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Motivation
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How do we generate the meshes that are a central 
feature of MPAS?

The mesh on the left 
looks simple to 

generate...

but what 
about the mesh 

on the right?
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Centroidal Voronoi tessellations defined
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Both meshes in the preceding slide are (spherical) centroidal 
Voronoi tessellations:

Three Voronoi cells, Vi , along with their 
associated generating points, xi . Each Voronoi 

cell corner is uniquely associated with a 
Delaunay triangle (dashed line).

x3

x1 x2

V3

V1 V2

Voronoi = each grid volume (cell) Vi is 
uniquely associated with a generating point 
xi such that all points within Vi are closer to 
xi than to any other xj

• Lines joining generating points of 
adjacent cells are 

1. bisected by the shared cell face; and

2. intersect the shared cell face at a right 
angle. 

Centroidal = the generating point for each 
Voronoi cell is also the mass centroid of 
that cell (w.r.t. some density function)



MPAS-Atmosphere Tutorial
30-31 July 2018, Boulder, CO

Centroidal Voronoi tessellations as minimizers
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Du et al.1 show that the minimizer of a particular problem is 
necessarily a CVT
• It is reasonable, then, to approach the generation of CVTs as an 
optimization problem
• Many algorithms could be brought to bear, but we employ Lloyd’s 
Method

For constant density in the plane, hexagons provide the minimum 
energy configuration of Voronoi regions (Newman2, also Gersho3).
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Introduction to Lloyd’s method
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Originally developed by Stuart Lloyd at Bell Labs for optimal signal 
quantization

Given an initial set of generating points, Lloyd’s method may be used 
to arrive at a CVT:

1. Begin with any set of initial 
points (“generating 
points”)

2. Construct a Voronoi 
diagram for the point set

3. Locate the mass centroid 
of each Voronoi cell

4. Move each generating 
point to the mass centroid 
of its Voronoi cell

5. Repeat 2-4 to convergence

An example CVT (right) produced using Lloyd iteration, beginning 
from random points in the domain. From Du et al.1
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Density function: the key to refinement
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By defining an appropriate density function, therefore, we can 
distribute cells essentially however we choose!

For a density function ρ(x) > 0, it is conjectured (Ju et al.4) that, 
as the number of Voronoi cells increases, the diameters, h, of 
Voronoi cells are related by

where d’ is 2.
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A few notes on density functions
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Functions with continuous first derivatives 
seem to work well; most of our atmosphere 
meshes use a density function based on 
Ringler et al.5 :

Here, xc is the center of the refinement region, β 
is the half-width of the high-resolution region, α 
is the width of the “transition zone”, and γ is the 
minimum density. xc and x are constrained to 
lie on the surface of the sphere.

How small can our “transition” 
zone be if we want the average 
cell diameter to vary by at most a 
factor of r (with r > 1) from any cell 
to its neigbors? At least
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How many generating points are needed?
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Density function controls the relative resolution in mesh, while the 
total number of generating points set the absolute mesh resolutions
• We use a simple Monte-Carlo method to estimate the required number of 
generating points

dsmin = min. desired grid     
distance in the mesh

Ns = number of samples
As = 4πR2 / Ns

for 1 to Ns
p = random point on sphere
r = density(p)
ds = dsmin / r0.25

nCells = nCells + As / 
hexagon_area(ds)

end for

Resulting mean cell diameters from a 30-6 km mesh with 
the number of generating points estimated using the 

Monte-Carlo method
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A first attempt at mesh generation
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The obvious approach suggests simply defining density function, 
generating the required number of generating points randomly, and 
iterating to convergence

The animation at left 
covers only the first 
4000 iterations at a 
variable framerate
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Problems with the obvious approach
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With uniformly-distributed random initial generating points, there is 
apparently quite a lot of time spent in allowing points to migrate 
around the sphere
•This suggests we try to get cells into nearly their final position as “cheaply” as 
possible

Rather than choosing uniformly-distributed points, one might 
instead choose points based on the density function
•As a second attempt, draw initial points from a probability density function 
defined as ρ(x)0.5
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A second attempt...

11

Choosing initial generating points according to the PDF given by 
ρ(x)0.5 does significantly reduce the generating point movement 
overall 

The animation at left 
covers iterations 1-
624 and 8000-10000 
at a variable 
framerate
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Incremental grid generation
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The preceding approaches may be fine for coarse meshes, but 
convergence can still take quite some time for high-resolution meshes. 

Todd Ringler (LANL) has suggested an approach that leads to meshes in 
significantly less time, and is what we now employ almost exclusively:

1. Begin with a random set X0 = {xi}, with |X0| = O(100), of initial 
generating points suitable for a mesh that is 2n times coarser 
in resolution than the target mesh

2. For k = 0 ... n
1. Perform Lloyd iterations on Xk to convergence to 

produce a mesh Mk
2. If k < n, let Xk+1 be the set of points resulting from the 

bisection of Mk
3. The mesh Mn is the a CVT with the desired resolution
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Incremental mesh generation
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Experience indicates that the incremental approach to grid 
generation does lead to a higher-quality mesh in significantly less 
wall-clock time
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Simple parallel implementation
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The incremental generation approach appears to be robust enough, 
but generating a mesh is still very slow
• Can take several months on a single multi-core desktop for high-resolution 
meshes

• Lloyd iteration has two main computational phases, one of which is 
embarrassingly parallel

while (not converged)

let {xi} = {xi’}

compute Voronoi regions, {Vi}, of {xi}

compute mass centers, {xi’}, of {Vi}

end

Currently computed in serial 
in the code we use for 
MPAS-Atmosphere meshes

Trivially parallelized, since 
computation of mass center 
for a Voronoi region is 
independent of other 
regions
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Simple parallel implementation
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Unless we’re parallelizing a part of the Lloyd iteration that takes 

considerable time, we’ll not gain very much

•How much time is spent in the two main phases of our implementation of Lloyd’s 

method?

Number of 
generating 

points

Centroid
computation 

(seconds)

Voronoi
tessellation 
(seconds)

Ratio of centroid
time to Voronoi

time

100 0.02688 0.000138 194.8

1000 0.24740 0.001441 171.7

10000 2.462 0.01958 125.7

101378 25.37 0.1478 171.7

405506 101.9 0.8024 127.0

1622018 406.9 3.753 108.4

6488066 1629 23.86 68.29

“Toy” meshes with 
random initial 
generating points

Refinement 
stages from a 15-
3 km mesh
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Simple parallel implementation
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With the addition of a single OpenMP parallel loop, we’re able to gain a 
very significant improvement in performance

From Amdahl’s Law, we achieve an overall speedup of 11.3 on a 2x6-core 
Xeon desktop! 

Using SMT reduces 
runtime by a further 
15% compared with 12 
OpenMP threads

Numbers above bars 
indicate percent of 
theoretical speedup

97%

94%
91%

89%
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Distributed-memory parallel algorithm
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Parallelization of centroid computation with OpenMP is nearly trivial, but 
limits scaling to the number of cores in a shared-memory node
•Even with 24 threads on the desktop in my office, generating a 15-3 km mesh 
with ~6.5 M cells still took months!

Jacobsen et al.6 describe a more scalable approach with both phases of 
Lloyd’s method parallelized with MPI
•Parallelize Voronoi tessellation using stereographic projections 
•This approach seems better for larger meshes in particular
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Quasi-uniform meshes
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In contrast to variable-resolution meshes, quasi-uniform meshes are 
comparatively simple!
• Grid distance in original icosahedron = 7530 km (for earth radius 6371 km)

• Divide triangles by any integral factor, and let vertices of triangles be generating 
points after projection to the sphere

Bisecting an icosahedral mesh and projecting vertices 
to the sphere. Lipscomb and Ringler (2005)

For quasi-uniform MPAS meshes, we may 
divide by any positive integer factor.
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Summary and future work
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Grid generation at present is a slow process that often requires 
human judgment in, e.g., knowing when a stage of mesh generation 
is converged “enough”, working around stable but undesirable mesh 
features, etc.
•Before this is supportable to community, we need to make mesh generation 
more user-friendly

• Integrated grid metrics are needed to tell us:
• When to stop iterating
• Whether we can expect good numerical properties from resulting 
mesh

•Improvements to performance are still needed
• Can techniques like over-relaxation be applied to improve convergence 
rate?
• Implement code optimizations, exploit GPUs for embarrassingly parallel 
work, etc. to improve iteration rate
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