely aligns with their no-canopy results for $z/z_i > 0.02$. Thus, differences between bottom-up diffusion for a smooth and rough wall are limited to a very thin layer near the wall. Below $z/z_i = 0.02$, the smooth-wall results show a considerable increase in g_b through the viscous sublayer (note that $z/z_i = 0.01$ corresponds with $z^+ \approx 9.1$). For the Reynolds number of the DNS, the viscous sublayer is considerably thicker than that of rough-wall LES.

Both Moeng & Wyngaard (1984) and Piper et al. (1995) show $g_b \approx 0$ at $z/z_i \approx 0.5–0.6$ when g_b is deduced from other flow variables; this crossover point...
is well captured by our DNS results. The gradient function in the bottom half of
the mixed layer appears to be well represented by (6.6), as shown in figure 14.
However, above \(z/z_i > 0.6\) the gradient function model does not capture the sign
change associated with pure bottom-up diffusion.

Combining (6.1), (6.6) and the approximation that \(Q_{q_b}/Q_{q_b,0} \approx 1 - z/z_i\) yields the
following model for the eddy diffusivity of a bottom-up scalar:

\[
\frac{K_b}{w_* z_i} = \left(\frac{1}{0.23} \right) \left(1 - \frac{z}{z_i} \right) \left(\frac{z}{z_i} \right)^{3/2}.
\]

Figure 15 compares the DNS and model eddy diffusivities (figure 15a) and resulting
total scalar flux (figure 15b). Note that the turbulent flux \(w^* q'_b\) has not had top-down
effects removed. Once again, the model does well except for close to the inversion
and near the wall, where the viscous sublayer is approached. It is expected that the
model will perform better in the near-wall region as the Reynolds number increases.
The over-prediction of the total flux near the inversion is probably a consequence of
the presence of top-down diffusion in \(w^* q'_b\) and not, necessarily, a Reynolds-number
effect.

7. Variance and covariance functions

The gradient functions for top-down and bottom-up processes are useful in
determining the vertical flux of a scalar in the mixed layer. While (1.1) relates the
flux of a scalar to contributions from both top-down and bottom-up diffusion, the
variance of a scalar \(c\) is a function of top-down diffusion, bottom-up diffusion and a
cross-correlation between the two processes (Moeng & Wyngaard 1989):

\[
\overline{c' c'} = \overline{c'_t c'_t} + 2\overline{c'_t c'_b} + \overline{c'_b c'_b}.
\]

Figure 15. (a) Eddy diffusivity and (b) scalar flux for bottom-up scalar. Solid line, DNS;
dashed line, equation (6.7).
In an attempt to parametrize $c^t c^t$, variance functions (denoted f_t, f_b and f_{tb} for top, bottom and mixed diffusion) can be formed for each term as follows:

$$c^t c^t = q_{ts}^2 f_t$$ \hfill (7.2a)

$$c^t c^b = q_{ts} q_{bs} f_{tb}$$ \hfill (7.2b)

$$c^b c^b = q_{bs}^2 f_b.$$ \hfill (7.2c)

If the above variance functions are universal (independent of Reynolds number or the level of unstable buoyant forcing), then the variance of some arbitrary scalar could be determined if the strength of top-down diffusion relative to bottom-up diffusion is known. Letting $R = Q_{e,1}/Q_{e,0}$ be the ratio of the entrainment flux to surface flux, the variance for an arbitrary scalar c can be approximated as (Moeng & Wyngaard 1984)

$$\frac{\overline{c^t c^t}}{c^* c^*} = R^2 f_t + 2R f_{tb} + f_b,$$ \hfill (7.3)

where $c^* = Q_{e,0}/w^*$, the total surface flux divided by the convective velocity.

Variance of the top-down scalar for the present DNS is shown in figure 16. Moeng & Wyngaard (1984) fitted their LES data with empirical functions

$$f_t = a_1 \left(1 - \frac{z}{z_i} \right)^{-3/2}, \quad z/z_i < 0.9,$$ \hfill (7.4a)

$$f_t = a_2 \left(1 - \frac{z}{z_i} \right)^{-2/3}, \quad z/z_i > 0.9,$$ \hfill (7.4b)

and specified $a_1 = 2.1$ and $a_2 = 14$ to fit their data. While the $-3/2$ relation in the mixed layer appears qualitatively correct, a large increase in a_1 is required to fit our smooth-wall results. Moeng & Wyngaard (1989) demonstrate via LES that an increase in the scalar variance occurs with an increase in grid resolution, since only resolved...
scales are considered when computing the scalar variance. With increased resolution, the best fit to their results is obtained when $a_1 = 3.1$ (see also Patton et al. 2003). Given that this DNS captures the majority of significant length scales, it is believed that the larger constant required to fit the present DNS data is due, in part, to the increased range of resolved length scales. Additionally, the variability in a_1 indicates that the scaling between $\overline{q_t q_t'}$ and q^2_t may not be universal. Referring to the definition of q^{rs}_{t} in (5.4), this dimensionless parameter is a function of the minimum scalar flux and the convective velocity w_s. However, w_s is defined in terms of the surface heat flux and the inversion height (3.1); these flow parameters are independent of the scalar distribution, as there is no feedback from the scalar field to the fluid. Thus, the constants a_1 and a_2 are probably dependent upon the specific flow conditions, notably, the gradient of q_t near the entrainment layer.

Because of coarse resolution in their LES near the inversion, the fit that Moeng & Wyngaard (1984) propose for $z/z_i > 0.9$ is relatively uncertain. Our DNS also has a coarse resolution near the inversion (in comparison to the near-wall region), but mesh points closer to the inversion were captured, allowing for a better approximation of f_i near z_i. The $-2/3$ relation does reasonably well at capturing scalar variance near the inversion. However, (7.4a) assumes that $\overline{q_t q_t'} \to \infty$ as $z/z_i \to 1$ and will perform poorly near the inversion, as the scalar variance is bounded.

The bottom-up scalar q_b and temperature θ were used to solve for f_b and f_{tb}. Since f_i is known, a two-equation system for f_b and f_{tb} is formed from (7.3) and solved using variances $\overline{q_b q_b'}$ and $\overline{\theta \theta'}$ (see Moeng & Wyngaard 1984). The scalar variances for a bottom-up process are approximated by Moeng & Wyngaard (1984) as

$$
f_b = b_1 \left(\frac{z}{z_i} \right)^{-2/3}, \quad z/z_i < 0.9, \quad (7.5a)
$$

$$
f_b = b_2 \left(\frac{z}{z_i} \right)^{-5/4}, \quad z/z_i > 0.9. \quad (7.5b)
$$

The constants are given by $b_1 = 1.8$ and $b_2 = 0.47$. Moeng & Wyngaard (1989) adjust this model by changing the exponent of (7.5a) to be -0.9. Figure 17 demonstrates that the piecewise function given by (7.5) does not correlate well with the DNS results. Instead of a two-step function, it appears that the variance is better approximated by a single relationship:

$$
f_b \approx 0.91 \left(\frac{z}{z_i} \right)^{-0.95}. \quad (7.6)
$$

The exponent -0.95 is close to the modified exponent of Moeng & Wyngaard (1989), though they still employ a piecewise function to model the variance near the wall ($z/z_i < 0.1$). Not only does (7.6) fit our DNS for the majority of the mixed layer, there is very good agreement for $z/z_i < 0.1$ up until $z/z_i < 0.01$, where viscous effects dominate ($z^+ \approx 9.1$).

The covariance between the top-down and bottom-up scalars is shown in figure 18. Given the small amplitude of f_{tb} relative to the variance functions, the covariance is commonly modelled as a constant. Moeng & Wyngaard (1989) demonstrate an increase in the magnitude of f_{tb} with an increase in LES resolution. As their calculation of f_{tb} does not account for subgrid effects, correlation is lost in subgrid scales without a fine resolution. Patton et al. (2003) utilized a nested grid LES to better resolve the wall region and found a maximum covariance of $f_{tb} \approx 4.5$ with a
8. Conclusions

A DNS of top-down and bottom-up diffusion in the convective boundary layer at $Re_c = 4473$ and $z_i/L = -49.1$ was performed for a smooth wall. Two passive scalars
were initialized in a fully turbulent flow field and integrated forwards until well mixed. The heat flux profile is linear between $0 \leq z/z_i \leq 1$ where z_i corresponds with the point of minimum heat flux. The contribution from viscous flux is substantial only in the viscous sublayer and above the inversion.

The scalar q_t is a function of top-down diffusion only, as a zero-gradient boundary condition is imposed at the surface. Like Wyngaard & Brost’s (1984) results, the total flux of q_t is not linear but exhibits a slight curvature. This nonlinearity has been attributed to the deepening of the ABL. As the temperature inversion is approached, viscous flux increases and is not negligible (as it is through the mixed layer) for the low-Reynolds-number case presented here. The gradient function of q_t is well represented by the model of Moeng & Wyngaard (1984) except at the inversion (where the model is expected to perform poorly) and at the wall. Though resigned to a thin region, a large increase in the scalar gradient occurs as $z \to 0$.

Since pure bottom-up scalar diffusion could not be replicated, top-down effects were removed from q_b by means of the potential temperature (Moeng & Wyngaard 1984; Piper et al. 1995). The model of Wyngaard & Brost (1984) represents the gradient for approximately the bottom half of the mixed layer (apart from the very near-wall region). The gradient function switches sign for $z/z_i > 0.6$ and is therefore not represented by the empirical fit proposed by Wyngaard & Brost (1984). If the small effects of top-down diffusion on q_b are not removed, agreement with Wyngaard & Brost’s (1984) results is extended to $z/z_i \approx 0.7$. The bottom-up gradient function was found to correlate very closely with the rough-wall LES of Patton et al. (2003) without a tree canopy. Differences (notably, an increase in g_b) are confined to a very thin layer at the lower boundary.

Both the top-down and mixed scalar variances (f_t and f_{tb}, respectively) show little surface-roughness or Reynolds-number effects in comparison with the results of Patton et al. (2003). However, a new model for the pure bottom-up scalar variance ($f_b \propto (z/z_i)^{-0.95}$) is proposed. The exponent -0.95 is close to that in the model of Moeng & Wyngaard (1989), who use a constant of -0.9. Here we replace the two piecewise functions of Moeng & Wyngaard (1984, 1989) with a single expression. With the new model, the variance is accurately captured from the top of the viscous sublayer to $z/z_i \approx 0.9$.

Acknowledgements

Support for S.B.W. was provided by the Graduate Assistantship in Areas of National Need Fellowship through the Aerospace Engineering Sciences Department at the University of Colorado, Boulder. This research was supported by an allocation of advanced computing resources provided by the National Science Foundation. The computations were performed on Kraken at the National Institute for Computational Sciences (http://www.nics.tennessee.edu). S.B. was supported, in part, by NSF Award No. 1131802.

REFERENCES

DOS of top-down and bottom-up diffusion in convective boundary layer

