Better Practices and Hints
WRF Source and Infrastructure

Dave Gill

Better Practices and Hints for WRF

With dozens of contributors, the presumed Better
Practices and Hints have evolved to what we currently
prefer ...

Focus for this talk:

Adding or modifying compilable WRF source code
Adding to or modifying the WRF Registry
Debugging

Adding or modifying compilable WRF source code

Adding or modifying compilable WRF source code

Does WRF care about free vs fixed form?

The WRF source code is mostly a free-formatted
Fortran code base.

The configure.wrf file has exlicit rules for the free and
fixed codes.

The WRF build system assumes that all of user
contributed code will compile as free-formatted.

Adding or modifying compilable WRF source code

Is there a Fortran standard to which the user should
adhere?

There are a few Fortran 2003 capabilities included, and
most recent compilers support these.

Do not attempt to utilize coarrays or other more exotic
additions to the Fortran standard.

Compilers vary in there support for newer capabilities,
both being able to compile them, and to use them
efficiently.

Adding or modifying compilable WRF source code

How should the call to my new physics package be
done?

Look in the specific driver for examples of existing calls.
For example phys/module_radiation_driver.F

Adding or modifying compilable WRF source code

How should the call to my new physics package be
done?

All top level physics routines are called with a 3d block
of data.

18 dimensions are always passed:
|, J, K dimensions
domain, memory, and computational sizes

starting and ending

Adding or modifying compilable WRF source code

How should the call to my new physics package be
done?

CALL cal cldfral (CLDFRA,qv,qc,di,gs,
F QV,F QC,F QI,F QS,t,p,
F ICE PHY,F RAIN PHY,
ids,ide, jds,jde, kds, kde,
ims,ime, jms,Jjme, kms, kme,
its,ite, jts,]jte, kts,kte

~ R R

Adding or modifying compilable WRF source code

Where does WRF assume that the values inside of the
physics schemes are located?

The physics schemes are column oriented, no
communications are required top to bottom.

The values are located at mass points.

Some variables are located on full eta level (usually
denoted with the cryptic convention “8w”), but most
3d variables are located on the computational half
layer locations.

Adding or modifying compilable WRF source code

If a new variable was added in the Registry, at what
point does this get manually introduced in the

subroutine calling tree?

All variables in the Registry (state + namelist options)
are in the derived data structure “grid”.

When “grid” is available, the new variable does not
need to be dereferenced from the structure.

The calls to the drivers in module_first_rk_step partl.F
exhibit the required dereferencing.

Adding or modifying compilable WRF source code

If a new variable was added in the Registry, at what
point does this get manually introduced in the
subroutine calling tree?

CALL radiation driver (
ACFRCV=grid%acfrcv ,
ACFRST=grid%acfrst ,
ALBEDO=grid%albedo ,

R & & @

Adding or modifying compilable WRF source code

If a new variable was added in the Registry, at what
point does this get manually introduced in the

subroutine calling tree?

The call to the specific driver needs to have the new
variable explicitly passed in from

module_first rk_step_ partl.F (or from the solver for
the microphysics routines).

User modifications are then required in all deeper
routines.

Adding or modifying compilable WRF source code

If there is a new variable that needs to be
communicated, how is that set up in WRF?

All communications in WRF are a combination of two
items: manual inclusion of compilable source code, and
manual inclusion of communications information in the
Registry.

The source modifications “cpp include” a file into the
source prior to compilation.

Adding or modifying compilable WRF source code

If there is a new variable that needs to be
communicated, how is that set up in WRF?

The developer may choose to communicate the
variables immediately after the computation is
performed to manufacture the new variable, or wait
until the new variable’s halo is needed.

Adding or modifying compilable WRF source code

If there is a new variable that needs to be
communicated, how is that set up in WRF?

#ifdef DM PARALLEL
include "PERIOD BDY EM A.inc"

#endif

Adding or modifying compilable WRF source code

How do you access a particular hydrometeor from the
4d array moist?

The name associated with the variable defined in the
Registry is used to construct a Fortran PARAMETER

value.

This integer index should always be used to refer to the
particular 3d array.

Adding or modifying compilable WRF source code

How do you access a particular hydrometeor from the
4d array moist?

Registry, first few parts of the QVAPOR line:
state real qv ikjftb moist

Source code:

qvf = 1. + rvovrd*moist(i,k,j,P QV)

Adding or modifying compilable WRF source code

How do you access a particular hydrometeor from the
4d array moist?

Loops over the 4d arrays should always begin and end
with the WRF specific starting values:

DO im = PARAM FIRST SCALAR, num 3d m
qtot = gqtot + moist(i,k,j,im)
ENDDO

Adding or modifying compilable WRF source code

How do you access a particular hydrometeor from the
4d array moist?

These automatically generated values are inside
module state description.

When these generated indexes are required for new
code, USE module_state_description.

Adding or modifying compilable WRF source code

With modern Fortran, how do | get information from
the module?

A “use association” is employed in WRF.

To restrict the number of symbol names that are

shared, the WRF code tends to restrict the variables
requested with the ONLY clause.

Mostly this “ONLY clause” is added to keep compilers
from complaining about source code being “too
complex” when the used module is large.

Adding or modifying compilable WRF source code

With modern Fortran, how do | get information from
the module?

USE module configure, ONLY : grid config rec type

USE module_drive:_constants

USE module machine
USE module tiles, ONLY : set tiles

Adding or modifying compilable WRF source code

With modern Fortran, how do | get information from
the module?

Typically when adding in communications or new
physics packages, the USE statements need to be
amended to include the new Registry information.

Adding or modifying compilable WRF source code

If there are known restrictions for packages, how can
that information be used at model initialization?

There are two mechanisms in WRF for handling error
checking for the physics schemes:

phys/module physics init.F
share/module_check a mundo.F

Adding or modifying compilable WRF source code

If there are known restrictions for packages, how can
that information be used at model initialization?

The tests in physics_init are more aligned with
modifying 2d and 3d arrays depending on the values of
namelist settings or other 2d and 3d arrays.
Initializations for each domain take place.

To avoid OpenMP race conditions, this is a much better
way to fix zeroed-out variables.

Adding or modifying compilable WRF source code

If there are known restrictions for packages, how can
that information be used at model initialization?

The purpose for check _a_mundo is to stop
imcompatible namelist options. If a user knows that a
certain scheme is only set up to work with one type of
PBL, then that needs to be included.

Adding or modifying compilable WRF source code

What does the WRF model mean by “restart”, and how
does it impact a developer?

A restart in WRF allows a model simulation to continue
from an interrupted state, AND to produce bit-wise
identical results to those generated from a non-
interrupted simulation.

Developers need to provide information as to which
variables need to be saved for a restart run.

Adding or modifying compilable WRF source code

What does the WRF model mean by “restart”, and how
does it impact a developer?

The restart variables are explicitly listed in the Registry.

state real rimi ikj misc \
1 - irh \
"RIMI" "riming intensity" \

"fraction"

Adding or modifying compilable WRF source code

What does the WRF model mean by “restart”, and how
does it impact a developer?

The physics_init routine needs to avoid resetting restarted
variables, which requires user modification.

IF(.not.restart) THEN
l-- initialize common wvariables
IF (PRESENT (rliq)) THEN
rlig(:,:) = 0.0
ENDIF
ENDIF

Adding or modifying compilable WRF source code

Will the WRF community sing my praises if I, as a
developer, include lots of inline documentation?

YES!

Adding or modifying compilable WRF source code

Is there a mechanism to output the namelist options
that are being developed?

The file share/output_wrf.F handles the metadata
output:

ibuf (1) = config flags%e we - config flags%s we + 1
CALL wrf put dom ti integer (fid , &
'WEST-EAST GRID DIMENSION' , ibuf , 1 , ierr)

Adding or modifying compilable WRF source code

Is there a mechanism to output the namelist options
that are being developed?

Routines exist to output integer, real, logical, and
character strings.

Adding or modifying compilable WRF source code

What WREF infrastructure exists to make coding easier
for such processing as global sums, global extrema and
locations of extrema?

There are a few routines in WRF that handle these
types of capabilities for most traditional data types
(real, double, integer).

Adding or modifying compilable WRF source code

What WREF infrastructure exists to make coding easier
for such processing as global sums, global extrema and
locations of extrema?

There are a few routines in WRF that handle these
types of capabilities for most traditional data types
(real, double, integer).

Adding or modifying compilable WRF source code

What WREF infrastructure exists to make coding easier
for such processing as global sums, global extrema and
locations of extrema?

latl = wrf dm min real (latl)

Please see example #3 for a more complete list and

examples of usage:
http://www2.mmm.ucar.edu/wrf/users/tutorial/201401/WRF_Registry_2.pdf

Adding or modifying compilable WRF source code

How about initializations that can only be handled on
the master node?

Even for serially-built code, the following is defined:

IF (wrf dm on monitor()) THEN

Adding or modifying compilable WRF source code

How does info get from the master node to the other
processors?

Again for native data types, a variable (and the number
of words) can be broadcast to all of the processors

from the master.

CALL wrf dm bcast integer(nt,1l)

Adding or modifying compilable WRF source code

If information is in the namelist, how is it accessed
inside the code?

There are three methods to get namelist information:
grid
config_flags

subroutines

Adding or modifying compilable WRF source code

If information is in the namelist, how is it accessed
inside the code?

Any time the “grid” structure is present, the namelist
option may be dereferenced as an existing field in the

derived structure:

p top requested = grid%p top requested

Adding or modifying compilable WRF source code

If information is in the namelist, how is it accessed
inside the code?

Similarly, the derived structure config_flags holds the
namelist information for the current grid being
processed:

IF (config flags$spec bdy width .GT. &
flag excluded middle) THEN

Adding or modifying compilable WRF source code

If information is in the namelist, how is it accessed
inside the code?

The WRF code automatically builds two subroutines for
each namelist variable, a “get” and a “set” subroutine.
Mostly, developers are interested in the “get” option.

Argument #1 is which domain, and argument #2 is the
local returned value.

CALL nl get base pres (1 , p00)

Adding or modifying compilable WRF source code

What are the available options for outputting debug
print information?

Because not all print buffers are guaranteed to be
flushed on an error exit, it is better to use WRF
supplied print-out functions.

Also, use the WRF provided fatal error function instead
of a Fortran STOP statement.

Adding or modifying compilable WRF source code

What are the available options for outputting debug
print information?

CALL wrf debug (200 , ' call end of solve em')
CALL wrf message('ndown: using namelist constants')
CALL wrf error fatal('Use km opt=2 with sfs opt=2’)

Adding or modifying compilable WRF source code

If a developer wants an event to occur every so often,
how is that accomplished?

Be wary of a simple
MOD (current_time , some_interval) ==

set up. For large values of current time, the statement
may eventually never be true again. For a fixed time
step, the integer number of time steps might be
preferable:

IF (mod(itimestep,STEPFG) .eq. 0) THEN

Adding or modifying compilable WRF source code

What is supposed to happen with OPTIONAL variables
and the CPP ifdef’ing?

First, this is required due to the two different
dynamical cores inside of WRF, and even for ARW the
DA and Chem codes do not need all variables. To allow
the physics schemes to work with both cores (and the
Chem and DA options), some variables are considered
optional because they are not present at all times.

Adding or modifying compilable WRF source code

What is supposed to happen with OPTIONAL variables
and the CPP ifdef’ing?

For a new scheme, if only a “few” variables are to
added to both cores, it is reasonable to add the
variables to both the ARW and NMM Registry files

(similarly, the DA and Chem Registry files).

If LOTS of variables are to be added, it is better to go
the OPTIONAL variable route.

Adding or modifying compilable WRF source code

What is supposed to happen with OPTIONAL variables
and the CPP ifdef’ing?

The variables that are only required for one of the build
options are ifdef’ed out in the calling routine (for

example the first_rk_step partl file
#ifdef WRF CHEM
& ,CHEM=chem,chem opt=config flags%chem opt

&
#endif

Adding or modifying compilable WRF source code

What is supposed to happen with OPTIONAL variables
and the CPP ifdef’ing?

Always add new variables to a Registry package to
minimize the model’s memory footprint. The variables
are allocated, but only with a (1,1,1) size.

When using OPTIONAL arguments, always test if the
variable is PRESENT before using.

Adding or modifying compilable WRF source code

What is supposed to happen with OPTIONAL variables
and the CPP ifdef’ing?

DO j=j_start(ij),j_end(ij)

DO i=i start(ij),i_end(1i])
IF (PRESENT(rainshv)) THEN
RAINBL(1,j) = RAINBL(i,j) + RAINSHV (i, j)
END IF
ENDDO
ENDDO

Adding or modifying compilable WRF source code

What are the usual ifdef syntaxes that are to be used?

To avoid the situation where a compile-time option is

set to zero (where the intent was to turn the option
OFF), the WRF ifdef’s test on the number “1”.

Adding or modifying compilable WRF source code

What are the usual ifdef syntaxes that are to be used?

#if (DA CORE == 1)
#if (WRF_CHEM == 1)
#if (NMM CORE == 1)

#if (EM CORE == 1)

Adding or modifying compilable WRF source code

What type of communications are allowed between
columns in the physics schemes?

By default, the physics schemes are column oriented,
with no impact permitted from neighbors.

This means NO horizontal differences or horizontal
averaging inside the physics schemes.

Adding to or modifying the WRF Registry

Adding to or modifying the WRF Registry

What is the WRF Registry?

The WRF Registry is an active data dictionary.
It is a text-based file that is user-modifiable.

Every variable used with I/O, communications, namelist
option is in the Registry.

All associations of variables with physics schemes is
handled by the Registry.

Adding to or modifying the WRF Registry
What is the WRF Registry?

The text-based file is read by a program.

This registry program manufactures include files that
are CPP #include’d during the WRF build process.

More than 300 thousand lines of automatically
generated code are included in the WRF source code
via the registry program.

Adding to or modifying the WRF Registry

What are the different types of model variables in the
Registry?

Most users are concerned with the gridded data or
with the namelist variables. The Registry handles both
of these.

The gridded data is either “state” (available throughout
the duration of the simulation) or the data is

“i1” (tendency variables that pop off the stack at the
conclusion of each time step).

Adding to or modifying the WRF Registry

What are the different types of model variables in the
Registry?

Please see for more information on the Registry:

http://www2.mmm.ucar.edu/wrf/users/tutorial/201401/WRF_Registry 1l.pdf

Adding to or modifying the WRF Registry

How is |/O handled in the Registry?

There are multiple streams (think of these as separate
unit numbers) for input and output.

Each variable may be in zero or more streams.
The WRF naming convention for the streams:
| => input
h => history

r => restart

Adding to or modifying the WRF Registry

How is |/O handled in the Registry?

For input and history, the default stream is “0”.

A stream specification of “ih” assumes the field is in the
input stream and will be output to the WREF history file.

Numerals are added after the characters “i” or “h” to
indicate additional (nonstandard) streams for the

fields.

Adding to or modifying the WRF Registry

How is |/O handled in the Registry?

Once explicit stream numbers are specified, the “zero”
stream must also be specifically requested.

Streams with more than one digit, for example stream
#14, would be surrounded by “{}"

Adding to or modifying the WRF Registry
How is |/O handled in the Registry?
First few entries for the eta levels:

state real znu k dyn em 1 - irh
state real znw k dyn em 1 Z iOrh

Note that irh and iOrh are identical specifications.

Adding to or modifying the WRF Registry
How is |/O handled in the Registry?

First few entries for the eta levels:

state real znu k dyn em 1 - irh
state real znw k dyn em 1 Z iOrh

Note that irh and iOrh are identical specifications.

Adding to or modifying the WRF Registry

How is |/O handled in the Registry?

The 2-m temperature has input from real (i0), input

from metgrid (i1), output to the default history file
(h0), and output to an auxiliary stream (h{23}):

state real T2 ij misc 1 - 101rh0{23}

H

A
T

Adding to or modifying the WRF Registry
ow is I/O handled in the Registry?

| variables involved with 1/O are required to be state.
ne state variables may be real, double, integer,

V

character, or logical.

ariables for I/0 must be 0d, 1d, 2d, 3d, or part of a

known 4d amalgamation.

Only one time slice of two-time-level fields is output.

Adding to or modifying the WRF Registry

How is |/O handled in the Registry?

The Registry is not involved in the actual format of the
input or output data.
The format, frequency, name of the file, etc are all run-

time options (though the namelist options controlling
those capabilities are defined in the Registry).

Adding to or modifying the WRF Registry

How is |/O handled in the Registry?

Only use an “i” for variables that are input. For
example, convective precipitation is not input from the

{ow:n

real program, and should not have an “i”.

Similarly, developers tend to think every variable that
was used is vital. Judiciously select those that will be

given an “h” designation.

Adding to or modifying the WRF Registry

How is |/O handled in the Registry?

The “r” designator is mandatory for fields that are
required to manufacture an identical simulation, when
comparing a restart run to a non-restart run.

Including an “r” for non-mandatory fields makes the
restart file large and the associated I/0 slow, but
otherwise has no forecast impact.

Adding to or modifying the WRF Registry
How is nesting handled in the Registry?

The same block of information controlling the 1/0 has a
few keywords that control the nesting.

u => feedback up to parent mesh
d => horizontally interpolate down to child domain
f => lateral boundary forcing

s => smoothing on CG in area of FG

Adding to or modifying the WRF Registry
How is nesting handled in the Registry?

The “u”, “d”, and “f” options are able to use a default
for most continuous variables (though the horizontal
staggering is important).

Developers may associate a new subroutine with a new
physics variable, though this is not too common.

Almost all of the lateral boundary forcing is the
dynamics variables, with no usage for the physics
variables.

Adding to or modifying the WRF Registry

How is nesting handled in the Registry?

As with most Registry items, it is usually safest for a

developer to copy a similar (and existing) Registry line
for the initial idea for a new variable.

Adding to or modifying the WRF Registry

How is nesting handled in the Registry?

Developers handling land surface fields must be
concerned with masking.
An average across the spatial extent of a parent cell

might include both water and land points from the
child, which would feedback garbage to the parent.

Adding to or modifying the WRF Registry

How is nesting handled in the Registry?

While the mnemonics of “u” and “d” refer to “up” and
“down”, respectively, the WRF nesting code is general.

d => once only, at the start of the model simulation

u => child to parent, at the end of each child set of
time steps

f => parent to child, at the start of each set of child
time steps

Adding to or modifying the WRF Registry
How is nesting handled in the Registry?

For example, CG SST is handed to the FG at each parent
time step via an “f” option (subroutine: c2f interp):
state real OM TMP \

i{nocnl}j misc 1 Z \
i01l2rhdu=(copy fcnm) \

f=(c2f interp:grid id) \
"OM TMP" "temperature" "k"

Adding to or modifying the WRF Registry
How is communication handled in the Registry?

There are three kinds of communications possible with
WRF:

halo => next door neighbor

period => west-east or south-north exchange

transpose => largely for FFTs

Most developers are only concerned with halo
communications.

Adding to or modifying the WRF Registry
How is communication handled in the Registry?

The halo comms are specified for a list variables, and
the size of the stencil for each those variables.

Please see for more information on WRF stencils:

http://www2.mmm.ucar.edu/wrf/users/tutorial/201401/WRF_Software.pdf

Adding to or modifying the WRF Registry

How is communication handled in the Registry?

Overspecifying the size of the stencil has no ill effects
on results, it is just a performance sink.

The same communication pattern may “used” inside of
WRF multiple times.

Adding to or modifying the WRF Registry

How does the Registry help with memory
management?

The Registry offers a “package” option which associates
state variables with particular namelist options.

Developers should include this for their schemes.

Variables are allocated only with 1 word of space (for
example: (1,1,1) for a 3d array, and (1,1) for a 2d
array).

Adding to or modifying the WRF Registry

How does the Registry help with memory
management?

The package option is able to handle conditional
namelist settings through the use of derived namelist

settings.

The data used from metgrid by the real program is not
required by the WRF model, so it is in a package
controlled by a derived namelist variable.

Adding to or modifying the WRF Registry

How does the Registry help with memory
management?

rconfig integer use wps input \
derived 1 0

package realonly use wps input==1 - \
state:u_gc,v_gc,...

Debugging

Debugging

What are simple recommendations for trying to debug
a problem in WRF?

The WRF build system allows the user to configure the
model to run with many compiler-supplied error
trapping systems activated.

./configure -D

This executable will run VERY slowly.

Debugging

What are simple recommendations for trying to debug
a problem in WRF?

Try to track down problems in big domains by
simplifying:

smaller domains
single processor

remove physics options sequentially

short forecasts through use of restart

Debugging
When does NCAR wants to be contacted?

When a standard model set up fails, we want to know.

“Standard” is a recent release running with reasonable
settings, and typical input data that we frequently run.

Debugging

When does NCAR NOT want to be contacted?

A deve
when t

A deve

oper wrote code, and now the WRF model fails
ne option is turned on.

oper wrote code, and now the WRF model fails

even when the option is turned off.

=> NCAR WRF user support cannot conduct research
for a developer.

Debugging
What are typical failure modes for WRF?

Bad initial conditions

The model simulation fails quickly (first few time
steps).

If the time step is OK, look for DRAMATICALLY bad
fields, such as from a flag value, not an actual physically
meaningful value.

Debugging
What are typical failure modes for WRF?

Bad initial conditions

Too many, too few vertical levels.

Poorly distributed vertical levels (let the real
program figure them out).

Debugging
What are typical failure modes for WRF?

Bad initial conditions

If any (i,j) info is provided by the WRF model, use a
visual tool (ncview) to look at that location for these
fields: MU, MUB, U, V, T, PH, PHB, QVAPOR, W.

For 3d arrays, look top to bottom.

The masked fields may be problematic at the initial
time: TSLB, SMOIS, SEAICE, SST.

Debugging
What are typical failure modes for WRF?

Model is unstable early on
The CFL violations are reported for values > 2.
Values that are larger will kill the WRF simulation.

Early CFL problems MIGHT be alleviated with a
shorter time step.

Modify solve_em.F to force the RK and the sound
loop to have only one iteration to localize the problem.

Debugging
What are typical failure modes for WRF?

Model is unstable early on

Again, early on, most troubles stem from the IC.

Regardless of the location of the failure message

(cumulus, radiation, land surface), review closely the IC
file.

The problem, for an early failure, is unlikely to be
due to a problem in the radiation scheme, for example.

Debugging
What are typical failure modes for WRF?

Model is unstable later in the simulation

Usually, shortening the time step is not that helpful.

Take care to notice if the reported CFL violations in
the rsl files are fatal, or just “business as usual” and the
model has recovered with vertical velocity damping.

Later-in-the-simulation failures are hard to solve.

Debugging

What are typical failure modes for WRF?

Model is unstable later in the simulation

Is the failure reproducible — on a re-run does the
WRF model fail exactly the same in exactly the same
place.

Reproducible failures allow a restart file to get a
short simulation to test.

If the restarted simulation also successfully fails,
then a recompiled code with error trapping activated
may help out.

Debugging

What are tools that NCAR WRF user support uses for
debugging the model when it fails?

With netcdf output, a number of simple visual tools are
available: ncview, ncl.

If the model shows significant sensitivity to physical
parameterization settings, ncdiff for a few variables
might be helpful.

Variables to particularly consider: MU, MUB, U, V, W, T,
PH, PHB, QVAPOR, TSLB, SMOIS

Debugging

What are tools that NCAR WRF user support uses for
debugging the model when it fails?

Running with different compilers (or even different
versions) is sometimes helpful.

When a failure occurs:
Does the model work with different ICs

Same IC source, different day

Different physics

Debugging

What are tools that NCAR WRF user support uses for
debugging the model when it fails?

Looking for when the code does not fail is helpful:
Domain size
Number of procs
Different compiler
Different case with same namelist

Same case with different namelist settings

