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What is data assimilation?

e Data assimilation (DA) is a statistical method

* In the atmospheric sciences, DA involves
combining a model and observations, along with
their respective errors, to produce an analysis
that can initialize a numerical weather
prediction model (i.e., WRF)
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A few data assimilation approaches

» Three-dimensional variational (3DVAR)

— Background error covariances (BECs) typically fixed/
time-invariant

— May yvield poor results when actual flow differs from
that encapsulated within the fixed “climatology”

— Supported in WRFDA

* Ensemble Kalman filter (EnKF)

— Time-evolving, “flow-dependent” BECs estimated
from a short-term ensemble forecast

— WRFDA supports an EnKF flavor called the ETKF
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o Ensemble BECs (i.e., spread)

*Average ensemble spread of wind speed over ~3 weeks at
oooo UTC
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vt A few data assimilation approaches

« “Hybrid” variational/ensemble

— Incorporates ensemble background errors within a
variational (e.g., 3DVAR) framework

— Combination of fixed and time-evolving background
errors

— Supported in
WRFDA

Baby-doll/
centipede
hybrid




Global data assimilation and WRF

* Global modeling systems employ “continuously
cycling” data assimilation




Global data assimilation and WRF
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== Global data assimilation and WRF

* When you initialize WRF from GFS, ECMWF,

NAM, or other analyses, you implicitly employ
data assimilation

» Can performing regional data assimilation with
WRF improve forecasts?




Typhoon application with regional DA

» Typhoon track errors averaged over 3 typhoons
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Rainfall application with regional DA

* Fractions skill scores for rainfall (higher is better)
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= But...

* Global analyses are improving and have
increasingly high resolution

* To obtain benefits from regional DA, you must
carefully consider your configurations and
employ some “best practices”
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Background source for regional analyses

* Continuous cycling

* Will teach much about WRF’s performance

but may yield poor results due to “build-
up’ of model bias

* Very important to choose less-biased physics if
attempting continuous cycling

* So, one of the “best practices” for WRFDA is
choosing a proper model configuration



bias during continuous cycling
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Background source for regional analyses

 “Partial cycling”

» Continuously cycle for a few cycles, but
occasionally “start over” with an external (i.e.,
GFS) analysis as the background

* Used by NAM and RAP
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Partial versus full cycling

* Typhoon application

500
. FNO
450 [ FWO
400 B PNO
~ C—PWO
£ 350 o : ,
iv outer loops improvement (FWO vs. FNO)
;’ 300 partial cycling improvement (PNO vs. FNO)
~ both improvement (PWO vs. FNO)
= 250
)
< 200
<
E 150
100
50
0

0 12 24 36 48 60 72

forecast hours (hr)

From Hsiao et al. (2012)

100
90
80
70
60
S0
40
30
20
10

(94,)93e3uddaad



—_————ut

NESL

Background source for regional analyses

* Use GFS/NAM/ECMWF/etc. analysis as the
background

* NCAR'’s Antarctic Mesoscale Prediction System
(AMPS) uses this approach

* Fither this approach or partial cycling will likely

yield best results but will not teach you as much
about WRF



Background error covariances

* Background error covariances are very
important for successful analyses

« WRFDA provides a “default” background error
covariance file

* Works with any domain
* Good for code testing
* May provide poor results for your region
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NS Background error covariances
 WRFDA “gen_be” tool allows creation of

background errors specifically for your domain

 Usually done by taking differences between
24- and 12-hr forecasts valid at common times

* Producing region-specific background error

covariances can greatly improve WRF analyses
and forecasts



Example

* Green: default background errors
* Red: region-specific background errors
» Antarctic application—24-hr forecasts
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» Application over the Middle East
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Multiple outer loops

* Running WRFDA with multiple outer loops can
improve forecasts
» Each outer loop, observations are rejected
based on their proximity to the model guess

» Therefore, an observation rejected in an early
outer loop may be assimilated in a later one

* Outer loops may have more of impact in 3DVAR
analyses (as compared to hybrid analyses)
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SO\ Multiple outer loops

* Typhoon application
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How to use multiple outer loops
« WRFDA namelist:

&wrfvar6o

max_ext its=3,
ntmax=100,100,100
/

 max_ext its is the number of outer loops

e ntmax Is the number of iterations per outer loop and can
differ for each outer loop



Background error tuning

NESL

* The background errors contain variances and
length-scales that can be tuned and varied each
outer loop

* Some studies have found that increasing the
error variances (and fitting the observations
closer) have improved forecasts (e.g., Zhang et
al. 2013)
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Example
* Typhoon application
* Try to ignore the black lines
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How to tune the static background errors

 WRFDA namelist:

&wrfvar7

cv_options=5, ....cv_options=5 means user-generated file specific for your region
VAR _SCALING1=1.50,1.00,0.50,

VAR SCALING2=1.50,1.00,0.50, Standard deviations: > 1 means to
VAR SCALING3=1 .50,1.00,0.50, make the background error standard
VAR:SCALING4=1 .00,1.00,0.50, deviation bigger (and fit observations
VAR_SCALING5=1.50,1.00,0.50, more closely)

LEN_SCALING1=1.00,0.50,0.25,

LEN_SCALING2=1.00,0.50,0.25,

LEN_SCALING3=1.00,0.50,0.25,

LEN_SCALING4=1.00,0.50,0.50,

LEN_SCALING5=1.00,0.50,0.20,
/

Length scales of control variables

« Each variable is a vector—one entry per outer loop
» Values are multiplicative factors that operate on the values in the static

background error file
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* The hybrid incorporates ensemble background
error covariances into WRFDA

e Main additional ;gj zgfi”e'

expense is running
the ensemble of

forecasts
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VESL Hybrid example
* Example over North America at coarse grid
spacing

 Similar results have been obtained by many
studies worldwide
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Hybrid vs. 3DVAR and EnKF

* Fractions skill scores for rainfall (higher is better)
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R
N E

EsL Radiance assimilation

« WRFDA can assimilate radiance observations
from many satellites and sensors

* The impact of assimilating radiances is largest
over the ocean and southern hemisphere

* [f your domain is ocean-centric, it may be
worth assimilating radiances
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* Antarctic application
* 48-hr forecasts verified again

Black curve: no radiances
were assimilated

Other curves: radiances
were assimilated

From Schwartz and Liu
(2012)
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Radiances

* Radiance bias correction is very important and
difficult within a regional domain

 See Liu et al. (2012) details about “spinning-up”
bias correction coefficients



BAK Tb

For an analysis over the Middle East
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Conclusion

* There are many possible configurations for
WRFDA

 Test out several configurations for your domain
to see what works best

* See
http://www2.mmm.ucar.edu/wrt/users/docs/
user_guide_V3/users_guide_chap6.htm for more
information and guidance
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Aerosol application

* Data assimilation with WRF-Chem can improve

aerosol forecasts

» Forecast errors of surface fine particulate matter
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How to use the hybrid
e WRFDA namelist:

&wrfvar16

alphacv_method=2, don’t change

ensdim_alpha=32, ensemble size

alpha_corr_type=3, don’t change

alpha_corr_scale=200, recursive filter length-scale, TUNE THIS

alpha_std dev=1.0, probably don’t change

alpha_vertloc = .true., true for vertical localization of ensemble increments
/

For alpha_vertloc= .true., in your working directory, run ..../WRFDA/var/build/

gen_be_vertloc.exe with the number of vertical levels (“e_vert” in WRF namelist) as
input:

sete vert =45
/gen_be_vertloc.exe $e_vert



