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1. Introduction to MPAS meshes

•  What are centroidal Voronoi Tessellations, 

and how do we represent them in MPAS?


2. Considerations for handling 
unstructured meshes

•  In an unstructured mesh, how do we define 

the “positive” flow direction?


3. Mesh partitioning

•  How are meshes divided among 

processors?


4. Mesh generation

•  How do we achieve variable-resolution in an 

MPAS mesh?
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Voronoi = each grid volume (cell) Vi is 
uniquely associated with a generating point 
xi such that all points within Vi are closer to 
xi than to any other xj


•  Lines joining generating points of 
adjacent cells are 


1.  bisected by the shared cell face; and


2.  intersect the shared cell face at a right 
angle. 




Centroidal = the generating point for each 

Voronoi cell is also the mass centroid of 
that cell (w.r.t. some density function) 


 
 



A defining feature of MPAS models is their use of centroidal Voronoi 
tessellations (CVTs) with a C-grid staggering


–  When constrained to lie on the surface of a sphere, we often call them spherical 
centroidal Voronoi tessellations (SCVTs)
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• Given a set of generating points, the 
primal mesh (finite volume mesh) in 
MPAS is defined by the Voronoi 
tessellation induced by this set

• The centroidal aspect of CVTs is used to 

produce meshes with smoothly-varying 
resolution


Observe that we have a fully 
unstructured horizontal mesh, not 
just a deformation of the icosahedral 
mesh! Cells may have 5, 6, 7, or 
more sides.
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MPAS-Atmosphere supports meshes in two geometries:


In the Cartesian plane: all distances and 
areas are computed in Euclidean 
geometry.
 
 
 



On the surface of the sphere: all distances 
and areas are computed in spherical 
geometry.
 
 
 



In the plane, only doubly periodic 
boundaries are currently supported.
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MPAS infrastructure recognizes fields 
defined at three locations: 


•  Cells (blue circles) - the generating points 
of the Voronoi mesh


•  Edges (green squares) - the points where 
the dual mesh edges intersect the primal 
mesh edges


•  Vertices (cyan triangles) - the corners of 
primal mesh cells


In MPAS-A, these locations are used to implement a C-staggered grid based on 
the Voronoi tessellation: prognosed normal velocities are located at edges, and 
other prognosed quantities are nominally located at cells.
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Global Cartesian coordinates are 
computed for each element

•  For planar meshes, coordinates lie in 

the plane z=0 

•  For spherical meshes, coordinates lie 

on the surface of the sphere


For cells: xCell, yCell, zCell



Latitudes and longitudes are computed 
from Cartesian coordinates as described 
earlier 

•  positive x-axis through 0° longitude

•  positive y-axis through 90° longitude

•  positive z-asix through 90° latitude


Above: Cartesian coordiantes for cell locations near 

(52.9°N lat, 20.8°E lon) in a variable-resolution spherical 
mesh with radius 6371229 m.
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Global Cartesian coordinates are 
computed for each element

•  For planar meshes, coordinates lie in 

the plane z=0 

•  For spherical meshes, coordinates lie 

on the surface of the sphere


For cells: xEdge, yEdge, zEdge



Latitudes and longitudes are computed 
from Cartesian coordinates as described 
earlier 

•  positive x-axis through 0° longitude

•  positive y-axis through 90° longitude

•  positive z-asix through 90° latitude


Above: Cartesian coordiantes for cell locations near 

(52.9°N lat, 20.8°E lon) in a variable-resolution spherical 
mesh with radius 6371229 m.
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Global Cartesian coordinates are 
computed for each element

•  For planar meshes, coordinates lie in 

the plane z=0 

•  For spherical meshes, coordinates lie 

on the surface of the sphere


For cells: xVertex, yVertex, zVertex



Latitudes and longitudes are computed 
from Cartesian coordinates as described 
earlier 

•  positive x-axis through 0° longitude

•  positive y-axis through 90° longitude

•  positive z-asix through 90° latitude


Above: Cartesian coordiantes for cell locations near 

(52.9°N lat, 20.8°E lon) in a variable-resolution spherical 
mesh with radius 6371229 m.
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kiteAreasOnVertex(3,nVertices) – area of 
intersection between dual- and primal-mesh cells


dcEdge(nEdges) – distances between cell centers

dvEdge(nEdges) – length of each edge


areaCell(nCells) – area of each cell
 areaTriangle(nVertices) – area of each dual-grid cell
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Given cell, edge, and vertex locations, we can compute some useful 
fields:




NCAR-­‐NCAS	
  MPAS	
  Tutorial,	
  19	
  September	
  2015,	
  Chester,	
  UK	
   12	
  

Meshes are explicitly described in MPAS by a set of connectivity arrays:


• nEdgesOnCell(nCells) – the number of neighbors for each cell


• cellsOnCell(maxEdges, nCells) – the indices of neighboring cells for each cell


• edgesOnCell(maxEdges, nCells) – the indices of bounding edges for each cell


•  verticesOnCell(maxEdges, nCells) – the indices of corner vertices for each cell


• edgesOnVertex(3,nVertices) – the indices of edges incident with each vertex


•  verticesOnEdge(2,nEdges) – the indices of endpoint vertices for each edge


• cellsOnVertex(3,nVertices) – the indices of cells meeting at each vertex


• cellsOnEdge(2,nEdges) – the indices of cells split by each edge


nEdgesOnCell(7)=6! cellsOnCell(1,7)=8!
cellsOnCell(2,7)=11!
cellsOnCell(3,7)=10!
cellsOnCell(4,7)=6!
cellsOnCell(5,7)=3!
cellsOnCell(6,7)=4!

At model start-up, all cell, edge, and vertex indices are 
re-numbered to a contiguous range.
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unstructured meshes

•  In an unstructured mesh, how do we define 

the “positive” flow direction?


3. Mesh partitioning
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processors?


4. Mesh generation
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In a rectangular C-grid, which directions represent positive U and positive V?


HORIZONTAL WIND VECTORS


On a rectangular grid, one might say that 
positive U flows from left to right, and positive 
V flows from bottom to top when looking down 
on the xy-plane.


On a CVT mesh, one could introduce a similar 
definition, but we have only U, not V, so such a 
definition becomes more complicated...
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•  Positive u (normal) velocity is always defined as 
flow from cellsOnEdge(1,iEdge) to 
cellsOnEdge(2,iEdge) for an edge iEdge


•  Positive v (tangential) velocity is always defined 
as flow from verticesOnEdge(1,iEdge) to 
verticesOnEdge(2,iEdge) for an edge iEdge


•  The cross product of the positive u and v 
vectors always points upward (out of the plane)


HORIZONTAL WIND VECTORS (2)
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Without grid cells arranged in rows and columns, we need some simple 
rules to unambiguously define the positive directions for velocities
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angleEdge(nEdges) – angle of edge w.r.t. true north


Earth-relative horizontal winds, uzonal and 
umeridional, can be calculated using u and v:











where α is angleEdge.


HORIZONTAL WIND VECTORS (3)
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The absolute geographic orientation of each edge is specified with the 
field angleEdge, which gives the angle between local north and the 
positive tangential direction for an edge
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PARALLEL DECOMPOSITION


Graph partitioning


The dual mesh of a Voronoi tessellation is a 
Delaunay triangulation – essentially the 
connectivity graph of the cells




Parallel decomposition of an MPAS mesh then 
becomes a graph partitioning problem: equally 
distribute nodes among partitions (give each 
process equal work) while minimizing the edge 
cut (minimizing parallel communication)


We use the Metis package for parallel graph 
decomposition

•  Currently done as a pre-processing step, but could be 

done “on-line”

Metis also handles weighted graph partitioning

•  Given a priori estimates for the computational costs of 

each grid cell, we can better balance the load among 
processes 
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PARALLEL DECOMPOSITION (2)

Given an assignment of cells to a process, any number of 
layers of halo (ghost) cells may be added


Block of cells owned 
by a process


Block plus one layer 
of halo/ghost cells


Block plus two layers of 
halo/ghost cells


Cells are stored in a 1d 
array (2d with vertical 
dimension, etc.), with halo 
cells at the end of the array


With a complete list of cells 
stored in a block, adjacent 
edge and vertex locations can 
be found; we apply a simple 
rule to determine ownership of 
edges and vertices adjacent 
to real cells in different blocks
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PARALLEL DECOMPOSITION (3)


An edge E is an owned edge iff cellsOnEdge(1,E) is an owned cell


A vertex V is an owned vertex iff cellsOnVertex(1,V) is an owned cell


For n layers of ghost cells, we have n+1 
layers of ghost edges and ghost vertices.


20	
  



NCAR-­‐NCAS	
  MPAS	
  Tutorial,	
  19	
  September	
  2015,	
  Chester,	
  UK	
  

MISCELLANEOUS NOTES ON GRID INDEXING
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•  Vertical dimension inner-most (fastest varying in Fortran)

–  E.g., theta(nVertLevels,nCells) 

•  We do not perform any sort of local cell re-ordering, e.g., in an attempt to 
improve cache reuse


Cells	
  of	
  a	
  10242	
  mesh	
  colored	
  according	
  to	
  their	
  
global	
  index	
  

Cells	
  of	
  a	
  10242	
  mesh	
  decomposed	
  across	
  4	
  MPI	
  tasks	
  
and	
  colored	
  according	
  to	
  their	
  re-­‐ordered	
  local	
  index	
  

•  Indices exist that allow a solver to process just the “owned”, any individual 
halo layers, or all cells/edges/vertices

–  Allows us to reduce redundant computation as much as possible

–  Provides fine granularity for trading computation and communication
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From Lipscomb and Ringler (2005)


•  For quasi-uniform Voronoi tessellations, we can employ successive 
subdivision of the icosahedron

–  The vertices of these triangular meshes can be used as the generating points for 

a spherical Voronoi tessellation


–  To create a spherical centroidal Voronoi tessellation, some iteration is required
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HOW DO WE CREATE MESHES FOR MPAS-ATMOSPHERE?
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Given an initial set of generating points, Lloyd’s method may be used 
to arrive at a CVT:


1.  Begin with any set of initial 
points (“generating points”)


2.  Construct a Voronoi 
diagram for the point set


3.  Locate the mass centroid 
of each Voronoi cell


4.  Move each generating 
point to the mass centroid 
of its Voronoi cell


5.  Repeat 2-4 to convergence


From Du et al. (1999)


MacQueen’s method, an randomized alternative to Lloyd’s method may also 
be used; no Voronoi diagrams need to be constructed, but convergence is 
generally much slower
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Lloyd’s method can be viewed as the minimization of an energy 
functional; in the plane, it can be shown that hexagonal Voronoi cells 
provide the minimum energy configuration for constant density


From Du et al. (1999)


To create regions of grid refinement, 
we simply define a non-uniform 
density function over the domain, 
and use this when computing the 
mass centroids of Voronoi cells in 
Lloyd’s method


For a density function ρ(x) > 0, it is conjectured (Ju et al. (2010)) that, 
as the number of Voronoi cells increases, the diameters, h, of 
Voronoi cells are related by






where d’ is 2.


25	
  



NCAR-­‐NCAS	
  MPAS	
  Tutorial,	
  19	
  September	
  2015,	
  Chester,	
  UK	
  

Fourth root of density function
 Resulting SCVT
 Normalized inverse mean 
distance of cell centroid from 

each of its neighboring centroids


Define ρ(x) as a function of the magnitude of the topography gradient, 
for example: 


Evidence from initial testing of the MPAS non-hydrostatic atmosphere code on 
multi-resolution meshes on the Cartesian plane suggests that smoother 
refinement (i.e., less abrupt transitions) produces better results
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AN ABSURD EXAMPLE OF MESH REFINEMENT
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3x coarse resolution


coarse mesh
 transition


Typical procedure:


1.  Decide on size/shape of 
refinement region, mesh 
resolution


2.  Estimate the total number of cells 
needed in the mesh


3.  Work backwards from final 
number of cells to O(100) cells

•  Coarsening a mesh by a factor of two 

gives (n+6)/4 cells


4.  Iterate to convergence, bisect the 
mesh, repeat





Meshes with more than O(105) cells take quite 
a while to generate!
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Simple Monte-Carlo method to 
estimate how many points (nCells) 
are needed to achieve a specified 
absolute resolution, given a density 
function:







An alternative approach is to add refinement cells in the refinement region, 
and hold the rest of the mesh fixed


dsmin = min. desired grid     

               distance in the mesh

Ns = desired # samples

As = 4πR2 / Ns


for 1 to Ns

p = random point on sphere

r = density(p)

ds = dsmin / r0.25


nCells = nCells + As / 

               hexagon_area(ds)


end for
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